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Towards formalizing ‘learning’

What does it mean to learn a concept?
e Gain knowledge or experience of the concept.

The basic process of learning
e Observe a phenomenon
e Construct a model from observations
e Use that model to make decisions / predictions




A statistical machinery for learning

Phenomenon of interest:
Input space: X  Outputspace: Y
There is an unknown distribution D over (X x Y)
The learner observes m examples(xz1,41),..., (%, ym) drawn from D

Construct a model: Machine learning

Let / be a collection of modelsyWhere each f: X — Y predicts y givenx

From m observations{select a model)f,, € F which predicts well.

err(f) == Py y)op {f(x) +* y} (generalization error of f)

We can say that we have learned the phenomenon if
err(f,,) —err(f*) <e f* = arg inf,» err(f)

for any tolerance level ¢ > 0 of our choice.



PAC Learning

For all tolerance levels € > 0, and all confidence levels§ > 0, if there exists
some model selection algorithm A that selects f;f} c F from m observations
ie, A: (z;,y:)™, — [, and has the property:

with probability at least 1 — § over the draw of the sample,

err(f;) —err(f*) <e
We call

e The model class F is PAC-learnable.
e If the m is polynomialin % and %, then F is efficiently PAC-learnable

A popular algorithm:
Empirical risk minimizer (ERM) algorithm
. 1
fTEr]LR‘M = arg infyc » - Z 1{f($z) o yz}

1=1



PAC learning simple model classes

Theorem (finite size F):
Pick any tolerance level ¢ > 0, and any confidence level ¢ > 0
let (z1,91),- - (@m,ym) be m examples drawn from an unknown D

if m>C- % u then with probability at least 1 —§

err(f, ) —err(f*) < e

Occam’s Razor Principle:

All things being equal, usually the simplest explanation
of a phenomenon is a good hypothesis.

Simplicity = representational succinctness




Define:
1 m
orr(f) = Egypen |HI@) 20} | o) i= — 3 [1{f(21) # i}
i=1
(generalization error of f) (sample error of f)

We need to analyze:

err(f ™) — err(f7)

= Crr(fERM) — errm(fER‘M) =0
+Cerr, (FERMY —err,,, (f7)

Uniform deviations of + err,, (f7) — err(f")

expectation of a random
variable to the sample ZQ >
sup |err( err,m,




Proof sketch

Fixany f ¢ # andasample (z;,y;), define random variable

z] = 1{f () # vi}

1 m
f
E[z]] — Z; Z; |
(generalization error of f) (sample error of f)

Lemma (Chernoff-Hoeffding bound ‘63):
Let Z4,...,Z,, be mBernoullirv.drawn independently from B(p).
for any tolerance level € > 0

1 T
P, [ = 2] - E[Zl]‘ > e] < e 2 M
=1

m



Proof sketch

Need to analyze

1 T
P, .| exists RER A —IEZf‘>
| i €. [ 35 - i >

1=1

< > Pl [ Zm]Zf]—E[Z{]\>e]

feF

< 2Fle 2™ < 6

7

Equivalently, by choosing m > C' - % In — with probability at least 1 — 9,
€
forall f € F

™m

Szl - Elz])

1=1

= ‘errm(f)—err(f) < €




PAC learning simple model classes

Theorem (Occam’s Razor):
Pick any tolerance level ¢ > 0, and any confidence level ¢ > 0

let (z1,91),- - (@m,ym) be m examples drawn from an unknown D
if m>C- % In %—' , then with probability at least 1 — ¢
€

err(f, ) —err(f*) < e



Learning general concepts

Consider linear classification

V4
~ Vs
F- {,:,*::} 7| = o
’

| Occam’s Razor bound is ineffective




VC Theory

Need to capture the true richness of F

Definition (Vapnik-Chervonenkis or VC dimension):
We say that a model class 7 as VC dimension d, if d is the largest set of
points zi,....2q4 C X such that for all possible labellings of 1,...,2q
there exists some f € F that achieves that labelling.

Example: F = linear classifiers in R?

linear classifiers can realize all linear classifiers CANNOT
possible labellings of 3 points realize all labellings of 4 points




VC Theorem

Theorem (Vapnik-Chervonenkis ’71):
Pick any tolerance level ¢ > 0, and any confidence level ¢ > 0
let (z1,y1),- -, (@m,Ym) be m examples drawn from an unknown D

VC(F)In(1/6)

if m>C. 5

, then with probability at least 1 — 9

€

err(f, ) —err(f*) < e

VC Theorem = Occam’s Razor Theorem




Tightness of VC bound

Theorem (VC lower bound):
Let A be any model selection algorithm that given m samples, returns a
model from F, thatis, A: (zs,y:)", — fA

For all tolerance levels 0 < ¢ < 1, and all confidence levels 0 < ¢ < 1/4,
VC(F)
2

there exists a distribution D such thatif m < C'- -

>€}>5

P e ) [|err(f£) —err(f*)



Some implications

 VC dimension of a model class fully characterizes its learning ability!

e Results are agnostic to the underlying distribution.



One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent.

’ This is not the case!

Theorem (no free lunch, Devroye ‘82):
Pick any sample size m, any algorithm A and any ¢ > 0
There exists a distribution D such that

err(fA) > 1/2 — ¢

while the Bayes optimal error, infs err(f) =0



Further refinements and extensions

e How to do model class selection? Structural risk results.

e Dealing with kernels — Fat margin theory

* Incorporating priors over the models — PAC-Bayes theory

e |sit possible to get distribution dependent bound? Rademacher complexity

e How about regression? Can derive similar results for nonparametric
regression.



Questions / Discussion



Thank You!
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