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Sample-based manifold embeddings

Let’s fix a desirable property: preserving geodesic distances.

We are interested in the following question:
Given:  a sample X from n-dimensional manifold                    , and

an embedding procedure

Define: the quality of embedding as              -isometric, if for all distinct   

Questions: 
I. Can one come up an      that achieves            -isometry?
II. How much can one reduce d and still have              -isometry?
III. Do we need any restriction on X or M? 



We only have samples

Manifold condition number [Niyogi, Smale, Weinberger ’06]

A submanifold has condition number (1/τ),
if τ is the largest number such that:
normals of M of length r are nonintersecting for all r < τ . 

Preliminaries
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Recent progress in this area

An interesting result:

Let                     be a compact n-dimensional manifold with volume V and 
curvature τ .  

Then projecting it to a random linear subspace of dimension

achieves               -isometry with high probability. 

[Baraniuk & Wakin ’08, Clarkson ’08, V. ’11]

Does not need any samples from the underlying manifold!



Recent progress in this area

An interesting result:

Let                     be a compact n-dimensional manifold with volume V and 
curvature τ .  

Then projecting it to a random linear subspace of dimension

achieves               -isometry with high probability. 

[Baraniuk & Wakin ’08, Clarkson ’08, V. ’11]

Highly undesirable! 
To have all distances within factor of 99% 
requires projection dimension > 10,000!

Does not need any samples from the underlying manifold!



What we show

For any compact n-dimensional manifold we present an algorithm
that can embed M in

dimensions that achieves               -isometry (using only samples from M).  

Embedding dimension is independent of     !

Sample size is a function of 



The Algorithm

Embedding Stage: Find a representation of M in lower dimensional space 
without worrying about maintaining any distances.

Correction Stage: Apply a series of corrections, each corresponding to a 
different region of the manifold, to restore back the distances. 

We can use a random linear projection without         penalty

This requires a bit of thinking…



Corrections

Say, this is the manifold
after the embedding stage

different regions
are contracted by
different amounts

Zoomed in a local region

shrinkage amount



Corrections

Zoomed in a local region

cannot systematically attach 
the boundary of the stretched 
region back to the manifold…

Suppose we linearly stretch this local region

shrinkage amount



Corrections

Zoomed in a local region

Instead we locally twist the space!

This creates the necessary stretch to restore back the local distances!

correction

shrinkage amount



Technical challenges

• Need to estimate the contraction at every local region.

• Find sufficient amount of ambient space to create the local twist.

• Care needs to be taken so as not to have sharp (non-differentiable) 
edges on the boundary while locally twisting the space.

• Interference between different corrections at overlapping localities 
need to be reconciled. 

Since working with samples, each step of the algorithm results in 
additive amount of approximation error!



The algorithm



The algorithm at work



Theoretical guarantee

Theorem:
Let be compact n-dimensional manifold with volume V and 
curvature τ . For any     > 0, let X be                -dense sample from M. 

Then with high probability, our algorithm (given access to X) embeds any point 
from M in dimension

with              -isometry.

Our embedding is C∞



A quick proof overview

The goal is to prove that the geodesic distances between all pairs of points p
and q in M are approximately preserved. 

Recall that length of any curve γ is given by the expression:

Therefore, suffices to show that our algorithm preserves lengths of all vectors 
tangent to at all points in M.

length of a curve is the infinitesimal sum of the 
length of the tangent vectors along its path



A quick proof overview
From differential geometry, we know that for any smooth map F

the exterior derivative or the pushforward map DF acts on the tangent 
vectors.

We carefully analyze how each correction step of the algorithm changes the 
corresponding pushforward map.



Conclusion and implications

• Gave the first sample complexity result for approximately isometric 
embedding for a manifold learning algorithms.

• Novel algorithmic and analysis techniques are of independent interest.

• One can use an existing manifold learning algorithm as the ‘embedding’ 
step. The corrections in second step enhance the embedding to make it 
isometric, making this as a universal procedure.



Summary of known embedding results

Riemannian Geometry Manifold Learning

Whitney’s result  (medium form)
2n+1 
Differential structure preserved

Random projection
2n+1 
Differential structure preserved a.s. 

Random projection 
O(ε -2 n log( V / τ ) )
Euclidean and Geodesic (1 ± ε) w.h.p.

Nash / Kuiper 
2n+1
All paths preserved

Our result
O(n + log( V / τn ) )
All paths preserved upto (1 ± ε) w.h.p.



Open problems

• How can we determine the curvature bound τ, or other geometric 
properties?

• Is it possible to embed a manifold with constant distortion that only 
depends on n?

• Is it possible to reduce the sampling requirement? 



Questions / Discussion



Thank You!


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

