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ABSTRACT OF THE DISSERTATION

Learning From Data With Low Intrinsic Dimension

by

Nakul Verma

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Sanjoy Dasgupta, Chair

The information explosion of the past few decades has created tremendous

opportunities for Machine Learning-based data analysis. Modern data typically

possesses a large number of features. Consider the task of predicting the effective-

ness of a particular treatment by analyzing a patient’s genome. One hopes that

by measuring several gene expression levels one can capture relevant information,

leading to better predictions. However, the presence of a large number of irrele-

vant features adds to the statistical and computational complexity of the learning

algorithm, without helping the practitioner to solve the task at hand. Indeed,

conventional statistical wisdom suggests that in a general setting the learning task

becomes significantly more difficult with an increase in the number of features,

xiv



making it especially difficult to design and analyze learning algorithms for mod-

ern, high-dimensional data.

This dissertation explores a specific way one can cope with this curse of

dimension. The key observation is that while modern datasets are represented

in high dimensions, they often adhere to some low-dimensional intrinsic struc-

ture. This intrinsic structure can manifest itself in several forms: some datasets

such as text data have a sparse structure; other datasets such as speech and im-

age articulation data follow a manifold structure. If this intrinsic structure is in

fact low-dimensional (that is, has few degrees of freedom), then the complexity of

learning algorithms should scale only with data’s intrinsic dimensionality.

In the first part of this dissertation we study how the performance of learn-

ing algorithms is affected when the data have a low-dimensional manifold struc-

ture. We provide sharp bounds for unsupervised dimensionality reduction, and an

improved PAC-learning framework for multiple instance learning in this setting.

The second part of this dissertation focuses on understanding and formaliz-

ing the general phenomenon of low intrinsic dimension. We explore a few notions

that can effectively quantify low-dimensional geometric structure in data. We show

that unlike traditional notions, some of the new notions are algorithmically verifi-

able. We can thus test a given dataset and guarantee a learning rate that scales

only with its intrinsic dimension.

xv



Chapter 1

Introduction

1.1 Nature of collected data

Lowering storage and communication costs has enabled us collect an un-

ending source of rich multifaceted data. There is now a growing need to process,

analyze and extract the relevant information from this data deluge. We are increas-

ingly relying on automated machine learning based data analysis techniques to ease

our processing burden. While such automated methods perform reasonably well

when lots of data is available, the multifaceted high-dimensional nature of mod-

ern datasets has created unique challenges for the learning algorithms: we cannot

provide good performance and quality guarantees for high-dimensional data. Part

of the reason for poor scaling behavior of learning algorithms is because increase

in dimensionality exponentially increases the volume of the representation space.

As a result, even large amounts of data are not enough to yield salient patterns or

trends. In order to obtain a statistically reliable result, the amount of data needed

to fill this space often grows exponentially with the dimensionality.

To perform well on modern high-dimensional datasets, we need a way to

cope with the effects of this curse of dimensionality. This dissertation explores

a specific way of doing this. The key observation is that while modern datasets

are represented in high dimensions, they often adhere to some low-dimensional

intrinsic structure. This intrinsic structure can be manifested in data in several

forms: some datasets such as text data have a sparse structure, other datasets

1
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such as speech and image articulation data follow a manifold structure, while

other datasets such as genomics data typically conform to a taxonomy or cluster

structure. If we can determine that the intrinsic structure is in fact low-dimensional

(that is, has few degrees of freedom), then we can expect that the complexity of

learning algorithms should scale only with data’s intrinsic dimensionality.

This dissertation focuses on theoretical and practical issues in designing

effective learning algorithms (both unsupervised and supervised) when the given

data does adhere to a manifold structure (Section 1.2). We will then discuss a way

to understand and formalize the general phenomenon of low intrinsic dimension

and its effects on the complexity of learning (Section 1.3).

1.2 Unsupervised and weakly-supervised meth-

ods for manifold structured data

Manifolds are an important geometric structure that have received signifi-

cant attention in the past decade from the machine learning community [Tenebaum

et al., 2000, Roweis and Saul, 2000, Belkin and Niyogi, 2003]. Their applicability

in learning arises from the fact that several types of data can be well modeled as a

manifold. Much of the existing work has focused on the practical applicability of

this model. We study how the manifold assumption provides enhanced theoretical

guarantees in some popular learning regimes.

Unsupervised dimensionality reduction of manifolds.

Dimensionality reduction is a popular preprocessing step to alleviate the

curse of dimensionality. When the underlying data has low dimensional manifold

structure, one expects that good information-preserving low dimension embeddings

are possible. Formally, given an n-dimensional manifold in RD, the goal is to

come up with an embedding of the data in Rd (d � D) that preserves some

interesting property of the manifold, say, preserve interpoint geodesic distances.

This problem was originally studied in differential geometry by Nash [1954] and

Kuiper [1955]. Their results show that one can embed the n-dimensional manifold
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in just d = 2n+1 dimensions while preserving all geodesic distances. In the context

of Machine Learning, we want to develop algorithms that achieve something similar

when we have access to only a finite size sample from the underlying manifold.

While several algorithms are suggested to solve this problem (see e.g. works

by Tenebaum et al. [2000], Roweis and Saul [2000], Belkin and Niyogi [2003]), only

a few provide any sort of guarantee on the quality of the embedding. Chapters

3 and 4 explore manifold embedding techniques that can provide good distance

preserving guarantees. Chapter 3 shows that a random linear projection of a

general n-dimensional manifold into O(n/ε2) dimensions can preserve lengths of

all paths on a manifold (not just the geodesics) within a factor of (1 ± ε). This

work provides an alternate technique to analyze random projections for manifolds,

and improves upon the previous known results by Baraniuk and Wakin [2009] and

Clarkson [2008].

Chapter 4 tackles the problem of minimizing the dependence on ε that

is typically associated with random projection type results. Following the ideas

discussed by Nash [1954], we can show that certain non-linear mappings can com-

pletely remove the dependence on ε from the embedding dimension. We derive an

explicit algorithm for computing the target embedding based on samples from the

underlying manifold and show that our embedding approximately maintains the

geodesic distances between any pair of points from the underlying manifold (not

just the input samples). This work can be viewed as an algorithmic realization

of Nash’s Embedding Theorem, and provides the sharpest known result for algo-

rithmically embedding arbitrary n-dimensional manifolds in just O(n) dimensions

while maintaining the underlying geodesic distances.

These results on manifold dimensionality reduction validate our intuition

that the complexity (in this case, the dimension of the embedding space) of learning

depends only on the dimension of the intrinsic structure of the data (the dimension

of the underlying manifold).
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Sample complexity of Multiple Instance Learning for manifold bags.

Multiple Instance Learning (MIL) is a popular weakly-supervised learning

paradigm in which training data is provided in the form of labeled sets of instances

(or bags) rather than individual instances. Typically, a bag is labeled positive if

some instance in the bag is positive. Chapter 5 reconciles the disconnect between

how MIL is used in practice and its theoretical analysis that is existing in the

current literature. We argue that in many applications of MIL the data is better

modeled as low dimensional manifold bags in high dimensional feature space, and

show that the geometric properties of such manifold bags are intimately related to

its PAC-learnability. We also present a practical algorithm for MIL using manifold

bags and show that it works well for real-world detection tasks in image and audio

domains.

These results again corroborate our intuition that even though data may

be represented in high dimensions, if the data distribution conforms to a low-

dimensional manifold structure, then the learning complexity does in fact scale

with the complexity of the underlying manifold and not the ambient space.

1.3 Formalizing low-dimensional intrinsic struc-

ture and its implications on learning

Since low-dimensional intrinsic structure is prevalent in modern datasets,

one of the key problems is how can one quantify these intrinsic degrees of freedom of

the underlying data distribution without knowing the exact nature of the intrinsic

structure. Such a characterization should be (i) conducive to algorithmic analysis

(that is, be able to provide guarantees for the learning algorithm), (ii) robust to

noise, and (iii) empirically verifiable from a finite size sample. While certain notions

of characterizing intrinsic complexity such as doubling dimension and covering

dimension (see e.g. surveys by Cutler [1993] and Clarkson [2006] for definitions)

do seem to satisfy requirement (i) and, with certain modifications to the definitions,

(ii), the biggest hurdle seems to be how can one empirically verify that real-world
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datasets do in fact have low, say, doubling dimension.

Chapter 6 studies the strengths and weaknesses of several notions of in-

trinsic dimension existing in the literature; it turns out many of these are not well

suited for existing real-world datasets. It then explores an alternate notion of char-

acterizing intrinsic complexity called the local covariance dimension (formalized in

[Freund et al., 2007, Dasgupta and Freund, 2008]), and studies its applicability on

modern datasets.

Chapter 7 explores how the learning complexity of tree based space parti-

tioning algorithms is closely tied with this alternate notion. Extensive experimental

analysis shows that the quality of regression estimates, nearest neighbor queries

and quantization errors yielded by these space partition algorithms scales with the

local covariance dimension of the underlying data distribution.

Developing on this theme, Chapter 8 shows that this adaptivity to intrinsic

dimension is not necessarily tied to tree based regressors or with the notion of ‘local

covariance dimension’. We show that for several other regressor types, as long as

we can exhibit some low-dimensional structure in data, we get similar results.

These results provide a holistic way to formalize and test the intrinsic di-

mension hypothesis in modern datasets. The accompanying sampling complexity

results give good performance guarantees for these datasets that scale with the

intrinsic dimension of the underlying dataset and not the ambient space.



Chapter 2

Notation and Preliminaries

Here we present our notation and review some concepts that will be useful

throughout the text.

2.1 Manifolds: definition and properties

Definition 2.1 We say a function f : U 7→ V is a diffeomorphism, if it is smooth1

and invertible with a smooth inverse.

Definition 2.2 A topological space M is said to be a smooth n-dimensional man-

ifold, if M is locally diffeomorphic to Rn. That is, at each p ∈ M we have an

open neighborhood U ⊂M containing p such that there exist a diffeomorphic map

between U and Rn.

It is always helpful to have a picture in mind. See Figure 2.1 for an example

of 1-dimensional manifold in R3. Notice that locally any small segment of the

manifold “looks like” an interval in R1.

Definition 2.3 A tangent space at a point p ∈M , denoted by TpM , is the vector

space formed by collection of all vectors tangent to M at p.

1recall that a function is smooth if all its partial derivatives ∂nf/∂xi1 . . . ∂xin exist and are
continuous.

6
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Figure 2.1: An example of 1-dimensional manifold in R3. Observe that a local
enough region effectively looks like a line segment.

For the purposes of this dissertation we will restrict ourselves to the discus-

sion of manifolds that are immersed in an ambient space RD, and whose tangent

space at each point is equipped with an inner product structure that is inherited

from the ambient space. Such manifolds are called Riemannian (sub-)manifolds

and allow us to define various notions of length, angles, curvature, etc. on the

manifold (see e.g. do Carmo [1992]).

Throughout the text we shall use M to denote a smooth, n-dimensional

compact Riemannian submanifold of RD. We will frequently refer to such a mani-

fold as an n-manifold. Since we will be working with samples from M , we need to

ensure certain amount of curvature regularity on M . Here we borrow the notation

from Niyogi et al. [2008] about the condition number of M .

Definition 2.4 (condition number [Niyogi et al., 2008]) Let M ⊂ RD be a

compact Riemannian manifold. The condition number of M is 1
τ
, if τ is the largest

number such that the normals of length r < τ at any two distinct points p, q ∈ M
don’t intersect.

The condition number of a manifold M is an intuitive notion that captures

the “complexity” of M in terms of its curvature. Say M has condition number

1/τ , then we can bound the directional curvature at any p ∈ M by τ . Figure 2.2

depicts the normals of a manifold. Notice that long non-intersecting normals are

possible only if the manifold is relatively flat. Hence, the condition number of M
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Figure 2.2: Tubular neighborhood of a manifold. Note that the normals (dotted
lines) of a particular length incident at each point of the manifold (solid line) will
intersect if the manifold is too curvy.

gives us a handle on how curvy can M be. As a quick example, let’s calculate

the condition number of an n-dimensional sphere of radius r (embedded in RD).

Note that in this case one can have non-intersecting normals of length less than

r (since otherwise they will start intersecting at the center of the sphere). Thus,

the condition number of such a sphere is 1/r. Throughout the text we will assume

that M has a bounded condition number.

There are several useful properties of well-conditioned manifolds (that is,

manifolds with bounded condition number). These are detailed in Appendix A.

We will use DG(p, q) to indicate the geodesic distance2 between points p

and q where the underlying manifold is understood from the context, and ‖p− q‖
to indicate the Euclidean distance between points p and q where the ambient space

is understood from the context.

2Geodesic distances and paths between two points are not necessarily unique. Here we are
interested in the one that yields the shortest distance.



Chapter 3

Random Projections for

Preserving Paths on Manifolds

Random projections have turned out to be a powerful tool for linear dimen-

sionality reduction that approximately preserve Euclidean distances between pairs

of points in a set S ⊂ RD. Their simplicity and universality stems from the fact the

target embedding space is picked without looking at the individual samples from

the set S. Interestingly, recent results by Baraniuk and Wakin [2009] and Clarkson

[2008] show that even if the underlying set is a non-linear manifold (say of intrinsic

dimensionality n), a random projection into a subspace of dimension O(n) suffices

to preserve interpoint Euclidean distances between the pairs of points.

It turns out that requiring Euclidean distances to be approximately pre-

served between pairs of points in a manifold is in a sense the strongest condition

one can pose. This condition suffices to imply that the random projection will

also preserve several other useful properties on manifolds. For instance, if one has

a random projection that can approximately preserve the Euclidean distances, it

will also approximately preserve the lengths of arbitrary curves on the manifold,

and the curvature of the manifold.

Here we are interested in analyzing whether one can use random projections

to reason directly about preserving the lengths of arbitrary paths on a manifold,

without having to appeal to interpoint Euclidean distances. There is a two-fold

reason for doing this: i) one can possibly get a sharper bound on the dimension

9
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of target space by relaxing the Euclidean interpoint distance preservation require-

ment, and ii) since paths—unlike Euclidean distances—are inherently an intrinsic

quantity, it should require a different technique to show path length preservation.

Thus, giving us an alternate, direct proof.

Here we make progress on both fronts. We can remove the dependence

on ambient dimension from the bound provided by Baraniuk and Wakin [2009],

as well as simplify the bound provided by Clarkson [2008] by giving an explicit

bound for all settings of the isometry parameter (and not just asymptotically small

values). Our key lemma (Lemma 3.4) uses an elegant chaining argument on the

coverings of vectors in tangent spaces providing an alternate proof technique.

3.1 Preliminaries

Given an n-manifold M ⊂ RD, recall that the length of any given curve

γ : [a, b]→M is given by
∫ b
a
‖γ′(s)‖ds (that is, length of a curve is an infinitesimal

sum of the lengths of vectors tangent to points along the path). It thus suffices to

bound the distortion induced by a random projection to the lengths of arbitrary

vectors tangent to M . We shall assume that M has condition number 1/τ (cf.

Definition 2.4)

Since we will be talking about random projections, or more formally, a

function that maps data from RD to a random subspace of dimension Rd via an

orthogonal linear projection, we will frequently refer to the matrix form of this

linear function as a random projection matrix or a random orthoprojector.

