An Introduction to Statistical Theory of Learning

Nakul Verma Janelia, HHMI

Towards formalizing 'learning'

What does it mean to **learn** a concept?

• Gain knowledge or experience of the concept.

The basic process of **learning**

- Observe a phenomenon
- Construct a model from observations
- Use that model to make decisions / predictions

How can we make this more precise?

A statistical machinery for learning

Phenomenon of interest:

Input space: X Output space: Y

There is an unknown distribution \mathcal{D} over $(X \times Y)$

The learner observes m examples $(x_1, y_1), \ldots, (x_m, y_m)$ drawn from \mathcal{D}

Construct a model:

Let \mathcal{F} be a collection of models, where each $f : X \to Y$ predicts y given xFrom m observations, select a model $f_m \in \mathcal{F}$ which predicts well.

$$\operatorname{err}(f) := \mathbb{P}_{(x,y)\sim\mathcal{D}}\Big[f(x) \neq y\Big]$$
 (generalization error of f)

We can say that we have *learned* the phenomenon if

$$\operatorname{err}(f_m) - \operatorname{err}(f^*) \leq \epsilon \qquad f^* := \operatorname{arg\,inf}_{f \in \mathcal{F}} \operatorname{err}(f)$$

Machine learning

for any tolerance level $\epsilon > 0$ of our choice.

PAC Learning

For all tolerance levels $\epsilon > 0$, and all confidence levels $\delta > 0$, if there exists some model selection algorithm \mathcal{A} that selects $f_m^{\mathcal{A}} \in \mathcal{F}$ from m observations ie, $\mathcal{A} : (x_i, y_i)_{i=1}^m \mapsto f_m^{\mathcal{A}}$, and has the property:

with probability at least $1-\delta$ over the draw of the sample,

 $\operatorname{err}(f_m^{\mathcal{A}}) - \operatorname{err}(f^*) \le \epsilon$

We call

- The model class \mathcal{F} is PAC-learnable.
- If the m is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$, then \mathcal{F} is efficiently PAC-learnable

A popular algorithm:

Empirical risk minimizer (ERM) algorithm

$$f_m^{\text{ERM}} := \arg \inf_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \mathbf{1} \{ f(x_i) \neq y_i \}$$

PAC learning simple model classes

Theorem (finite size \mathcal{F}):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D} if $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$, then with probability at least $1 - \delta$ $\operatorname{err}(f_m^{\mathrm{ERM}}) - \operatorname{err}(f^*) \le \epsilon$

\mathcal{F} is efficiently PAC learnable

Occam's Razor Principle:

All things being equal, usually the simplest explanation of a phenomenon is a good hypothesis.

Simplicity = representational succinctness

Proof sketch

Define:

$$\operatorname{err}(f) := \mathbb{E}_{(x,y)\sim\mathcal{D}} \Big[\mathbf{1} \big\{ f(x) \neq y \big\} \Big]$$

(generalization error of f)

(sample error of f)

We need to analyze:

Proof sketch

Lemma (Chernoff-Hoeffding bound '63):

Let Z_1, \ldots, Z_m be *m* Bernoulli r.v. drawn independently from B(p). for any tolerance level $\epsilon > 0$

$$\mathbb{P}_{\mathbf{z}_{i}}\left[\left|\frac{1}{m}\sum_{i=1}^{m}[\mathbf{Z}_{i}] - \mathbb{E}[\mathbf{Z}_{1}]\right| > \epsilon\right] \leq 2e^{-2\epsilon^{2}m}$$

Proof sketch

Need to analyze

$$\mathbb{P}_{(x_i,y_i)} \left[\text{ exists } f \in \mathcal{F}, \left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$
$$\leq \sum_{f \in \mathcal{F}} \mathbb{P}_{(x_i,y_i)} \left[\left| \frac{1}{m} \sum_{i=1}^m [\mathbf{Z}_i^f] - \mathbb{E}[\mathbf{Z}_1^f] \right| > \epsilon \right]$$
$$\leq 2|\mathcal{F}| e^{-2\epsilon^2 m} \leq \delta$$

