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Towards formalizing ‘learning’

What does it mean to learn a concept?
• Gain knowledge or experience of the concept.

The basic process of learning
• Observe a phenomenon
• Construct a model from observations
• Use that model to make decisions / predictions

How can we make this more precise?



A statistical machinery for learning 
Phenomenon of interest:

Input space: Output space:
There is an unknown distribution       over 
The learner observes examples                                       drawn from  

Construct a model:
Let      be a collection of models, where each                     predicts given  
From      observations, select a model                  which predicts well.

We can say that we have learned the phenomenon if

for any tolerance level             of our choice.

(generalization error of f )

Machine learning



PAC Learning

For all tolerance levels           , and all confidence levels          , if there exists 
some model selection algorithm      that selects                 from m observations
ie,                                     , and has the property:

with probability at least            over the draw of the sample,

We call   
• The model class      is PAC-learnable.
• If the      is polynomial in     and    , then       is efficiently PAC-learnable 

A popular algorithm:
Empirical risk minimizer (ERM) algorithm



PAC learning simple model classes

Theorem (finite size     ): 
Pick any tolerance level           , and any confidence level          
let                                       be       examples drawn from an unknown   

if                                    , then with probability at least 

is efficiently PAC learnable

Occam’s Razor Principle: 

All things being equal, usually the simplest explanation 
of a phenomenon is a good hypothesis. 

Simplicity = representational succinctness 



Proof sketch

Define: 

We need to analyze:

(generalization error of f ) (sample error of f )

Uniform deviations of 
expectation of a random 
variable to the sample 

≤ 0



Proof sketch

Fix any                and a sample              ,  define random variable   

Lemma (Chernoff-Hoeffding bound ‘63):
Let                        be m Bernoulli r.v. drawn independently from B(p). 
for any tolerance level

(generalization error of f ) (sample error of f )



Proof sketch

Need to analyze

Equivalently, by choosing                                  with probability at least            , 
for all



PAC learning simple model classes

Theorem (Occam’s Razor): 
Pick any tolerance level           , and any confidence level          
let                                       be       examples drawn from an unknown   

if                                    , then with probability at least 

is efficiently PAC learnable



Learning general concepts

Consider linear classification

Occam’s Razor bound is ineffective 



Need to capture the true richness of

Definition (Vapnik-Chervonenkis or VC dimension):
We say that a model class       as VC dimension d, if d is the largest set of 
points                               such that for all possible labellings of 
there exists some              that achieves that labelling.

Example: = linear classifiers in R2

VC Theory

linear classifiers can realize all 
possible labellings of 3 points

linear classifiers CANNOT 
realize all labellings of 4 points

VC(   ) = 3



VC Theorem

Theorem (Vapnik-Chervonenkis ’71): 
Pick any tolerance level           , and any confidence level          
let                                       be       examples drawn from an unknown   

if                                              , then with probability at least 

is efficiently PAC learnable

VC Theorem  Occam’s Razor Theorem



Tightness of VC bound

Theorem (VC lower bound): 
Let       be any model selection algorithm that given m samples, returns a 
model from     , that is, 
For all tolerance levels                    , and all confidence levels                       ,

there exists a distribution      such that if   



Some implications

• VC dimension of a model class fully characterizes its learning ability!

• Results are agnostic to the underlying distribution.



One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent. 

Theorem (no free lunch, Devroye ‘82):
Pick any sample size m, any algorithm      and any 
There exists a distribution       such that 

while the Bayes optimal error, 

This is not the case!



Further refinements and extensions

• How to do model class selection?  Structural risk results.

• Dealing with kernels – Fat margin theory

• Incorporating priors over the models – PAC-Bayes theory

• Is it possible to get distribution dependent bound?  Rademacher complexity

• How about regression? Can derive similar results for nonparametric 
regression.



Questions / Discussion



Thank You!
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