As a final piece of notation, we require a notion of covering on our manifold

M . We define the α-geodesic covering number of M as the size of the smallest

set S ⊂ M , with the property: for all p ∈ M , there exists p′ ∈ S such that

DG(p, p′) ≤ α.
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3.2 Main result

Theorem 3.1 Let M be a smooth compact n-dimensional submanifold of RD with

condition number 1/τ . Let G(M,α) denote the α-geodesic covering number of M .

Pick any 0 < ε < 1 and 0 < δ < 1. Let φ be a random projection matrix that

maps points from RD into a random subspace of dimension d (d ≤ D) and define

Φ :=
√
D/dφ as a scaled projection mapping.

If d ≥
{

64
ε2

ln 4G(M,τε2/218)
δ

+ 64n
ε2

ln 117
ε

}
, then with probability at least 1− δ, for any

path γ in M , and its projection Φ(γ) in Φ(M) ⊂ Rd,

(1− ε)L(γ) ≤ L(Φ(γ)) ≤ (1 + ε)L(γ),

where L(β) denotes the length of the path β.

3.3 Proof

As discussed earlier, it suffices to uniformly bound the distortion induced by

a random projection to the length of an arbitrary vector tangent to our manifold

M . So we shall only focus on that. We start by stating a few useful lemmas that

would help in our discussion.

Lemma 3.2 (random projection of a fixed vector – see e.g. Lemma 2.2

of Dasgupta and Gupta [1999]) Fix a vector v ∈ RD. Let φ be a random

projection map that maps points from RD to a random subspace of dimension d.

Then,

i) For any β ≥ 1,

Pr

[
‖φ(v)‖2 ≥ β

d

D
‖v‖2

]
≤ e(β−1−lnβ)(−d/2).

ii) For any 0 < ε < 1, we have

Pr

[
‖φ(v)‖2 ≤ (1− ε) d

D
‖v‖2 or ‖φ(v)‖2 ≥ (1 + ε)

d

D
‖v‖2

]
≤ 2e−dε

2/4.
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Lemma 3.3 (covering of a Euclidean unit-sphere – see e.g. Lemma 5.2

of Vershynin [2010]) Let Sn−1 be an (n− 1)-dimensional Euclidean unit sphere.

Then, for all ε > 0 there exists an ε-cover of Sn−1 of size at most (1 + 2/ε)n. That

is, there exists a set C ⊂ Sn−1, of size at most (1 + 2/ε)n, with the property: for

any x ∈ Sn−1, exists c ∈ C such that ‖x− c‖ ≤ ε.

Lemma 3.4 (random projection of a section of a manifold) Let M ⊂ RD

be a smooth compact n-dimensional manifold with condition number 1/τ . Pick

any 0 < ε < 1. Fix some p in M and let S := {p′ ∈M : DG(p, p′) ≤ τε2/218}. Let

φ be a random orthoprojector from RD to Rd. Then, if d ≥ 30n ln 18,

Pr

[
∃p′ ∈ S : ∃v′ ∈ Tp′M : ‖φv′‖ ≤ (1− ε)

√
d

D
‖v′‖ or ‖φv′‖ ≥ (1 + ε)

√
d

D
‖v′‖

]
≤ 4en ln(117/ε)−(dε2/64).

Proof. Note that the set S is path-connected, and (see for instance Lemma A.4

in the Appendix) for any Euclidean ball B(x, r) in RD, S ∩ B(x, r) can be cov-

ered by 9n balls of half the radius. We will use this fact to create a hierarchy

of covers of increasingly fine resolution. For each point in the hierarchy, we shall

associate a covering of the tangent space at that point. We will inductively show

that (with high probability) a random projection doesn’t distort the lengths of the

tangent vectors in the covering by too much. We will then conclude by showing

that bounding the length distortion on tangent vectors in the covering implies a

bound on the length distortion of all vectors in all the tangent spaces of all points

in S. We now make this argument precise.

Constructing a hierarchical cover of S: Note that S is contained in the Eu-

clidean ball B(p, τε2/218). We create a hierarchy of covers as follows. Pick a cover

of S ⊂ B(p, τε2/218) by 9n balls of radius τε2/219 (see Lemma A.4 in the Ap-

pendix). WLOG, we can assume that the centers of these balls lie in S (see e.g.

proof of Theorem 22 of Dasgupta and Freund [2008]). Each of these balls induces

a subset of S, which in turn can then be covered by 9n balls of radius τε2/220. We



13

Figure 3.1: A hierarchy of covers of S ⊂ B(p, τε2/218) for some point p in an
n-manifold M with condition number 1/τ . Observe that at any level i, there are
at most 9ni points in the cover. Also note that the Euclidean distance between
any point pi,k at level i and its parent pi−1,j in the hierarchy is at most τε2/217+i.

can continue this process to get an increasingly fine resolution such that at the

end, any point of S would have been arbitrarily well approximated by the center

of some ball in the hierarchy. We will use the notation pi,k to denote the center of

the kth ball at level i of the hierarchy (note that with this notation p0,1 = p). (see

Figure 3.1).

A tangent space cover associated with each point in the hierarchy: As-

sociated with each pi,k, we have a set Qi,k ⊂ Tpi,kM of unit-length vectors tangent

to M at pi,k that forms a (ε/6)-cover of the unit-vectors in Tpi,kM (that is, for all

unit v ∈ Tpi,kM , there exists q ∈ Qi,k where ‖q‖ = 1 such that ‖q− v‖ ≤ ε/6). We

will define the individual vectors in Qi,k as follows. The set Q0,1 is any (ε/6)-cover

of the unit-sphere in Tp0,1M . Note that, by Lemma 3.3 and recalling that ε < 1, we

can assume that |Q0,1| =: L ≤ en ln(13/ε). For levels i = 1, 2, . . ., define Qi,k (associ-

ated with the point pi,k) as the parallel transport (via the shortest geodesic path

using the standard manifold connection, see Figure 3.2) of the vectors in Qi−1,j

(associated with the point pi−1,j) where pi−1,j is the parent of pi,k in the hierarchy.

Note that parallel transporting a set of vectors preserves certain desirable prop-

erties – the dot product, for instance, between the vectors being transported is

preserved (see, for instance, page 161 of Stoker [1969]). Thus, by construction, we

have that Qi,k is a (ε/6)-cover, since parallel transport doesn’t change the lengths
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Figure 3.2: Parallel transport of the vector v at point p ∈M to the point q ∈M .
The resulting transported vector is v′. Parallel transport is the translation of a
(tangent) vector from one point to another while remaining tangent to the mani-
fold. As the vector is transported infinitesimally along a path, it is also required to
be parallel. Note that the resulting vector v′ is typically path-dependent: that is,
for different paths from p to q, the transport of v is generally different. However,
as expected, the transport does not change the length of the original vector. That
is, ‖v‖ = ‖v′‖.

or the mutual angles between the vectors being transported.

A residual associated with each vector in the tangent space cover: For i ≥
1, let qi,kl be the lth vector in Qi,k, which was formed by the transport of the vector

qi−1,j
l in Qi−1,j. We define the “residual” as ri,kl := qi,kl − q

i−1,j
l (for l = 1, . . . , L).

Then we have that ‖ri,kl ‖ is bounded. In particular, since ‖qi−1,j
l ‖ = ‖qi,kl ‖ = 1

(since the transport doesn’t change vector lengths), and since DG(pi−1,j, pi,k) ≤
2‖pi−1,j − pi,k‖ ≤ τε2/216+i (cf. Lemma A.1)

‖ri,kl ‖
2 ≤ 2DG(pi−1,j, pi,k)/τ ≤ ε22−i−15.

Effects of a random projection on the length of the residual: Note that

for a fixed ri,kl (corresponding to a fixed point pi,k at level i in the hierarchy and

its parent pi−1,j in the hierarchy), using Lemma 3.2 (i), we have (for β > 1)

Pr

[
‖φ(ri,kl )‖2 ≥ β

d

D
‖ri,kl ‖

2

]
≤ e(β−1−lnβ)(−d/2). (3.1)

By choosing β = 2i/2 in Eq. (3.1), we have the following. For any fixed i and k,

with probability at least 1 − en ln(13/ε)e(2i/2−1−ln 2i/2)(−d/2) ≥ 1 − en ln(13/ε)−di/30, we

have ‖φ(ri,kl )‖2 ≤ ε22i/2 d
D
‖ri,kl ‖2 ≤ ε22−(i/2)−15(d/D) (for l = 1, . . . , L). By taking
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a union bound over all edges in the hierarchy, (if d ≥ 30n ln 18)

Pr
[
∃ level i : ∃ ball k at level i with center pi,k : ∃ residual ri,kl :

‖φ(ri,kl )‖2 ≥ ε22−(i/2)−15(d/D)
]
≤

∞∑
i=1

eni ln 9en ln(13/ε)e−di/30

= en ln(13/ε)
( 1

1− en ln 9−d/30
− 1
)

≤ 2en ln(117/ε)−(d/30),

where the equality is by noting that the geometric series converges (since d ≥
30n ln 18), and the last inequality is by noting that 1

1−s ≤ 1 + 2s for 0 ≤ s ≤ 1/2.

Effects of a random projection on the vectors in the tangent space cover:

We now use the (uniform) bound on ‖φ(ri,kl )‖2 to conclude inductively that φ

doesn’t distort the length of any vector qi,kl too much (for any i, k, and l). In

particular we will show that for all i, k and l, we will have (1− ε
2
) d
D
≤ ‖φ(qi,kl )‖2 ≤

(1 + ε
2
) d
D

.

Base case (level 0): Since |Q0,1| ≤ en ln(13/ε) we can apply Lemma 3.2 (ii), to con-

clude with probability at least 1 − 2e−dε
2/64+n ln(13/ε), for all q ∈ Q0,1, (1 − ε

4
) d
D
≤

‖φ(q)‖2 ≤ (1 + ε
4
) d
D

.

Inductive hypothesis: We assume that for all qi,kl ∈ Qi,k (for all k) at level i(
1− ε

4
− ε

32

i∑
j=1

2−j/4
)
d

D
≤ ‖φ(qi,kl )‖2 ≤

(
1 +

ε

4
+

ε

32

i∑
j=1

2−j/4
)
d

D
. (3.2)

Inductive case: Pick any pi+1,k at level i + 1 in the hierarchy and let pi,j be its

parent (i ≥ 0). Then, for any qi+1,k
l ∈ Qi+1,k (associated with the point pi+1,k),

let qi,jl ∈ Qi,j (associated with the point pi,j) be the vector which after the parallel

transport resulted in qi+1,k
l . Then, we have:

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl ) + φ(ri+1,k

l )‖2

= ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 + 2φ(qi,jl ) · φ(ri+1,k

l )
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≥ ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 − 2‖φ(qi,jl )‖‖φ(ri+1,k

l )‖

≥ d

D

(
1− ε

4
− ε

32

i∑
j=1

2−j/4
)
− 2

√(
1 +

ε

2

)
d

D

√
ε22−(i/2)−15.5d

D

≥ d

D

[(
1− ε

4
− ε

32

i∑
j=1

2−j/4
)
−ε
√

2−(i/2)−12.5︸ ︷︷ ︸
≥−ε2−(i/4)−(1/4)−5

]

≥ d

D

(
1− ε

4
− ε

32

i+1∑
j=1

2−j/4
)
.

Now, in the other direction we have

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl )‖2 + ‖φ(ri+1,k

l )‖2 + 2‖φ(qi,jl )‖‖φ(ri+1,k
l )‖

≤ d

D

(
1 +

ε

4
+

ε

32

i∑
j=1

2−j/4
)

+
ε22−(i/2)−15.5d

D

+ 2

√(
1 +

ε

2

)
d

D

√
ε22−(i/2)−15.5d

D

≤ d

D

[(
1 +

ε

4
+

ε

32

i∑
j=1

2−j/4
)

+ε2−(i/2)−15.5 + ε
√

2−(i/2)−12.5︸ ︷︷ ︸
≤+ε2−(i/4)−(1/4)−5

]

≤ d

D

(
1 +

ε

4
+

ε

32

i+1∑
j=1

2−j/4
)
.

So far we have shown that by picking d ≥ 30n ln 18, with probability at least

1−2(en ln(117/ε)−(d/30) + en ln(13/ε)−(dε2/64)) ≥ 1−4en ln(117/ε)−(dε2/64), for all i, k and l,

(1− ε/2)(d/D) ≤ ‖φ(qi,kl )‖2 ≤ (1 + ε/2)(d/D).

Effects of a random projection on any tangent vector at any point in the

hierarchy: Now, pick any point pi,k in the hierarchy and consider the correspond-

ing set Qi,k. We will show that for any unit vector v ∈ Tpi,kM , (1 − ε)
√
d/D ≤

‖φ(v)‖ ≤ (1 + ε)
√
d/D.

Define A := maxv∈Tpi,kM,‖v‖=1 ‖φ(v)‖ and let v0 be a unit vector that attains

this maximum. Let q ∈ Qi,k be such that ‖v0 − q‖ ≤ ε/6. Now, if ‖v0 − q‖ = 0,
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then we get that A = ‖φ(v0)‖ = ‖φ(q)‖ ≤ (1 + ε)
√
d/D. Otherwise,

A = ‖φ(v0)‖ ≤ ‖φ(q)‖+ ‖φ(v0 − q)‖ = ‖φ(q)‖+ ‖v0 − q‖
∥∥∥∥φ( v0 − q
‖v0 − q‖

)∥∥∥∥
≤ (1 + ε/2)

√
d/D + (ε/6)(A).

This yields that A ≤ (1 + ε)
√
d/D, and thus for any unit v ∈ Tpi,kM , ‖φ(v)‖ ≤

‖φ(v0)‖ = A ≤ (1+ε)
√
d/D. Now, in the other direction, pick any unit v ∈ Tpi,kM ,

and let q ∈ Qi,k be such that ‖v − q‖ ≤ ε/6. Again, if ‖v − q‖ = 0, then we have

that ‖φ(v)‖ = ‖φ(q)‖ ≥ (1− ε)
√
d/D. Otherwise,

‖φ(v)‖ ≥ ‖φ(q)‖ − ‖φ(v − q)‖ = ‖φ(q)‖ − ‖v − q‖
∥∥∥∥φ( v − q
‖v − q‖

)∥∥∥∥
≥ (1− ε/2)

√
d/D − (ε/6)(1 + ε)

√
d/D ≥ (1− ε)

√
d/D.

Since φ is linear, it immediately follows that for all v ∈ Tpi,kM (not just unit-length

v) we have

(1− ε)
√
d/D‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ε)

√
d/D‖v‖.

Observe that since the choice of the point pi,k was arbitrary, this holds true for

any point in the hierarchy.