Equivalently, by choosing $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$ with probability at least $1 - \delta$, for *all* $f \in \mathcal{F}$

$$\left|\frac{1}{m}\sum_{i=1}^{m} [\mathbf{Z}_{i}^{f}] - \mathbb{E}[\mathbf{Z}_{1}^{f}]\right| = \left|\operatorname{err}_{m}(f) - \operatorname{err}(f)\right| \leq \epsilon$$

PAC learning simple model classes

Theorem (Occam's Razor):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D} if $m \ge C \cdot \frac{1}{\epsilon^2} \ln \frac{|\mathcal{F}|}{\delta}$, then with probability at least $1 - \delta$ $\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \le \epsilon$

 \mathcal{F} is efficiently PAC learnable

Learning general concepts

Consider linear classification

Occam's Razor bound is ineffective

VC Theory

Need to capture the true richness of $\ {\cal F}$

Definition (Vapnik-Chervonenkis or VC dimension):

We say that a model class \mathcal{F} as VC dimension d, if d is the largest set of points $x_1, \ldots, x_d \subset X$ such that for all possible labellings of x_1, \ldots, x_d there exists some $f \in \mathcal{F}$ that achieves that labelling.

Example: \mathcal{F} = linear classifiers in \mathbb{R}^2

VC Theorem

Theorem (Vapnik-Chervonenkis '71):

Pick any tolerance level $\epsilon > 0$, and any confidence level $\delta > 0$ let $(x_1, y_1), \ldots, (x_m, y_m)$ be m examples drawn from an unknown \mathcal{D} if $m \ge C \cdot \frac{\operatorname{VC}(\mathcal{F}) \ln(1/\delta)}{\epsilon^2}$, then with probability at least $1 - \delta$ $\operatorname{err}(f_m^{\operatorname{ERM}}) - \operatorname{err}(f^*) \le \epsilon$

\mathcal{F} is efficiently PAC learnable

Tightness of VC bound

Theorem (VC lower bound):

Let \mathcal{A} be any model selection algorithm that given m samples, returns a model from \mathcal{F} , that is, $\mathcal{A}: (x_i, y_i)_{i=1}^m \mapsto f_m^{\mathcal{A}}$

For all tolerance levels $0 < \epsilon < 1$, and all confidence levels $0 < \delta < 1/4$,

there exists a distribution \mathcal{D} such that if $m \leq C \cdot \frac{\operatorname{VC}(\mathcal{F})}{\epsilon^2}$

$$\mathbb{P}_{(x_i,y_i)}\left[\left|\operatorname{err}(f_m^{\mathcal{A}}) - \operatorname{err}(f^*)\right| > \epsilon\right] > \delta$$

• VC dimension of a model class fully characterizes its learning ability!

• Results are agnostic to the underlying distribution.

One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent.

This is not the case!

Theorem (no free lunch, Devroye '82):

Pick any sample size *m*, any algorithm \mathcal{A} and any $\epsilon > 0$ There exists a distribution \mathcal{D} such that

$$\operatorname{err}(f_m^{\mathcal{A}}) > 1/2 - \epsilon$$

while the Bayes optimal error, $\inf_f \operatorname{err}(f) = 0$

Further refinements and extensions

- How to do model class selection? Structural risk results.
- Dealing with kernels Fat margin theory
- Incorporating priors over the models PAC-Bayes theory
- Is it possible to get distribution dependent bound? Rademacher complexity
- How about regression? Can derive similar results for nonparametric regression.

Questions / Discussion

Thank You!

References:

- [1] Kearns and Vazirani. Introduction to Computational Learning Theory.
- [2] Devroye, Gyorfi and Luosi. A Probabilistic Theory of Pattern Recognition.
- [3] Anthony and Bartlett. Neural Network Learning: Theoretical Foundations.