Effects of a random projection on any tangent vector at any point in S:

We can finally give a bound on any tangent vector v at any p ∈ S. Pick any v

tangent to M at p ∈ S. Then, for any δ > 0 such that δ ≤ τ/2, we know that there

exists some pi,k in the hierarchy such that ‖p − pi,k‖ ≤ δ. Let u be the parallel

transport (via the shortest geodesic path) of v from p to pi,k. Then, we know that

‖u‖ = ‖v‖ and (cf. Lemma A.1) ‖ u
‖u‖ −

v
‖v‖‖ ≤

√
4δ/τ . Thus,

‖φ(v)‖ ≤ ‖φ(u)‖+ ‖φ(v − u)‖ ≤ (1 + ε)
√
d/D‖u‖+ ‖(v − u)‖

≤ (1 + ε)
√
d/D‖v‖+ 2

√
δ/τ .

Similarly, in the other direction

‖φ(v)‖ ≥ ‖φ(u)‖ − ‖φ(v − u)‖ ≥ (1− ε)
√
d/D‖u‖ − ‖(v − u)‖

≥ (1− ε)
√
d/D‖v‖ − 2

√
δ/τ .
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Note that since the choice of δ was arbitrary, by letting δ → 0 from above, we can

conclude

(1− ε)
√
d

D
‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ε)

√
d

D
‖v‖.

All the pieces are now in place to compute the distortion to tangent vectors induced

by a random projection mapping. Let C be a (τε2/218)-geodesic cover ofM . Noting

that one can have C of size at most G(M, τε2/218), we have (for d > 30n ln 9)

Pr

[
∃c ∈ C :∃p such that DG(c, p) ≤ τε2/218 : ∃v ∈ TpM :

‖φ(v)‖ ≤ (1− ε)
√
d

D
‖v‖ or ‖φ(v)‖ ≥ (1 + ε)

√
d

D
‖v‖

]
≤ 4G(M, τε2/218)

(
en ln(117/ε)−(dε2/64)

)
.

The theorem follows by bounding this quantity by δ.
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Chapter 4

Sharper Bounds for Embedding

General Manifolds

In the last chapter we saw that there exists a linear embedding that can

preserve geodesic distances well. Here we are interested in studying how much can

we reduce the embedding dimension without compromising the quality of geodesics.

Recall that a random projection of a general n-manifold into Õ(n/ε2) dimensions1

guarantees (1 ± ε)-isometry. Observe that the 1/ε2 dependence is troublesome:

if we want an embedding with all distances within 99% of the original distances

(i.e., ε = 0.01), the bounds require the dimension of the target space to be at least

10,000!

In this chapter, we give two algorithms that achieve (1± ε)-isometry where

the dimension of the target space is independent of the isometry constant ε. As

one expects, this dependency shows up in the sampling density (i.e. the size of

X) required to compute the embedding. The first algorithm we propose is simple

and easy to implement but embeds the given n-dimensional manifold in Õ(2cn)

dimensions(where c is an absolute constant). The second algorithm, a variation on

the first, focuses on minimizing the target dimension. It is computationally more

involved and serves a more algorithmic purpose: it shows that one can embed the

manifold in just Õ(n) dimensions.

1Õ(·) notation suppresses the logarithmic dependence on parameters.
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We would like to highlight that both our proposed algorithms work for a

very general class of well-conditioned manifolds. There is no requirement that the

underlying manifold is connected, or is globally isometric (or even globally dif-

feomorphic) to some subset of Rn as is frequently assumed by several manifold

embedding algorithms. In addition, unlike spectrum-based embedding algorithms

in the literature, our algorithms yield an explicit embedding that cleanly embeds

out-of-sample data points, and provide isometry guarantees over the entire mani-

fold (not just the input samples).

4.1 Isometrically embedding manifolds: Intuition

Given an underlying n-dimensional manifold M ⊂ RD, we shall use ideas

from Nash’s embedding [Nash, 1954] to develop our algorithms. To ease the burden

of finding a (1 ± ε)-isometric embedding directly, our proposed algorithm will be

divided in two stages. The first stage will embed M in a lower dimensional space

without having to worry about preserving any distances. Since interpoint distances

will potentially be distorted by the first stage, the second stage will focus on

adjusting these distances by applying a series of corrections. The combined effect

of both stages is a distance preserving embedding of M in lower dimensions. We

now describe the stages in detail.

4.1.1 Embedding stage

We shall use the random projection result by Clarkson [2008] (with ε set

to a constant) to embed M into d = Õ(n) dimensions. This gives an easy one-to-

one low-dimensional embedding that doesn’t collapse interpoint distances. Note

that a projection does contract interpoint distances; by appropriately scaling the

random projection, we can make sure that the distances are contracted by at most

a constant amount, with high probability.
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4.1.2 Correction stage

Since the random projection can contract different parts of the manifold

by different amounts, we will apply several corrections—each corresponding to a

different local region—to stretch-out and restore the local distances.

To understand a single correction better, we can consider its effect on a small

section of the contracted manifold. Since manifolds are locally linear, the section

effectively looks like a contracted n-dimensional affine space. Our correction map

needs to restore distances over this n-flat.

For simplicity, let’s temporarily assume n = 1 (this corresponds to a 1-

dimensional manifold), and let t ∈ [0, 1] parameterize a unit-length segment of the

contracted 1-flat. Suppose we want to stretch the segment by a factor of L ≥ 1 to

restore the contracted distances. How can we accomplish this?

Perhaps the simplest thing to do is apply a linear correction mapping Ψ :

t 7→ Lt. While this mapping works well for individual local corrections, it turns

out that this mapping makes it difficult to control interference between different

corrections with overlapping localities.

We instead use extra coordinates and apply a non-linear map Ψ : t 7→
(t, sin(Ct), cos(Ct)), where C controls the stretch-size. Note that such a spiral

map stretches the length of the tangent vectors by a factor of
√

1 + C2, since

‖Ψ′‖ = ‖dΨ/dt‖ = ‖(1, C cos(Ct),−C sin(Ct))‖ =
√

1 + C2. Now since the

geodesic distance between any two points p and q on a manifold is given by the

expression
∫
‖γ′(s)‖ds, where γ is a parameterization of the geodesic curve be-

tween points p and q (that is, length of a curve is infinitesimal sum of the length of

tangent vectors along its path), Ψ stretches the interpoint geodesic distances by a

factor of
√

1 + C2 on the resultant surface as well. Thus, to stretch the distances

by a factor of L, we can set C :=
√
L2 − 1.

Now generalizing this to a local region for an arbitrary n-dimensional man-

ifold, let U := [u1, . . . , un] be a d × n matrix whose columns form an orthonor-

mal basis for the (local) contracted n-flat in the embedded space Rd and let

σ1, . . . , σn be the corresponding shrinkages along the n orthogonal directions.

Then one can consider applying an n-dimensional analog of the spiral mapping:



22

Random
projection Corrections

Figure 4.1: A simple example demonstrating our embedding technique on a 1-
dimensional manifold. Left: The original 1-dimensional manifold in some high
dimensional space. Middle: A low dimensional mapping of the original manifold
via, say, a linear projection onto the vertical plane. Different parts of the manifold
are contracted by different amounts – distances at the tail-ends are contracted
more than the distances in the middle. Right: Final embedding after applying a
series of spiralling corrections. Small size spirals are applied to regions with small
distortion (middle), large spirals are applied to regions with large distortions (tail-
ends). Resulting embedding is isometric (i.e., geodesic distance preserving) to the
original manifold.

Ψ : t 7→ (t,Ψsin(t),Ψcos(t)), where t ∈ Rd

Ψsin(t) := (sin((Ct)1), . . . , sin((Ct)n)), and

Ψcos(t) := (cos((Ct)1), . . . , cos((Ct)n)).

Here C is an n×d “correction” matrix that encodes how much of the surface needs

to stretch in the various orthogonal directions. It turns out that if one sets C to

be the matrix SUT, where S is a diagonal matrix with entry Sii :=
√

(1/σi)2 − 1

(recall that σi was the shrinkage along direction ui), then the correction Ψ precisely

restores the shrinkages along the n orthonormal directions on the resultant surface

(see Section 4.5.2 for a detailed derivation).

This takes care of the local regions individually. Now, globally, since dif-

ferent parts of the contracted manifold need to be stretched by different amounts,

we localize the effect of the individual Ψ’s to a small enough neighborhood by

applying a specific kind of kernel function known as the “bump” function in the

analysis literature, given by (see also Figure 4.4 middle)

λx(t) := 1{‖t−x‖<ρ} ·e−1/(1−(‖t−x‖/ρ)2).

Applying different Ψ’s at different parts of the manifold has an aggregate effect of

creating an approximate isometric embedding.
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We now have a basic outline of our algorithm. Let M be an n-dimensional

manifold in RD. We first find a contraction of M in d = Õ(n) dimensions via a

random projection. This embeds the manifold in low dimensions but distorts the

interpoint geodesic distances. We estimate the distortion at different regions of the

projected manifold by comparing a sample from M (i.e. X) with its projection. We

then perform a series of corrections—each applied locally—to adjust the lengths

in the local neighborhoods. We will conclude that restoring the lengths in all

neighborhoods yields a globally consistent approximately isometric embedding of

M . See also Figure 4.1.

As briefly mentioned earlier, a key issue in preserving geodesic distances

across points in different neighborhoods is reconciling the interference between dif-

ferent corrections with overlapping localities. Based on exactly how we apply these

different local Ψ’s gives rise to our two algorithms. For the first algorithm, we shall

allocate a fresh set of coordinates for each correction Ψ so that the different cor-

rections don’t interfere with each other. Since a local region of an n-dimensional

manifold can potentially have up to O(2cn) overlapping regions, we shall require

O(2cn) additional coordinates to apply the corrections, making the final embedding

dimension of Õ(2cn) (where c is an absolute constant). For the second algorithm,

we will follow Nash’s technique [Nash, 1954] more closely and apply Ψ maps itera-

tively in the same embedding space without the use of extra coordinates. At each

iteration we need to compute a pair of vectors normal to the embedded manifold.

Since locally the manifold spreads across its tangent space, these normals indicate

the locally empty regions in the embedded space. Applying the local Ψ correction

in the direction of these normals gives a way to mitigate the interference between

different Ψ’s. Since we don’t use extra coordinates, the final embedding dimension

remains Õ(n).

4.2 Preliminaries

Let M be a smooth, n-dimensional compact Riemannian submanifold of

RD with condition number 1/τ (cf. Definition 2.4).
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To correctly estimate the distortion induced by the initial contraction map-

ping, we will additionally require a high-resolution covering of our manifold.

Definition 4.1 (bounded manifold cover) Let M ⊂ RD be a Riemannian n-

manifold. We call X ⊂ M an α-bounded (ρ, δ)-cover of M if for all p ∈ M and

ρ-neighborhood Xp := {x ∈ X : ‖x− p‖ < ρ} around p, we have

• exist points x0, . . . , xn ∈ Xp such that
∣∣∣ xi−x0

‖xi−x0‖ ·
xj−x0

‖xj−x0‖

∣∣∣ ≤ 1/2n, for i 6= j.

(covering criterion)

• |Xp| ≤ α. (local boundedness criterion)

• exists point x ∈ Xp such that ‖x−p‖ ≤ ρ/2. (point representation criterion)

• for any n + 1 points in Xp satisfying the covering criterion, let T̂p denote

the n-dimensional affine space passing through them (note that T̂p does not

necessarily pass through p). Then, for any unit vector v̂ in T̂p, we have∣∣v̂ · v
‖v‖

∣∣ ≥ 1− δ, where v is the projection of v̂ onto the tangent space of M

at p. (tangent space approximation criterion)

The above is an intuitive notion of manifold sampling that can estimate the local

tangent spaces. Curiously, we haven’t found such “tangent-space approximating”

notions of manifold sampling in the literature. We do note in passing that our

sampling criterion is similar in spirit to the (ε, δ)-sampling (also known as “tight”

ε-sampling) criterion popular in the Computational Geometry literature (see e.g.

works by Dey et al. [2002] and Giesen and Wagner [2003]).

Remark 4.2 Given an n-manifold M with condition number 1/τ , and some 0 <

δ ≤ 1. If ρ ≤ τδ/3
√

2n, then there exists a 210n+1-bounded (ρ, δ)-cover of M (see

Section 4.7 on how to ensure such a cover).

We can now state our two algorithms.
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4.3 The algorithms

Inputs

We assume the following quantities are given:

(i) n – the intrinsic dimension of M .

(ii) 1/τ – the condition number of M .

(iii) X – an α-bounded (ρ, δ)-cover of M .

(iv) ρ – the ρ parameter of the cover.

Notation

Let φ be a random orthogonal projection map that maps points from RD

into a random subspace of dimension d (n ≤ d ≤ D). We will have d to be about

Õ(n). Set Φ := (2/3)(
√
D/d)φ as a scaled version of φ. Since Φ is linear, Φ

can also be represented as a d × D matrix. In our discussion below we will use

the function notation and the matrix notation interchangeably, that is, for any

p ∈ RD, we will use the notation Φ(p) (applying function Φ to p) and the notation

Φp (matrix-vector multiplication) interchangeably.

For any x ∈ X, let x0, . . . , xn be n + 1 points from the set {x′ ∈ X :

‖x − x′‖ < ρ} such that
∣∣ xi−x0

‖xi−x0‖ ·
xj−x0

‖xj−x0‖

∣∣ ≤ 1/2n, for i 6= j (cf. Definition 4.1).

Let Fx be the D × n matrix whose column vectors form some orthonormal basis

of the n-dimensional subspace spanned by the vectors {xi − x0}i∈[n]. Note that

Fx serves as a good approximation to the tangent spaces at different points in the

neighborhood of x ∈M ⊂ RD.

Estimating local contractions

We estimate the contraction caused by Φ at a small enough neighborhood

of M containing the point x ∈ X, by computing the “thin” Singular Value De-

composition (SVD) UxΣxV
T
x of the d×n matrix ΦFx and representing the singular

values in the conventional descending order. That is, ΦFx = UxΣxV
T
x , and since
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ΦFx is a tall matrix (n ≤ d), we know that the bottom d − n singular values are

zero. Thus, we only consider the top n (of d) left singular vectors in the SVD (so,

Ux is d× n, Σx is n× n, and Vx is n× n) and σ1
x ≥ σ2

x ≥ . . . ≥ σnx where σix is the

ith largest singular value.

Observe that the singular values σ1
x, . . . , σ

n
x are precisely the distortion

amounts in the directions u1
x, . . . , u

n
x at Φ(x) ∈ Rd ([u1

x, . . . , u
n
x] = Ux) when we

apply Φ. To see this, consider the direction wi := Fxv
i
x in the column-span of Fx

([v1
x, . . . , v

n
x ] = Vx). Then Φwi = (ΦFx)v

i
x = σixu

i
x, which can be interpreted as: Φ

maps the vector wi in the subspace Fx (in RD) to the vector uix (in Rd) with the

scaling of σix.

Note that if 0 < σix ≤ 1 (for all x ∈ X and 1 ≤ i ≤ n), we can define an

n× d correction matrix (corresponding to each x ∈ X) Cx := SxU
T
x , where Sx is a

diagonal matrix with (Sx)ii :=
√

(1/σix)
2 − 1. We can also write Sx as (Σ−2

x −I)1/2.

The correction matrix Cx will have an effect of stretching the direction uix by the

amount (Sx)ii and killing any direction v that is orthogonal to (column-span of)

Ux.

We compute the corrections Cx’s as follows:

Algorithm 4.1 Compute Corrections Cx’s

1: for x ∈ X (in any order) do

2: Let x0, . . . , xn ∈ {x′ ∈ X : ‖x′ − x‖ < ρ} be such that
∣∣ xi−x0

‖xi−x0‖ ·
xj−x0

‖xj−x0‖

∣∣ ≤
1/2n (for i 6= j).

3: Let Fx be a D × n matrix whose columns form an orthonormal basis of the

n-dimensional span of the vectors {xi − x0}i∈[n].

4: Let UxΣxV
T
x be the “thin” SVD of ΦFx.

5: Set Cx := (Σ−2
x − I)1/2UT

x .

6: end for
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Algorithm 4.2 Embedding Technique I

Preprocessing Stage: Partition the given covering X into disjoint subsets such

that no subset contains points that are too close to each other. Let x1, . . . , x|X|

be the points in X in some arbitrary but fixed order. We can do the partition as

follows:

1: Initialize X(1), . . . , X(K) as empty sets.

2: for xi ∈ X (in any fixed order) do

3: Let j be the smallest positive integer such that xi is not within distance 2ρ

of any element in X(j). That is, the smallest j such that for all x ∈ X(j),

‖x− xi‖ ≥ 2ρ.

4: X(j) ← X(j) ∪ {xi}.
5: end for

The Embedding: For any p ∈M ⊂ RD, embed it in Rd+2nK as follows:

1: Let t = Φ(p).

2: Define Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) where

Ψj,sin(t) := (ψ1
j,sin(t), . . . , ψnj,sin(t)),

Ψj,cos(t) := (ψ1
j,cos(t), . . . , ψ

n
j,cos(t)).

The individual terms are given by

ψij,sin(t) :=
∑

x∈X(j)

(√
ΛΦ(x)(t)/ω

)
sin(ω(Cxt)i)

ψij,cos(t) :=
∑

x∈X(j)

(√
ΛΦ(x)(t)/ω

)
cos(ω(Cxt)i)

i = 1, . . . , n;

j = 1, . . . , K

where Λa(b) = λa(b)∑
q∈X λΦ(q)(b)

.

3: return Ψ(t) as the embedding of p in Rd+2nK .

A few remarks are in order.

Remark 4.3 The goal of the Preprocessing Stage is to identify samples from X

that can have overlapping (ρ-size) local neighborhoods. The partitioning procedure

described above ensures that corrections associated with nearby neighborhoods are
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applied in separate coordinates to minimize interference.

Remark 4.4 If ρ ≤ τ/4, the number of subsets (i.e. K) produced by Embedding I

is at most α2cn for an α-bounded (ρ, δ) cover X of M (where c ≤ 4). See Section

4.8 for details.

Remark 4.5 The function Λ acts as a (normalized) localizing kernel that helps

in localizing the effects of the spiralling corrections (discussed in detail in Section

4.5.2).

Remark 4.6 ω > 0 is a free parameter that controls the interference due to over-

lapping local corrections.

Algorithm 4.3 Embedding Technique II

The Embedding: Let x1, . . . , x|X| be the points in X in arbitrary but fixed order.

For any p ∈M , we embed it in R2d+3 by:

1: Let t = Φ(p).

2: Define Ψ0,n(t) := (t, 0, . . . , 0︸ ︷︷ ︸
d+3

).

3: for i = 1, . . . , |X| do

4: Define Ψi,0 := Ψi−1,n.

5: for j = 1, . . . , n do

6: Let ηi,j(t) and νi,j(t) be two mutually orthogonal unit vectors normal to

Ψi,j−1(M) at Ψi,j−1(t).

7: Define

Ψi,j(t) := Ψi,j−1(t) +

√
ΛΦ(xi)(t)

ωi,j

(
ηi,j(t) sin(ωi,j(C

xit)j) + νi,j(t) cos(ωi,j(C
xit)j)

)
,

where Λa(b) = λa(b)∑
q∈X λΦ(q)(b)

.

8: end for

9: end for

10: return Ψ|X|,n(t) as the embedding of p into R2d+3.
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Remark 4.7 The function Λ, and the free parameters ωi,j (one for each i, j iter-

ation) have roles similar to those in Embedding I.

Remark 4.8 The success of Embedding II depends upon finding a pair of normal

unit vectors η and ν in each iteration; we discuss how to approximate these in

Section 4.10.

We shall see that for appropriate choice of d, ρ, δ and ω (or ωi,j), our

algorithm yields an approximate isometric embedding of M .

4.4 Main result

Theorem 4.9 Let M ⊂ RD be a compact n-manifold with volume V and condition

number 1/τ (as above). Let d = Ω (n+ ln(V/τn)) be the target dimension of the

initial random projection mapping such that d ≤ D. For any 0 < ε ≤ 1, let

ρ ≤ (τd/D)(ε/350)2, δ ≤ (d/D)(ε/250)2, and let X ⊂ M be an α-bounded (ρ, δ)-

cover of M . Now, let

i. NI ⊂ Rd+2αn2cn be the embedding of M returned by Algorithm I (where c ≤ 4),

ii. NII ⊂ R2d+3 be the embedding of M returned by Algorithm II.

Then, with probability at least 1− 1/poly(n) over the choice of the initial random

projection, for all p, q ∈ M and their corresponding mappings pI, qI ∈ NI and

pII, qII ∈ NII, we have

i. (1− ε)DG(p, q) ≤ DG(pI, qI) ≤ (1 + ε)DG(p, q),

ii. (1− ε)DG(p, q) ≤ DG(pII, qII) ≤ (1 + ε)DG(p, q).

4.5 Proof

Our goal is to show that the two proposed embeddings approximately pre-

serve the lengths of all geodesic curves. Now, since the length of any given curve
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γ : [a, b] → M is given by
∫ b
a
‖γ′(s)‖ds, it is vital to study how our embeddings

modify the length of the tangent vectors at any point p ∈M .

In order to discuss tangent vectors, we need to introduce the notion of a

tangent space TpM at a particular point p ∈ M . Consider any smooth curve

c : (−ε, ε)→ M such that c(0) = p, then we know that c′(0) is the vector tangent

to c at p. The collection of all such vectors formed by all such curves is a well

defined vector space (with origin at p), called the tangent space TpM . In what

follows, we will fix an arbitrary point p ∈ M and a tangent vector v ∈ TpM and

analyze how the various steps of the algorithm modify the length of v.

Let Φ be the initial (scaled) random projection map (from RD to Rd) that

may contract distances on M by various amounts, and let Ψ be the subsequent

correction map that attempts to restore these distances (as defined in Step 2 for

Embedding I or as a sequence of maps in Step 7 for Embedding II). To get a firm

footing for our analysis, we need to study how Φ and Ψ modify the tangent vector

v. It is well known from differential geometry that for any smooth map F : M → N

that maps a manifold M ⊂ Rk to a manifold N ⊂ Rk′ , there exists a linear map

(DF )p : TpM → TF (p)N , known as the derivative map or the pushforward (at p),

that maps tangent vectors incident at p in M to tangent vectors incident at F (p)

in N . To see this, consider a vector u tangent to M at some point p. Then, there is

some smooth curve c : (−ε, ε)→M such that c(0) = p and c′(0) = u. By mapping

the curve c into N , i.e. F (c(t)), we see that F (c(t)) includes the point F (p) at

t = 0. Now, by calculus, we know that the derivative at this point, dF (c(t))
dt

∣∣∣
t=0

is the

directional derivative (∇F )p(u), where (∇F )p is a k′×k matrix called the gradient

(at p). The quantity (∇F )p is precisely the matrix representation of this linear

“pushforward” map that sends tangent vectors of M (at p) to the corresponding

tangent vectors of N (at F (p)). Figure 4.2 depicts how these quantities are affected

by applying F . Also note that if F is linear, then DF = F .

Observe that since pushforward maps are linear, without loss of generality

we can assume that v has unit length.

A quick roadmap for the proof. In the next three sections, we take a brief
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Figure 4.2: Effects of applying a smooth map F on various quantities of interest.
Left: A manifold M containing point p. v is a vector tangent to M at p. Right:
Mapping of M under F . Point p maps to F (p), tangent vector v maps to (DF )p(v).

detour to study the effects of applying Φ, applying Ψ for Algorithm I, and applying

Ψ for Algorithm II separately. This will give us the necessary tools to analyze the

combined effect of applying Ψ◦Φ on v (Section 4.5.4). We will conclude by relating

tangent vectors to lengths of curves, showing approximate isometry (Section 4.5.5).

Figure 4.3 provides a quick sketch of our two stage mapping with the quantities of

interest. We defer the proofs of all the supporting lemmas to Section 4.9.

4.5.1 Effects of applying Φ

It is well known as an application of Sard’s theorem from differential topol-

ogy (see e.g. Milnor [1972]) that almost every smooth mapping of an n-dimensional

manifold into R2n+1 is a differential structure preserving embedding of M . In par-

ticular, a projection onto a random subspace (of dimension 2n + 1) constitutes

such an embedding with probability 1.

This translates to stating that a random projection into R2n+1 is enough to

guarantee that Φ doesn’t collapse the lengths of non-zero tangent vectors almost

surely. However, due to computational issues, we additionally require that the

lengths are bounded away from zero (that is, a statement of the form ‖(DΦ)p(v)‖ ≥
Ω(1)‖v‖ for all v tangent to M at all points p).

We can thus appeal to the random projections result by Clarkson [2008]

(with the isometry parameter set to a constant, say 1/4) to ensure this condition.

In particular, the following holds.
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Lemma 4.10 Let M ⊂ RD be a smooth n-manifold (as defined above) with volume

V and condition number 1/τ . Let R be a random projection matrix that maps

points from RD into a random subspace of dimension d (d ≤ D). Define Φ :=

(2/3)(
√
D/d)R as a scaled projection mapping. If d = Ω(n+ ln(V/τn)), then with

probability at least 1− 1/poly(n) over the choice of the random projection matrix,

we have

(a) For all p ∈ M and all tangent vectors v ∈ TpM , (1/2)‖v‖ ≤ ‖(DΦ)p(v)‖ ≤
(5/6)‖v‖.

(b) For all p, q ∈M , (1/2)‖p− q‖ ≤ ‖Φp− Φq‖ ≤ (5/6)‖p− q‖.

(c) For all x ∈ RD, ‖Φx‖ ≤ (2/3)(
√
D/d)‖x‖.

In what follows, we assume that Φ is such a scaled random projection map. Then,

a bound on the length of tangent vectors also gives us a bound on the spectrum

of ΦFx (recall the definition of Fx from Section 4.3).

Corollary 4.11 Let Φ, Fx and n be as described above (recall that x ∈ X that

forms a bounded (ρ, δ)-cover of M). Let σix represent the ith largest singular value

of the matrix ΦFx. Then, for δ ≤ d/32D, we have 1/4 ≤ σnx ≤ σ1
x ≤ 1 (for all

x ∈ X).

We will be using these facts in our discussion below in Section 4.5.4.

4.5.2 Effects of applying Ψ (Algorithm I)

As discussed in Section 4.1, the goal of Ψ is to restore the contraction

induced by Φ on M . To understand the action of Ψ on a tangent vector better, we

will first consider a simple case of flat manifolds (Section 4.5.2), and then develop

the general case (Section 4.5.2).

Warm-up: flat M

Let’s first consider applying a simple one-dimensional spiral map Ψ̄ : R →
R3 given by t 7→ (t, sin(Ct), cos(Ct)), where t ∈ I = (−ε, ε). Let v̄ be a unit vector
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Figure 4.3: Two stage mapping of our embedding technique. Left: Underlying
manifold M ⊂ RD with the quantities of interest – a fixed point p and a fixed
unit-vector v tangent to M at p. Center: A (scaled) linear projection of M into
a random subspace of d dimensions. The point p maps to Φp and the tangent
vector v maps to u := (DΦ)p(v) = Φv. The length of v contracts to ‖u‖. Right:
Correction of ΦM via a non-linear mapping Ψ into Rd+k. We have k = O(α2cn) for
correction technique I, and k = d + 3 for correction technique II (see also Section
4.3). Our goal is to show that Ψ stretches length of contracted v (i.e. u) back to
approximately its original length.

tangent to I (at, say, 0). Then note that

(DΨ̄)t=0(v̄) =
dΨ̄

dt

∣∣∣
t=0

= (1, C cos(Ct),−C sin(Ct))
∣∣
t=0
.

Thus, applying Ψ̄ stretches the length from 1 to
∥∥(1, C cos(Ct),−C sin(Ct))|t=0

∥∥ =
√

1 + C2. Notice the advantage of applying the spiral map in computing the

lengths: the sine and cosine terms combine together to yield a simple expres-

sion for the size of the stretch. In particular, if we want to stretch the length of

v̄ from 1 to, say, L ≥ 1, then we simply need C =
√
L2 − 1 (notice the similarity

between this expression and our expression for the diagonal component Sx of the

correction matrix Cx in Section 4.3).

We can generalize this to the case of n-dimensional flat manifold (a section of

an n-flat) by considering a map similar to Ψ̄. For concreteness, let F be a D×n ma-

trix whose column vectors form some orthonormal basis of the n-flat manifold (in

the original space RD). Let UΣV T be the “thin” SVD of ΦF . Then FV forms an

orthonormal basis of the n-flat manifold (in RD) that maps to an orthogonal basis

UΣ of the projected n-flat manifold (in Rd) via the contraction mapping Φ. Define
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the spiral map Ψ̄ : Rd → Rd+2n in this case as follows. Ψ̄(t) := (t, Ψ̄sin(t), Ψ̄cos(t)),

with Ψ̄sin(t) := (ψ̄1
sin(t), . . . , ψ̄nsin(t)) and Ψ̄cos(t) := (ψ̄1

cos(t), . . . , ψ̄
n
cos(t)). The indi-

vidual terms are given as

ψ̄isin(t) := sin((Ct)i)

ψ̄icos(t) := cos((Ct)i)
i = 1, . . . , n,

where C is now an n × d correction matrix. It turns out that setting C =

(Σ−2 − I)1/2UT precisely restores the contraction caused by Φ to the tangent

vectors (notice the similarity between this expression with the correction ma-

trix in the general case Cx in Section 4.3 and our motivating intuition in Sec-

tion 4.1). To see this, let v be a vector tangent to the n-flat at some point p

(in RD). We will represent v in the FV basis (that is, v =
∑

i αi(Fv
i) where

[Fv1, . . . , Fvn] = FV ). Note that ‖Φv‖2 = ‖
∑

i αiΦFv
i‖2 = ‖

∑
i αiσ

iui‖2 =∑
i(αiσ

i)2 (where σi are the individual singular values of Σ and ui are the left sin-

gular vectors forming the columns of U). Now, let w be the pushforward of v (that

is, w = (DΦ)p(v) = Φv =
∑

iwie
i, where {ei}i forms the standard basis of Rd).

Now, since DΨ̄ is linear, we have ‖(DΨ̄)Φ(p)(w)‖2 = ‖
∑

iwi(DΨ̄)Φ(p)(e
i)‖2, where

(DΨ̄)Φ(p)(e
i) = dΨ̄

dti

∣∣
t=Φ(p)

=
(
dt
dti
, dΨ̄sin(t)

dti
, dΨ̄cos(t)

dti

) ∣∣∣
t=Φ(p)

. The individual compo-

nents are given by

dψ̄ksin(t)/dti = + cos((Ct)k)Ck,i

dψ̄kcos(t)/dt
i = − sin((Ct)k)Ck,i

k = 1, . . . , n; i = 1, . . . , d.

By algebra, we see that

‖(D(Ψ̄ ◦ Φ))p(v)‖2 = ‖(DΨ̄)Φ(p)((DΦ)p(v))‖2 = ‖(DΨ̄)Φ(p)(w)‖2

=
d∑

k=1

w2
k +

n∑
k=1

cos2((CΦ(p))k)((CΦv)k)
2 +

n∑
k=1

sin2((CΦ(p))k)((CΦv)k)
2

=
d∑

k=1

w2
k +

n∑
k=1

((CΦv)k)
2 = ‖Φv‖2 + ‖CΦv‖2 = ‖Φv‖2 + (Φv)TCTC(Φv)

= ‖Φv‖2 + (
∑
i

αiσ
iui)TU(Σ−2 − I)UT(

∑
i

αiσ
iui)

= ‖Φv‖2 + [α1σ
1, . . . , αnσ

n](Σ−2 − I)[α1σ
1, . . . , αnσ

n]T

= ‖Φv‖2 + (
∑
i

α2
i −

∑
i

(αiσ
i)2) = ‖Φv‖2 + ‖v‖2 − ‖Φv‖2 = ‖v‖2.
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In other words, our non-linear correction map Ψ̄ can exactly restore the contraction

caused by Φ for any vector tangent to an n-flat manifold.

In the fully general case, the situation gets slightly more complicated since

we need to apply different spiral maps, each corresponding to a different size cor-

rection at different locations on the contracted manifold. Recall that we localize

the effect of a correction by applying the so-called “bump” function (details below).

These bump functions, although important for localization, have an undesirable

effect on the stretched length of the tangent vector. Thus, to ameliorate their effect

on the length of the resulting tangent vector, we control their contribution via a

free parameter ω.

The general case

More specifically, Embedding Technique I restores the contraction induced

by Φ by applying a map Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) (re-

call that K is the number of subsets we decompose X into – cf. description in Em-

bedding I in Section 4.3), with Ψj,sin(t) := (ψ1
j,sin(t), . . . , ψnj,sin(t)) and Ψj,cos(t) :=

(ψ1
j,cos(t), . . . , ψ

n
j,cos(t)). The individual terms are given as

ψij,sin(t) :=
∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) sin(ω(Cxt)i)

ψij,cos(t) :=
∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) cos(ω(Cxt)i)
i = 1, . . . , n; j = 1, . . . , K,

where Cx’s are the correction amounts for different locations x on the manifold,

ω > 0 controls the frequency (cf. Section 4.3), and ΛΦ(x)(t) is defined to be

λΦ(x)(t)/
∑

q∈X λΦ(q)(t), with

λΦ(x)(t) :=

{
exp(−1/(1− ‖t− Φ(x)‖2/ρ2)) if ‖t− Φ(x)‖ < ρ.

0 otherwise.

λ is a classic example of a bump function (see Figure 4.4 middle). It is

a smooth function with compact support. Its applicability arises from the fact

that it can be made “to specifications”. That is, it can be made to vanish outside

any interval of our choice. Here we exploit this property to localize the effect

of our corrections. The normalization of λ (the function Λ) creates the so-called
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Figure 4.4: Effects of applying a bump function on a spiral mapping. Left: Spiral
mapping t 7→ (t, sin(t), cos(t)). Middle: Bump function λx: a smooth function with
compact support. The parameter x controls the location while ρ controls the width.
Right: The combined effect: t 7→ (t, λx(t) sin(t), λx(t) cos(t)). Note that the effect
of the spiral is localized while keeping the mapping smooth.

smooth partition of unity that helps to vary smoothly between the spirals applied

at different regions of M .

Since any tangent vector in Rd can be expressed in terms of the basis vectors,

it suffices to study how DΨ acts on the standard basis {ei}. Note that

(DΨ)t(e
i) =

( dt
dti
,
dΨ1,sin(t)

dti
,
dΨ1,cos(t)

dti
, . . . ,

dΨK,sin(t)

dti
,
dΨK,cos(t)

dti

)∣∣∣
t
,

where for k ∈ [n], i ∈ [d] and j ∈ [K]

dψkj,sin(t)

dti
=

∑
x∈X(j)

1

ω

(
sin(ω(Cxt)k)

dΛ
1/2
Φ(x)(t)

dti

)
+
√

ΛΦ(x)(t) cos(ω(Cxt)k)C
x
k,i

dψkj,cos(t)

dti
=

∑
x∈X(j)

1

ω

(
cos(ω(Cxt)k)

dΛ
1/2
Φ(x)(t)

dti

)
−
√

ΛΦ(x)(t) sin(ω(Cxt)k)C
x
k,i

One can now observe the advantage of having the term ω. By picking ω sufficiently

large, we can make the first part of the expression sufficiently small. Now, for any

tangent vector u =
∑

i uie
i such that ‖u‖ ≤ 1, we have (by algebra)

‖(DΨ)t(u)‖2 =
∥∥∥∑ui(DΨ)t(e

i)
∥∥∥2

=
d∑

k=1

u2
k +

n∑
k=1

K∑
j=1

[ ∑
x∈X(j)

(Ak,xsin (t)

ω

)
+
√

ΛΦ(x)(t) cos(ω(Cxt)k)(C
xu)k

]2

+
[ ∑
x∈X(j)

(Ak,xcos(t)

ω

)
−
√

ΛΦ(x)(t) sin(ω(Cxt)k)(C
xu)k

]2

, (4.1)
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where

Ak,xsin (t) :=
∑
i

ui sin(ω(Cxt)k)(dΛ
1/2
Φ(x)(t)/dt

i), and

Ak,xcos(t) :=
∑
i

ui cos(ω(Cxt)k)(dΛ
1/2
Φ(x)(t)/dt

i).

We can further simplify Eq. (4.1) and get

Lemma 4.12 Let t be any point in Φ(M) and u be any vector tagent to Φ(M) at

t such that ‖u‖ ≤ 1. Let ε be the isometry parameter chosen in Theorem 4.9. Pick

ω ≥ Ω(nα29n
√
d/ρε), then

‖(DΨ)t(u)‖2 = ‖u‖2 +
∑
x∈X

ΛΦ(x)(t)
n∑
k=1

(Cxu)2
k + ζ, (4.2)

where |ζ| ≤ ε/2.

We will use this derivation of ‖(DΨ)t(u)‖2 to study the combined effect of

Ψ ◦ Φ on M in Section 4.5.4.

4.5.3 Effects of applying Ψ (Algorithm II)

The goal of the second algorithm is to apply the spiralling corrections while

using the coordinates more economically. We achieve this goal by applying them

sequentially in the same embedding space (rather than simultaneously by making

use of extra 2nK coordinates as done in the first algorithm), see also Nash [1954].

Since all the corrections will be sharing the same coordinate space, one needs to

keep track of a pair of normal vectors in order to prevent interference among the

different local corrections.

More specifically, Ψ : Rd → R2d+3 (in Algorithm II) is defined recursively

as Ψ := Ψ|X|,n such that (see also Embedding II in Section 4.3)

Ψi,j(t) := Ψi,j−1(t) +

√
ΛΦ(xi)(t)

ωi,j

(
ηi,j(t) sin(ωi,j(C

xit)j) + νi,j(t) cos(ωi,j(C
xit)j)

)
,

where Ψi,0(t) := Ψi−1,n(t), and the base function Ψ0,n(t) is given as t 7→ (t,

d+3︷ ︸︸ ︷
0, . . . , 0).

ηi,j(t) and νi,j(t) are mutually orthogonal unit vectors that are approximately nor-
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mal to Ψi,j−1(ΦM) at Ψi,j−1(t). In this section we assume that the normals η and

ν have the following properties:

- |ηi,j(t) · v| ≤ ε0 and |νi,j(t) · v| ≤ ε0 for all unit-length v tangent to Ψi,j−1(ΦM)

at Ψi,j−1(t). (quality of normal approximation)

- For all 1 ≤ l ≤ d, we have ‖dηi,j(t)/dtl‖ ≤ Ki,j and ‖dνi,j(t)/dtl‖ ≤ Ki,j.

(bounded directional derivatives)

We refer the reader to Section 4.10 for details on how to estimate such normals.

Now, as before, representing a tangent vector u =
∑

l ule
l (such that ‖u‖2 ≤

1) in terms of its basis vectors, it suffices to study how DΨ acts on basis vectors.

Observe that (DΨi,j)t(e
l) =

(
dΨi,j(t)

dtl

)2d+3

k=1

∣∣∣
t
, with the kth component given as(

dΨi,j−1(t)

dtl

)
k

+ (ηi,j(t))k

√
ΛΦ(xi)(t)C

xi
j,lB

i,j
cos(t)− (νi,j(t))k

√
ΛΦ(xi)(t)C

xi
j,lB

i,j
sin(t)

+
1

ωi,j

[(dηi,j(t)
dtl

)
k

√
ΛΦ(xi)(t)B

i,j
sin(t) +

(dνi,j(t)
dtl

)
k

√
ΛΦ(xi)(t)B

i,j
cos(t)

+ (ηi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

sin(t) + (νi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

cos(t)
]
,

where Bi,j
cos(t) := cos(ωi,j(C

xit)j) and Bi,j
sin(t) := sin(ωi,j(C

xit)j). For ease of nota-

tion, let Rk,l
i,j be the terms in the bracket (being multiplied to 1/ωi,j) in the above

expression. Then, we have (for any i, j)

‖(DΨi,j)t(u)‖2 =
∥∥∑

l

ul(DΨi,j)t(e
l)
∥∥2

=
2d+3∑
k=1

[∑
l

ul

(
dΨi,j−1(t)

dtl

)
k︸ ︷︷ ︸

ζk,1i,j

+ (ηi,j(t))k

√
ΛΦ(xi)(t) cos(ωi,j(C

xit)j)
∑
l

Cxi
j,lul︸ ︷︷ ︸

ζk,2i,j

−(νi,j(t))k

√
ΛΦ(xi)(t) sin(ωi,j(C

xit)j)
∑
l

Cxi
j,lul︸ ︷︷ ︸

ζk,3i,j

+(1/ωi,j)
∑
l

ulR
k,l
i,j︸ ︷︷ ︸

ζk,4i,j

]2

= ‖(DΨi,j−1)t(u)‖2︸ ︷︷ ︸
=
∑
k

(
ζk,1i,j

)2

+ ΛΦ(xi)(t)(C
xiu)2

j︸ ︷︷ ︸
=
∑
k

(
ζk,2i,j

)2

+
(
ζk,3i,j

)2
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+
∑
k

[(
ζk,4i,j /ωi,j

)2
+
(
2ζk,4i,j /ωi,j

)(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)
+ 2
(
ζk,1i,j ζ

k,2
i,j + ζk,1i,j ζ

k,3
i,j

)]
︸ ︷︷ ︸

Zi,j

,

(4.3)

where the last equality is by expanding the square and by noting that
∑

k ζ
k,2
i,j ζ

k,3
i,j =

0 since η and ν are orthogonal to each other. The base case ‖(DΨ0,n)t(u)‖2 equals

‖u‖2.

By picking ωi,j sufficiently large, and by noting that the cross terms
∑

k(ζ
k,1
i,j ζ

k,2
i,j )

and
∑

k(ζ
k,1
i,j ζ

k,3
i,j ) are very close to zero since η and ν are approximately normal to

the tangent vector, we have

Lemma 4.13 Let t be any point in Φ(M) and u be any vector tagent to Φ(M)

at t such that ‖u‖ ≤ 1. Let ε be the isometry parameter chosen in Theorem 4.9.

Pick ωi,j ≥ Ω
(
(Ki,j + (α9n/ρ))(nd|X|)2/ε

)
(recall that Ki,j is the bound on the

directional derivate of η and ν). If ε0 ≤ O
(
ε/d(n|X|)2

)
(recall that ε0 is the quality

of approximation of the normals η and ν), then we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2 = ‖u‖2 +

|X|∑
i=1

ΛΦ(xi)(t)
n∑
j=1

(Cxiu)2
j + ζ, (4.4)

where |ζ| ≤ ε/2.

4.5.4 Combined effect of Ψ(Φ(M))

We can now analyze the aggregate effect of both our embeddings on the

length of an arbitrary unit vector v tangent to M at p. Let u := (DΦ)p(v) = Φv

be the pushforward of v. Then ‖u‖ ≤ 1 (cf. Lemma 4.10). See also Figure 4.3.

Now, recalling that D(Ψ ◦ Φ) = DΨ ◦ DΦ, and noting that pushforward

maps are linear, we have ‖(D(Ψ ◦ Φ))p(v)‖2 =
∥∥(DΨ)Φ(p)(u)

∥∥2
. Thus, representing

u as
∑

i uie
i in ambient coordinates of Rd, and using Eq. (4.2) (for Algorithm I)

or Eq. (4.4) (for Algorithm II), we get∥∥(D(Ψ ◦ Φ))p(v)
∥∥2

=
∥∥(DΨ)Φ(p)(u)

∥∥2
= ‖u‖2 +

∑
x∈X

ΛΦ(x)(Φ(p))‖Cxu‖2 + ζ,
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where |ζ| ≤ ε/2. We can give simple lower and upper bounds for the above

expression by noting that ΛΦ(x) is a localization function. Define Np := {x ∈ X :

‖Φ(x)−Φ(p)‖ < ρ} as the neighborhood around p (ρ as per the theorem statement).

Then only the points in Np contribute to above equation, since ΛΦ(x)(Φ(p)) =

dΛΦ(x)(Φ(p))/dti = 0 for ‖Φ(x) − Φ(p)‖ ≥ ρ. Also note that for all x ∈ Np,

‖x− p‖ < 2ρ (cf. Lemma 4.10).

Let xM := arg maxx∈Np ‖Cxu‖2 and xm := arg minx∈Np ‖Cxu‖2 are quanti-

ties that attain the maximum and the minimum respectively, then:

‖u‖2 + ‖Cxmu‖2 − ε/2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ ‖u‖2 + ‖CxMu‖2 + ε/2. (4.5)

Notice that ideally we would like to have the correction factor “Cpu” in Eq. (4.5)

since that would give the perfect stretch around the point p. But what about

correction Cxu for closeby x’s? The following lemma helps us continue in this

situation.

Lemma 4.14 Let p, v, u be as above. For any x ∈ Np ⊂ X, let Cx and Fx

also be as discussed above (recall that ‖p− x‖ < 2ρ, and X ⊂M forms a bounded

(ρ, δ)-cover of the fixed underlying manifold M with condition number 1/τ). Define

ξ := (4ρ/τ) + δ + 4
√
ρδ/τ . If ρ ≤ τ/4 and δ ≤ d/32D, then

1−‖u‖2−40·max
{√

ξD/d, ξD/d
}
≤ ‖Cxu‖2 ≤ 1−‖u‖2+51·max

{√
ξD/d, ξD/d

}
.

Note that we chose ρ ≤ (τd/D)(ε/350)2 and δ ≤ (d/D)(ε/250)2 (cf. theorem

statement). Thus, combining Eq. (4.5) and Lemma 4.14, we get (recall ‖v‖ = 1)

(1− ε)‖v‖2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ (1 + ε)‖v‖2.

So far we have shown that our embedding approximately preserves the

length of a fixed tangent vector at a fixed point. Since the choice of the vector and

the point was arbitrary, it follows that our embedding approximately preserves the

tangent vector lengths throughout the embedded manifold uniformly. We will now

show that preserving the tangent vector lengths implies preserving the geodesic

curve lengths.
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4.5.5 Preservation of the geodesic lengths

Pick any two (path-connected) points p and q in M , and let α be the

geodesicpath between p and q. Further let p̄, q̄ and ᾱ be the images of p, q and α

under our embedding. Note that ᾱ is not necessarily the geodesic path between p̄

and q̄, thus we need an extra piece of notation: let β̄ be the geodesic path between

p̄ and q̄ (under the embedded manifold) and β be its inverse image in M . We need

to show (1 − ε)L(α) ≤ L(β̄) ≤ (1 + ε)L(α), where L(·) denotes the length of the

path · (end points are understood).

First recall that for any differentiable map F and curve γ, γ̄ = F (γ) ⇒
γ̄′ = (DF )(γ′). By (1 ± ε)-isometry of tangent vectors, this immediately gives us

(1−ε)L(γ) ≤ L(γ̄) ≤ (1+ε)L(γ) for any path γ in M and its image γ̄ in embedding

of M . So,

(1− ε)DG(p, q) = (1− ε)L(α) ≤ (1− ε)L(β) ≤ L(β̄) = DG(p̄, q̄).

Similarly,

DG(p̄, q̄) = L(β̄) ≤ L(ᾱ) ≤ (1 + ε)L(α) = (1 + ε)DG(p, q).

4.6 Discussion

This work provides two algorithms for (1±ε)-isometric embedding of generic

n-dimensional manifolds. Our algorithms are similar in spirit to Nash’s construc-

tion [Nash, 1954], and manage to remove the dependence on the isometry constant

ε from the final embedding dimension. Note that this dependency does necessarily

show up in the sampling density required to make the corrections.

The correction procedure discussed here can also be readily adapted to

create isometric embeddings from any manifold embedding procedure (under some

mild conditions). Take any off-the-shelf manifold embedding algorithm A (such

as LLE, Laplacian Eigenmaps, etc.) that maps an n-dimensional manifold in,

say, d dimensions, but does not necessarily guarantee an approximate isometric

embedding. Then as long as one can ensure that A is a one-to-one mapping that

doesn’t collapse interpoint distances, we can scale the output returned by A to
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create a contraction. The scaled version of A acts as the Embedding Stage of

our algorithm. We can thus apply the Corrections Stage (either the one discussed

in Algorithm I or Algorithm II) to produce an approximate isometric embedding

of the given manifold in slightly higher dimensions. In this sense, the correction

procedure presented here serves as a universal procedure for approximate isometric

manifold embeddings.
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4.7 On constructing a bounded manifold cover

Given a compact n-manifold M ⊂ RD with condition number 1/τ , and some

0 < δ ≤ 1, we can construct an α-bounded (ρ, δ) cover X of M (with α ≤ 210n+1

and ρ ≤ τδ/3
√

2n) as follows.

Set ρ ≤ τδ/3
√

2n and pick a (ρ/2)-net C of M (that is C ⊂ M such that,

i. for c, c′ ∈ C such that c 6= c′, ‖c− c′‖ ≥ ρ/2, ii. for all p ∈M , exists c ∈ C such

that ‖c−p‖ < ρ/2). WLOG we shall assume that all points of C are in the interior

of M . Then, for each c ∈ C, define Mc,ρ/2 := {p ∈ M : ‖p − c‖ ≤ ρ/2}, and the

orthogonal projection map fc : Mc,ρ/2 → TcM that projects Mc,ρ/2 onto TcM (note

that, cf. Lemma A.3(i), fc is one-to-one). Note that TcM can be identified with

Rn with the c as the origin. We will denote the origin as x
(c)
0 , that is, x

(c)
0 = fc(c).

Now, let Bc be any n-dimensional closed ball centered at the origin x
(c)
0 ∈

TcM of radius r > 0 that is completely contained in fc(Mc,ρ/2) (that is, Bc ⊂
fc(Mc,ρ/2)). Pick a set of n points x

(c)
1 , . . . , x

(c)
n on the surface of the ball Bc such

that (x
(c)
i − x

(c)
0 ) · (x(c)

j − x
(c)
0 ) = 0 for i 6= j.
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Define the bounded manifold cover as

X :=
⋃

c∈C,i=0,...,n

f−1
c (x

(c)
i ). (4.6)

Lemma 4.15 Let 0 < δ ≤ 1 and ρ ≤ τδ/3
√

2n. Let C be a (ρ/2)-net of M as

described above, and X be as in Eq. (4.6). Then X forms a 210n+1-bounded (ρ, δ)

cover of M .

Proof. Pick any point p ∈M and define Xp := {x ∈ X : ‖x− p‖ < ρ}. Let c ∈ C
be such that ‖p− c‖ < ρ/2. Then Xp has the following properties.

Covering criterion: For 0 ≤ i ≤ n, since ‖f−1
c (x

(c)
i )−c‖ ≤ ρ/2 (by construction), we

have ‖f−1
c (x

(c)
i )−p‖ < ρ. Thus, f−1

c (x
(c)
i ) ∈ Xp (for 0 ≤ i ≤ n). Now, for 1 ≤ i ≤ n,

noting that DG(f−1
c (x

(c)
i ), f−1

c (x
(c)
0 )) ≤ 2‖f−1

c (x
(c)
i ) − f−1

c (x
(c)
0 )‖ ≤ ρ (cf. Lemma

A.2), we have that for the vector v̂
(c)
i :=

f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )

‖f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )‖

and its (normalized)

projection v
(c)
i :=

x
(c)
i −x

(c)
0

‖x(c)
i −x

(c)
0 ‖

onto TcM ,
∥∥v̂(c)

i − v
(c)
i

∥∥ ≤ ρ/
√

2τ (cf. Lemma A.5).

Thus, for i 6= j, we have (recall, by construction, we have v
(c)
i · v

(c)
j = 0)

|v̂(c)
i · v̂

(c)
j | = |(v̂(c)

i − v
(c)
i + v

(c)
i ) · (v̂(c)

j − v
(c)
j + v

(c)
j )|

= |(v̂(c)
i − v

(c)
i ) · (v̂(c)

j − v
(c)
j ) + v

(c)
i · (v̂

(c)
j − v

(c)
j ) + (v̂

(c)
i − v

(c)
i ) · v(c)

j |

≤ ‖(v̂(c)
i − v

(c)
i )‖‖(v̂(c)

j − v
(c)
j )‖+ ‖v̂(c)

i − v
(c)
i ‖+ ‖v̂(c)

j − v
(c)
j ‖

≤ 3ρ/
√

2τ ≤ 1/2n.

Point representation criterion: There exists x ∈ Xp, namely f−1
c (x

(c)
0 ) (= c), such

that ‖p− x‖ ≤ ρ/2.

Local boundedness criterion: Define Mp,3ρ/2 := {q ∈ M : ‖q − p‖ < 3ρ/2}. Note

that Xp ⊂ {f−1
c (x

(c)
i ) : c ∈ C ∩Mp,3ρ/2, 0 ≤ i ≤ n}. Now, using Lemma A.4 we

have that there exists a cover N ⊂ Mp,3ρ/2 of size at most 93n such that for any

point q ∈ Mp,3ρ/2, there exists n′ ∈ N such that ‖q − n′‖ < ρ/4. Note that, by

construction of C, there cannot be an n′ ∈ N such that it is within distance ρ/4 of

two (or more) distinct c, c′ ∈ C (since otherwise the distance ‖c − c′‖ will be less

than ρ/2, contradicting the packing of C). Thus, |C ∩Mp,3ρ/2| ≤ 93n. It follows
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that |Xp| ≤ (n+ 1)93n ≤ 210n+1.

Tangent space approximation criterion: Let T̂p be the n-dimensional span of

{v̂(c)
i }i∈[n] (note that T̂p may not necessarily pass through p). Then, for any unit

vector û ∈ T̂p, we need to show that its projection up onto TpM has the property

|û · up
‖up‖ | ≥ 1 − δ. Let θ be the angle between vectors û and up. Let uc be the

projection of û onto TcM , and θ1 be the angle between vectors û and uc, and

let θ2 be the angle between vectors uc (at c) and its parallel transport along the

geodesic path to p. WLOG we can assume that θ1 and θ2 are at most π/2. Then,

θ ≤ θ1 +θ2 ≤ π. We get the bound on the individual angles as follows. By applying

Lemma A.6, cos(θ1) ≥ 1 − δ/4, and by applying Lemma A.1, cos(θ2) ≥ 1 − δ/4.

Finally, by using Lemma 4.16, we have
∣∣û · up

‖up‖

∣∣ = cos(θ) ≥ cos(θ1 + θ2) ≥ 1− δ.

Lemma 4.16 Let 0 ≤ ε1, ε2 ≤ 1. If cosα ≥ 1 − ε1 and cos β ≥ 1 − ε2, then

cos(α + β) ≥ 1− ε1 − ε2 − 2
√
ε1ε2.

Proof. Applying the identity sin θ =
√

1− cos2 θ immediately yields sinα ≤
√

2ε1

and sin β ≤
√

2ε2. Now, cos(α+ β) = cosα cos β − sinα sin β ≥ (1− ε1)(1− ε2)−
2
√
ε1ε2 ≥ 1− ε1 − ε2 − 2

√
ε1ε2.

Remark 4.17 A dense enough sample from M constitutes as a bounded cover.

One can selectively prune the dense sampling to control the total number of points

in each neighborhood, while still maintaining the cover properties.

4.8 Bounding the number of subsets K in Em-

bedding I

By construction (see preprocessing stage of Embedding I),K = maxx∈X |X∩
B(x, 2ρ)| (where B(x, r) denotes a Euclidean ball centered at x of radius r). That

is, K is the largest number of x’s (∈ X) that are within a 2ρ ball of some x ∈ X.

Now, pick any x ∈ X and consider the set Mx := M ∩ B(x, 2ρ). Then, if

ρ ≤ τ/4, Mx can be covered by 2cn balls of radius ρ (see Lemma A.4). By recalling
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that X forms an α-bounded (ρ, δ)-cover, we have |X∩B(x, 2ρ)| = |X∩Mx| ≤ α2cn

(where c ≤ 4).

4.9 Supporting proofs

4.9.1 Proof of Lemma 4.10

Since R is a random orthoprojector from RD to Rd, it follows that

Lemma 4.18 (random projection of n-manifolds – adapted from The-

orem 1.5 of Clarkson [2008]) Let M be a smooth compact n-manifold with

volume V and condition number 1/τ . Let R̄ :=
√
D/dR be a scaling of R. Pick

any 0 < ε ≤ 1 and 0 < δ ≤ 1. If d = Ω
(
ε−2 log(V/τn) + ε−2n log(1/ε) + ln(1/δ)

)
,

then with probability at least 1− δ, for all p, q ∈M

(1− ε)‖p− q‖ ≤ ‖R̄p− R̄q‖ ≤ (1 + ε)‖p− q‖.

We apply this result with ε = 1/4. Then, for d = Ω(log(V/τn)+n), with probability

at least 1 − 1/poly(n), (3/4)‖p − q‖ ≤ ‖R̄p − R̄q‖ ≤ (5/4)‖p − q‖. Now let

Φ : RD → Rd be defined as Φx := (2/3)R̄x = (2/3)(
√
D/d)x (as per the lemma

statement). Then we immediately get (1/2)‖p− q‖ ≤ ‖Φp− Φq‖ ≤ (5/6)‖p− q‖.
Also note that for any x ∈ RD, we have ‖Φx‖ = (2/3)(

√
D/d)‖Rx‖ ≤

(2/3)(
√
D/d)‖x‖ (since R is an orthoprojector).

Finally, for any point p ∈ M , a unit vector u tangent to M at p can be

approximated arbitrarily well by considering a sequence {pi}i of points (in M)

converging to p (in M) such that (pi − p)/‖pi − p‖ converges to u. Since for all

points pi, (1/2) ≤ ‖Φpi − Φp‖/‖pi − p‖ ≤ (5/6) (with high probability), it follows

that (1/2) ≤ ‖(DΦ)p(u)‖ ≤ (5/6).

4.9.2 Proof of Corollary 4.11

Let v1
x and vnx (∈ Rn) be the right singular vectors corresponding to singular

values σ1
x and σnx respectively of the matrix ΦFx. Then, quickly note that σ1

x =

‖ΦFxv1‖, and σnx = ‖ΦFxvn‖. Note that since Fx is orthonormal, we have that
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‖Fxv1‖ = ‖Fxvn‖ = 1. Now, since Fxv
n is in the span of column vectors of Fx,

by the sampling condition (cf. Definition 4.1), there exists a unit length vector v̄nx

tangent to M (at x) such that |Fxvnx · v̄nx | ≥ 1 − δ. Thus, decomposing Fxv
n
x into

two vectors anx and bnx such that anx⊥bnx and anx := (Fxv
n
x · v̄nx)v̄nx , we have

σnx = ‖Φ(Fxv
n)‖ = ‖Φ((Fxv

n
x · v̄nx)v̄nx) + Φbnx‖

≥ (1− δ) ‖Φv̄nx‖ − ‖Φbnx‖

≥ (1− δ)(1/2)− (2/3)
√

2δD/d,

since ‖bnx‖2 = ‖Fxvnx‖2−‖anx‖2 ≤ 1−(1−δ)2 ≤ 2δ and ‖Φbnx‖ ≤ (2/3)(
√
D/d)‖bnx‖ ≤

(2/3)
√

2δD/d. Similarly decomposing Fxv
1
x into two vectors a1

x and b1
x such that

a1
x⊥b1

x and a1
x := (Fxv

1
x · v̄1

x)v̄
1
x, we have

σ1
x = ‖Φ(Fxv

1
x)‖ = ‖Φ((Fxv

1
x · v̄1

x)v̄
1
x) + Φb1

x‖

≤
∥∥Φv̄1

x

∥∥+ ‖Φb1
x‖

≤ (5/6) + (2/3)
√

2δD/d,

where the last inequality is by noting ‖Φb1
x‖ ≤ (2/3)

√
2δD/d. Now, by our choice

of δ (≤ d/32D), and by noting that d ≤ D, the corollary follows.

4.9.3 Proof of Lemma 4.12

We can simplify Eq. (4.1) by recalling how the subsets X(j) were constructed

(see preprocessing stage of Embedding I). Note that for any fixed t, at most one

term in the set {ΛΦ(x)(t)}x∈X(j) is non-zero. Thus,

‖(DΨ)t(u)‖2 =
d∑

k=1

u2
k +

n∑
k=1

∑
x∈X

ΛΦ(x)(t)(C
xu)2

k(cos2(ω(Cxt)k) + sin2(ω(Cxt)k))

+
1

ω

[ ((
Ak,xsin (t)

)2
+
(
Ak,xcos(t)

)2)
/ω︸ ︷︷ ︸

ζ1

+ 2Ak,xsin (t)
√

ΛΦ(x)(t) cos(ω(Cxt)k)(C
xu)k︸ ︷︷ ︸

ζ2

−2Ak,xcos(t)
√

ΛΦ(x)(t) sin(ω(Cxt)k)(C
xu)k︸ ︷︷ ︸

ζ3

]
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= ‖u‖2 +
∑
x∈X

ΛΦ(x)(t)
n∑
k=1

(Cxu)2
k + ζ,

where ζ := (ζ1 + ζ2 + ζ3)/ω. Noting that i) the terms |Ak,xsin (t)| and |Ak,xcos(t)| are at

most O(α9n
√
d/ρ) (see Lemma 4.19), ii) |(Cxu)k| ≤ 4, and iii)

√
ΛΦ(x)(t) ≤ 1, we

can pick ω sufficiently large (say, ω ≥ Ω(nα29n
√
d/ρε) such that |ζ| ≤ ε/2 (where

ε is the isometry constant from our main theorem).

Lemma 4.19 For all k, x and t, the terms |Ak,xsin (t)| and |Ak,xcos(t)| are at most

O(α9n
√
d/ρ).

Proof. We shall focus on bounding |Ak,xsin (t)| (the steps for bounding |Ak,xcos(t)| are

similar). Note that

|Ak,xsin (t)| =
∣∣∣ d∑
i=1

uisin(ω(Cxt)k)
dΛ

1/2
Φ(x)(t)

dti

∣∣∣
≤

d∑
i=1

|ui| ·
∣∣∣dΛ

1/2
Φ(x)(t)

dti

∣∣∣ ≤
√√√√ d∑

i=1

∣∣∣dΛ
1/2
Φ(x)(t)

dti

∣∣∣2,
since ‖u‖ ≤ 1. Thus, we can bound |Ak,xsin (t)| by O(α9n

√
d/ρ) by noting the follow-

ing lemma.

Lemma 4.20 For all i, x and t, |dΛ
1/2
Φ(x)(t)/dt

i| ≤ O(α9n/ρ).

Proof. Pick any t ∈ Φ(M), and let p0 ∈ M be (the unique element) such that

Φ(p0) = t. Define Np0 := {x ∈ X : ‖Φ(x) − Φ(p0)‖ < ρ} as the neighborhood

around p0. Fix an arbitrary x0 ∈ Np0 ⊂ X (since if x0 /∈ Np0 then dΛ
1/2
Φ(x0)(t)/dt

i =

0), and consider the function

Λ
1/2
Φ(x0)(t) =

(
λΦ(x0)(t)∑

x∈Np0
λΦ(x)(t)

)1/2

=

(
e−1/(1−(‖t−Φ(x0)‖2/ρ2))∑

x∈Np0
e−1/(1−(‖t−Φ(x)‖2/ρ2))

)1/2

.

Pick an arbitrary coordinate i0 ∈ {1, . . . , d} and consider the (directional) deriva-

tive of this function

dΛ
1/2
Φ(x0)(t)

dti0
=

1

2

(
Λ
−1/2
Φ(x0)(t)

)(dΛΦ(x0)(t)

dti0

)
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=

( ∑
x∈Np0

e−At(x)
)1/2

2
(
e−At(x0)

)1/2


( ∑
x∈Np0

e−At(x)
)(−2(ti0 − Φ(x0)i0)

ρ2
(At(x0))2

)(
e−At(x0)

)
( ∑
x∈Np0

e−At(x)
)2

−

(
e−At(x0)

)( ∑
x∈Np0

−2(ti0 − Φ(x)i0)

ρ2
(At(x))2e−At(x)

)
( ∑
x∈Np0

e−At(x)
)2



=

( ∑
x∈Np0

e−At(x)
)(−2(ti0 − Φ(x0)i0)

ρ2
(At(x0))2

)(
e−At(x0)

)1/2

2
( ∑
x∈Np0

e−At(x)
)1.5

−

(
e−At(x0)

)1/2( ∑
x∈Np0

−2(ti0 − Φ(x)i0)

ρ2
(At(x))2e−At(x)

)
2
( ∑
x∈Np0

e−At(x)
)1.5 ,

where At(x) := 1/(1−(‖t−Φ(x)‖2/ρ2)). Observe that the domain of At is {x ∈ X :

‖t−Φ(x)‖ < ρ} and the range is [1,∞). Recalling that for any β ≥ 1, |β2e−β| ≤ 1

and |β2e−β/2| ≤ 3, we have that |At(·)2e−At(·)| ≤ 1 and |At(·)2e−At(·)/2| ≤ 3. Thus,

∣∣∣dΛ
1/2
Φ(x0)(t)

dti0

∣∣∣
≤

3 ·
∣∣∣ ∑
x∈Np0

e−At(x)
∣∣∣ · ∣∣∣2(ti0 − Φ(x0)i0)

ρ2

∣∣∣+
∣∣∣e−At(x0)/2

∣∣∣ · ∣∣∣ ∑
x∈Np0

2(ti0 − Φ(x)i0)

ρ2

∣∣∣
2
( ∑
x∈Np0

e−At(x)
)1.5

≤

(3)(2/ρ)
∣∣∣ ∑
x∈Np0

e−At(x)
∣∣∣+
∣∣∣e−At(x0)/2

∣∣∣ ∑
x∈Np0

(2/ρ)

2
( ∑
x∈Np0

e−At(x)
)1.5

≤ O(α9n/ρ),

where the last inequality is by noting: i) |Np0 | ≤ α9n (since for all x ∈ Np0 ,

‖x − p0‖ ≤ 2ρ – cf. Lemma 4.10, X is an α-bounded cover, and by noting that
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for ρ ≤ τ/4, a ball of radius 2ρ can be covered by 9n balls of radius ρ on the

given n-manifold – cf. Lemma A.4), ii) |e−At(x)| ≤ |e−At(x)/2| ≤ 1 (for all x), and

iii)
∑

x∈Np0
e−At(x) ≥ Ω(1) (since our cover X ensures that for any p0, there exists

x ∈ Np0 ⊂ X such that ‖p0 − x‖ ≤ ρ/2 – see also Remark 4.2, and hence e−At(x)

is non-negligible for some x ∈ Np0).

4.9.4 Proof of Lemma 4.13

Note that by definition, ‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2. Thus, using Eq.

(4.3) and expanding the recursion, we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2

= ‖(DΨ|X|,n−1)t(u)‖2 + ΛΦ(x|X|)(t)(C
x|X|u)2

n + Z|X|,n
...

= ‖(DΨ0,n)t(u)‖2 +
[ |X|∑
i=1

ΛΦ(xi)(t)
n∑
j=1

(Cxiu)2
j

]
+
∑
i,j

Zi,j.

Note that (DΨi,0)t(u) := (DΨi−1,n)t(u). Now recalling that ‖(DΨ0,n)t(u)‖2 = ‖u‖2

(the base case of the recursion), all we need to show is that |
∑

i,j Zi,j| ≤ ε/2. This

follows directly from the lemma below.

Lemma 4.21 Let ε0 ≤ O
(
ε/d(n|X|)2

)
, and for any i, j, let ωi,j ≥ Ω

(
(Ki,j +

(α9n/ρ))(nd|X|)2/ε
)

(as per the statement of Lemma 4.13). Then, for any i, j,

|Zi,j| ≤ ε/2n|X|.

Proof. Recall that (cf. Eq. (4.3))

Zi,j =
1

ω2
i,j

∑
k

(
ζk,4i,j

)2

︸ ︷︷ ︸
(a)

+ 2
∑
k

ζk,4i,j

ωi,j

(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)
︸ ︷︷ ︸

(b)

+ 2
∑
k

ζk,1i,j ζ
k,2
i,j︸ ︷︷ ︸

(c)

+ 2
∑
k

ζk,1i,j ζ
k,3
i,j︸ ︷︷ ︸

(d)

.

Term (a): Note that |
∑

k(ζ
k,4
i,j )2| ≤ O

(
d3(Ki,j + (α9n/ρ))2

)
(cf. Lemma 4.22 (iv)).

By our choice of ωi,j, we have term (a) at most O(ε/n|X|).

Term (b): Note that
∣∣ζk,1i,j + ζk,2i,j + ζk,3i,j

∣∣ ≤ O(n|X|+ (ε/dn|X|)) (by noting Lemma

4.22 (i)-(iii), recalling the choice of ωi,j, and summing over all i′, j′). Thus,
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∣∣∑
k ζ

k,4
i,j (ζk,1i,j + ζk,2i,j + ζk,3i,j )

∣∣ ≤ O
((
d2(Ki,j + (α9n/ρ))

)(
n|X|+ (ε/dn|X|)

))
. Again,

by our choice of ωi,j, term (b) is at most O(ε/n|X|).

Terms (c) and (d): We focus on bounding term (c) (the steps for bounding term

(d) are same). Note that |
∑

k ζ
k,1
i,j ζ

k,2
i,j | ≤ 4|

∑
k ζ

k,1
i,j (ηi,j(t))k|. Now, observe that(

ζk,1i,j

)
k=1,...,2d+3

is a tangent vector with length at most O(dn|X|+ (ε/dn|X|)) (cf.

Lemma 4.22 (i)). Thus, by noting that ηi,j is almost normal (with quality of ap-

proximation ε0), we have term (c) at most O(ε/n|X|).

By choosing the constants in the order terms appropriately, we can get the lemma.

Lemma 4.22 Let ζk,1i,j , ζk,2i,j , ζk,3i,j , and ζk,4i,j be as defined in Eq. (4.3). Then for all

1 ≤ i ≤ |X| and 1 ≤ j ≤ n, we have

(i) |ζk,1i,j | ≤ 1 + 8n|X|+
∑i

i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α9n/ρ))/ωi′,j′),

(ii) |ζk,2i,j | ≤ 4,

(iii) |ζk,3i,j | ≤ 4,

(iv) |ζk,4i,j | ≤ O(d(Ki,j + (α9n/ρ))).

Proof. First note for any ‖u‖ ≤ 1 and for any xi ∈ X, 1 ≤ j ≤ n and 1 ≤ l ≤ d,

we have |
∑

l C
xi
j,lul| = |(Cxiu)j| ≤ 4 (cf. Lemma 4.24 (b) and Corollary 4.11).

Noting that for all i and j, ‖ηi,j‖ = ‖νi,j‖ = 1, we have |ζ2,k
i,j | ≤ 4 and |ζ3,k

i,j | ≤ 4.

Observe that ζk,4i,j =
∑

l ulR
k,l
i,j . For all i, j, k and l, note that i) ‖dηi,j(t)/dtl‖ ≤ Ki,j

and ‖dνi,j(t)/dtl‖ ≤ Ki,j and ii) |dλ1/2
Φ(xi)

(t)/dtl| ≤ O(α9n/ρ) (cf. Lemma 4.20).

Thus we have |ζk,4i,j | ≤ O(d(Ki,j + (α9n/ρ))).

Now for any i, j, note that ζk,1i,j =
∑

l uldΨi,j−1(t)/dtl. Thus by recursively expand-

ing, |ζk,1i,j | ≤ 1 + 8n|X|+
∑i

i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α9n/ρ))/ωi′,j′).
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4.9.5 Proof of Lemma 4.14

We start by stating the following useful observations:

Lemma 4.23 Let A be a linear operator such that max‖x‖=1 ‖Ax‖ ≤ δmax. Let u

be a unit-length vector. If ‖Au‖ ≥ δmin > 0, then for any unit-length vector v such

that |u · v| ≥ 1− ε, we have

1− δmax

√
2ε

δmin

≤ ‖Av‖
‖Au‖

≤ 1 +
δmax

√
2ε

δmin

.

Proof. Let v′ = v if u · v > 0, otherwise let v′ = −v. Quickly note that

‖u− v′‖2 = ‖u‖2 + ‖v′‖2 − 2u · v′ = 2(1− u · v′) ≤ 2ε. Thus, we have,

i. ‖Av‖ = ‖Av′‖ ≤ ‖Au‖+ ‖A(u− v′)‖ ≤ ‖Au‖+ δmax

√
2ε,

ii. ‖Av‖ = ‖Av′‖ ≥ ‖Au‖ − ‖A(u− v′)‖ ≥ ‖Au‖ − δmax

√
2ε.

Noting that ‖Au‖ ≥ δmin yields the result.

Lemma 4.24 Let x1, . . . , xn ∈ RD be n mutually orthonormal vectors, F :=

[x1, . . . , xn] be a D×n matrix and let Φ be a linear map from RD to Rd (n ≤ d ≤ D)

such that for all non-zero a ∈ span(F ) we have 0 < ‖Φa‖ ≤ ‖a‖. Let UΣV T be

the thin SVD of ΦF . Define C = (Σ−2 − I)1/2UT. Then,

(a) ‖C(Φa)‖2 = ‖a‖2 − ‖Φa‖2, for any a ∈ span(F ),

(b) ‖C‖2 ≤ (1/σn)2, where ‖ · ‖ denotes the spectral norm of a matrix and σn is

the nth largest singular value of ΦF .

Proof. Note that FV forms an orthonormal basis for the subspace spanned by

columns of F that maps to UΣ via the mapping Φ. Thus, since a ∈ span(F ), let

y be such that a = FV y. Note that i) ‖a‖2 = ‖y‖2, ii) ‖Φa‖2 = ‖UΣy‖2 = yTΣ2y.

Now,

‖CΦa‖2 = ‖((Σ−2 − I)1/2UT)ΦFV y‖2

= ‖(Σ−2 − I)1/2UTUΣV TV y‖2

= ‖(Σ−2 − I)1/2Σy‖2

= yTy − yTΣ2y

= ‖a‖2 − ‖Φa‖2.
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Now, consider ‖C‖2.

‖C‖2 ≤ ‖(Σ−2 − I)1/2‖2‖UT‖2

≤ max
‖x‖=1

‖(Σ−2 − I)1/2x‖2

≤ max
‖x‖=1

xTΣ−2x

= max
‖x‖=1

∑
i

x2
i /(σ

i)2

≤ (1/σn)2,

where σi are the (top n) singular values forming the diagonal matrix Σ.

Lemma 4.25 Let M ⊂ RD be a compact Riemannian n-manifold with condition

number 1/τ . Pick any x ∈ M and let Fx be any n-dimensional affine space with

the property: for any unit vector vx tangent to M at x, and its projection vxF onto

Fx,
∣∣vx · vxF

‖vxF ‖

∣∣ ≥ 1 − δ. Then for any p ∈ M such that ‖x − p‖ ≤ ρ ≤ τ/2, and

any unit vector v tangent to M at p, (ξ := (2ρ/τ) + δ + 2
√

2ρδ/τ)

i.
∣∣∣v · vF

‖vF ‖

∣∣∣ ≥ 1− ξ,

ii. ‖vF‖2 ≥ 1− 2ξ,

iii. ‖vr‖2 ≤ 2ξ,

where vF is the projection of v onto Fx and vr is the residual (i.e. v = vF + vr and

vF⊥vr).

Proof. Let γ be the angle between vF and v. We will bound this angle.

Let vx (at x) be the parallel transport of v (at p) via the (shortest) geodesic

path via the manifold connection. Let the angle between vectors v and vx be α.

Let vxF be the projection of vx onto the subspace Fx, and let the angle between vx

and vxF be β. WLOG, we can assume that the angles α and β are acute. Then,

since γ ≤ α + β ≤ π, we have that
∣∣∣v · vF

‖vF ‖

∣∣∣ = cos γ ≥ cos(α + β). We bound the

individual terms cosα and cos β as follows.

Now, since ‖p − x‖ ≤ ρ, using Lemmas A.1 and A.2, we have cos(α) =

|v · vx| ≥ 1− 2ρ/τ . We also have cos(β) =
∣∣∣vx · vxF

‖vxF ‖

∣∣∣ ≥ 1− δ. Then, using Lemma

4.16, we finally get
∣∣∣v · vF

‖vF ‖

∣∣∣ = | cos(γ)| ≥ 1− 2ρ/τ − δ − 2
√

2ρδ/τ = 1− ξ.
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Also note since 1 = ‖v‖2 = (v · vF
‖vF ‖

)2
∥∥∥ vF
‖vF ‖

∥∥∥2

+ ‖vr‖2, we have ‖vr‖2 =

1−
(
v · vF
‖vF ‖

)2

≤ 2ξ, and ‖vF‖2 = 1− ‖vr‖2 ≥ 1− 2ξ.

Now we are in a position to prove Lemma 4.14. Let vF be the projection

of the unit vector v (at p) onto the subspace spanned by (the columns of) Fx and

vr be the residual (i.e. v = vF + vr and vF⊥vr). Then, noting that p, x, v and Fx

satisfy the conditions of Lemma 4.25 (with ρ in the Lemma 4.25 replaced with 2ρ

from the statement of Lemma 4.14), we have (ξ := (4ρ/τ) + δ + 4
√
ρδ/τ)

a)
∣∣v · vF

‖vF ‖

∣∣ ≥ 1− ξ,

b) ‖vF‖2 ≥ 1− 2ξ,

c) ‖vr‖2 ≤ 2ξ.

We can now bound the required quantity ‖Cxu‖2. Note that

‖Cxu‖2 = ‖CxΦv‖2 = ‖CxΦ(vF + vr)‖2

= ‖CxΦvF‖2 + ‖CxΦvr‖2 + 2CxΦvF · CxΦvr

= ‖vF‖2 − ‖ΦvF‖2︸ ︷︷ ︸
(a)

+ ‖CxΦvr‖2︸ ︷︷ ︸
(b)

+ 2CxΦvF · CxΦvr︸ ︷︷ ︸
(c)

where the last equality is by observing vF is in the span of Fx and applying Lemma

4.24 (a). We now bound the terms (a),(b), and (c) individually.

Term (a): Note that 1 − 2ξ ≤ ‖vF‖2 ≤ 1 and observing that Φ satisfies the

conditions of Lemma 4.23 with δmax = (2/3)
√
D/d, δmin = (1/2) ≤ ‖Φv‖ (cf.

Lemma 4.10) and
∣∣v · vF

‖vF ‖

∣∣ ≥ 1− ξ, we have (recall ‖Φv‖ = ‖u‖ ≤ 1)

‖vF‖2 − ‖ΦvF‖2 ≤ 1− ‖vF‖2

∥∥∥∥Φ
vF
‖vF‖

∥∥∥∥2

≤ 1− (1− 2ξ)

∥∥∥∥Φ
vF
‖vF‖

∥∥∥∥2

≤ 1 + 2ξ −
∥∥∥∥Φ

vF
‖vF‖

∥∥∥∥2

≤ 1 + 2ξ −
(
1− (4/3)

√
2ξD/d

)2 ‖Φv‖2

≤ 1− ‖u‖2 +
(
2ξ + (8/3)

√
2ξD/d

)
, (4.7)
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where the fourth inequality is by using Lemma 4.23. Similarly, in the other direc-

tion

‖vF‖2 − ‖ΦvF‖2 ≥ 1− 2ξ − ‖vF‖2

∥∥∥∥Φ
vF
‖vF‖

∥∥∥∥2

≥ 1− 2ξ −
∥∥∥∥Φ

vF
‖vF‖

∥∥∥∥2

≥ 1− 2ξ −
(
1 + (4/3)

√
2ξD/d

)2 ‖Φv‖2

≥ 1− ‖u‖2 −
(
2ξ + (32/9)ξ(D/d) + (8/3)

√
2ξD/d

)
. (4.8)

Term (b): Note that for any x, ‖Φx‖ ≤ (2/3)(
√
D/d)‖x‖. We can apply Lemma

4.24 (b) with σnx ≥ 1/4 (cf. Corollary 4.11) and noting that ‖vr‖2 ≤ 2ξ, we imme-

diately get

0 ≤ ‖CxΦvr‖2 ≤ 42 · (4/9)(D/d)‖vr‖2 ≤ (128/9)(D/d)ξ. (4.9)

Term (c): Recall that for any x, ‖Φx‖ ≤ (2/3)(
√
D/d)‖x‖, and using Lemma

4.24 (b) we have that ‖Cx‖2 ≤ 16 (since σnx ≥ 1/4 – cf. Corollary 4.11).

Now let a := CxΦvF and b := CxΦvr. Then ‖a‖ = ‖CxΦvF‖ ≤ ‖Cx‖‖ΦvF‖
≤ 4, and ‖b‖ = ‖CxΦvr‖ ≤ (8/3)

√
2ξD/d (see Eq. (4.9)).

Thus, |2a · b| ≤ 2‖a‖‖b‖ ≤ 2 · 4 · (8/3)
√

2ξD/d = (64/3)
√

2ξD/d. Equiva-

lently,

− (64/3)
√

2ξD/d ≤ 2CxΦvF · CxΦvr ≤ (64/3)
√

2ξD/d. (4.10)

Combining (4.7)-(4.10), and noting d ≤ D, yields the lemma.

4.10 Computing the normal vectors

The success of the second embedding technique crucially depends upon

finding (at each iteration step) a pair of mutually orthogonal unit vectors that are

normal to the embedding of manifold M (from the previous iteration step) at a

given point p. At a first glance finding such normal vectors seems infeasible since

we only have access to a finite size sample X from M . The saving grace comes

from noting that the corrections are applied to the n-dimensional manifold Φ(M)
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Figure 4.5: Basic setup for computing the normals to the underlying n-manifold
ΦM at the point of interest Φp. Observe that even though it is difficult to find
vectors normal to ΦM at Φp within the containing space Rd (because we only have
a finite-size sample from ΦM , viz. Φx1, Φx2, etc.), we can treat the point Φp as
part of the bigger ambient manifold N (= Rd, that contains ΦM) and compute
the desired normals in a space that contains N itself. Now, for each i, j iteration
of Algorithm II, Ψi,j acts on the entire N , and since we have complete knowledge
about N , we can compute the desired normals.

that is actually a submanifold of d-dimensional space Rd. Let’s denote this space

Rd as a flat d-manifold N (containing our manifold of interest Φ(M)). Note that

even though we only have partial information about Φ(M) (since we only have

samples from it), we have full information about N (since it is the entire space

Rd). What it means is that given some point of interest Φp ∈ Φ(M) ⊂ N , finding a

vector normal to N (at Φp) automatically is a vector normal to Φ(M) (at Φp). Of

course, to find two mutually orthogonal normals to a d-manifold N , N itself needs

to be embedded in a larger dimensional Euclidean space (although embedding into

d + 2 should suffice, for computational reasons we will embed N into Euclidean

space of dimension 2d+ 3). This is precisely the first thing we do before applying

any corrections (cf. Step 2 of Embedding II in Section 4.3). See Figure 4.5 for an

illustration of the setup before finding any normals.

Now for every iteration of the algorithm, note that we have complete knowl-

edge of N and exactly what function (namely Ψi,j for iteration i, j) is being applied

to N . Thus with additional computation effort, one can compute the necessary

normal vectors.

More specifically, we can estimate a pair of mutually orthogonal unit vectors

that are normal to Ψi,j(N) at Φp (for any step i, j) as follows.
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Algorithm 4.4 Compute Normal Vectors

Preprocessing Stage:

1: Let ηrand
i,j and νrand

i,j be vectors in R2d+3 drawn independently at random from

the surface of the unit-sphere (for 1 ≤ i ≤ |X|, 1 ≤ j ≤ n).

Compute Normals: For any point of interest p ∈ M , let t := Φp denote its

projection into Rd. Now, for any iteration i, j (where 1 ≤ i ≤ |X|, and 1 ≤ j ≤ n),

we shall assume that vectors η and ν upto iterations i, j−1 are already given. Then

we can compute the (approximated) normals ηi,j(t) and νi,j(t) for the iteration i,

j as follows.

1: Let ∆ > 0 be the quality of approximation.

2: for k = 1, . . . , d do

3: Approximate the kth tangent vector as

T k :=
Ψi,j−1(t+ ∆ek)−Ψi,j−1(t)

∆
,

where Ψi,j−1 is as defined in Section 4.5.3, and ek is the kth standard vector.

4: end for

5: Let η = ηrand
i,j , and ν = νrand

i,j .

6: Use Gram-Schmidt orthogonalization process to extract η̂ (from η) that is

orthogonal to vectors {T 1, . . . , T d}.
7: Use Gram-Schmidt orthogonalization process to extract ν̂ (from ν) that is

orthogonal to vectors {T 1, . . . , T d, η̂}.
8: return η̂/‖η̂‖ and ν̂/‖ν̂‖ as mutually orthogonal unit vectors that are approx-

imately normal to Ψi,j−1(ΦM) at Ψi,j−1(t).

A few remarks are in order.

Remark 4.26 The choice of target dimension of size 2d + 3 (instead of d + 2)

ensures that a pair of random unit-vectors η and ν are not parallel to any vector

in the tangent bundle of Ψi,j−1(N) with probability 1. This follows from Sard’s

theorem (see e.g. Milnor [1972]), and is the key observation in reducing the em-

bedding size in Whitney’s embedding [Whitney, 1936]. This also ensures that our

orthogonalization process (Steps 6 and 7) will not result in a null vector.
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Remark 4.27 By picking ∆ sufficiently small, we can approximate the normals

η and ν arbitrarily well by approximating the tangents T 1, . . . , T d well.

Remark 4.28 For each iteration i, j, the vectors η̂/‖η̂‖ and ν̂/‖ν̂‖ that are re-

turned (in Step 8) are a smooth modification to the starting vectors ηrand
i,j and νrand

i,j

respectively. Now, since we use the same starting vectors ηrand
i,j and νrand

i,j regard-

less of the point of application (t = Φp), it follows that the respective directional

derivates of the returned vectors are bounded as well.

By noting Remarks 4.27 and 4.28, the approximate normals we return sat-

isfy the conditions needed for Embedding II (see our discussion in Section 4.5.3).



Chapter 5

Multiple Instance Learning for

Manifold Bags

Traditional supervised learning requires example/label pairs during train-

ing. However, in many domains labeling every single instance of data is either

tedious or impossible. The Multiple Instance Learning (MIL) framework, intro-

duced by Dietterich et al. [1997], provides a general paradigm for a more relaxed

form of supervised learning: instead of receiving example/label pairs, the learner

gets unordered sets of instances, or bags, and labels are provided for each bag,

rather than for each instance. A bag is labeled positive if it contains at least one

positive instance. In recent years MIL has received significant attention in terms of

both algorithm design and applications [Maron and Lozano-Perez, 1998, Andrews

et al., 2002, Zhang and Goldman, 2002, Viola et al., 2005].

Theoretical PAC-style analysis of MIL problems has also seen progress in

the last decade [Auer et al., 1997, Blum and Kalai, 1998, Long and Tan, 1998,

Sabato and Tishby, 2009, Sabato et al., 2010]. Typical analysis formulates the

MIL problem as follows: a fixed number of instances, r, is drawn from an in-

stance space I to form a bag. The sample complexity for bag classification is

then analyzed in terms of the bag size (r). Most of the theory work has focused

on reducing the dependence on r under various settings. For example, Blum and

Kalai [1998] showed that if one has access to a noise tolerant learner and the bags

are formed by drawing r independent samples from a fixed distribution over I,

58
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Negative region
Positive region

Figure 5.1: Better data modeling with manifold bags. In this example the task is
to predict whether an image contains a face. Each bag is an image, and individual
instances are image patches of a fixed size. Examples of two positive bags b1 and
b2 (left), and a visualization of the instance space I (right) are shown. The two
bags trace out low-dimensional manifolds in I; in this case the manifold dimension
is two since there are two degrees of freedom (the x and y location of the image
patch). The green regions on the manifolds indicate the portion of the bags that
is positive.

then the sample complexity grows linearly with r. Recently, Sabato and Tishby

[2009] showed that if one can minimize the empirical error on bags, then even if

the instances in a bag have arbitrary statistical dependence, sample complexity

grows only logarithmically with r.

The above line of work is rather restrictive. Any dependence on r makes

it impossible to apply these generalization bounds to problems where bags have

infinitely many instances – a typical case in practice. Consider the following moti-

vating example: we would like to predict whether an image contains a face (as in

Viola et al. [2005]). Putting this in the MIL framework, a bag is an entire image,

which is labeled positive if and only if there is a face somewhere in the image. The

individual instances are image patches. Notice that in this scenario the instances

collectively form (a discrete approximation to) a low-dimensional manifold; see

Figure 5.1. Here we expect the sample complexity to scale with the geometric

properties of the underlying manifold bag rather than the number of instances per

bag.

This situation arises in many other MIL applications where some type of

sliding window is used to break up an object into many overlapping pieces: images

[Andrews et al., 2002, Viola et al., 2005], video [Ali and Shah, 2008, Buehler et al.,
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2009], audio [Saul et al., 2001, Mandel and Ellis, 2008], and sensor data [Stikic

and Schiele, 2009]. Consider also the original molecule classification task that

motivated Dietterich et al. [1997] to develop MIL, where a bag corresponds to a

molecule, and instances are different shapes that molecule can assume. Even in this

application, “as the molecule changes its shape, it traces out a manifold through

[feature] space” [Maron and Lozano-Perez, 1998]. Thus, manifold structure is an

integral aspect of these problems that needs to be taken into account in MIL

analysis and algorithm design.

Here we analyze the MIL framework for bags containing potentially infinite

instances. In this setting a bag is drawn from a bag distribution, and is labeled

positive if it contains at least one positive instance. In order to have a tractable

analysis, we impose a structural constraint on the bags: we assume that bags are

low dimensional manifolds in the instance space, as discussed above. We show that

the geometric structure of such bags is intimately related to the PAC-learnability

of MIL problems. We investigate how learning is affected if we have have access

to only a limited number of instances per manifold bag. We then discuss how

existing MIL algorithms, that are designed for finite sized bags, can be adapted

to learn from manifold bags efficiently using an iterative querying heuristic. Our

experiments on real-world data (image and audio) validate the intuition of our

analysis and show that our querying heuristic works well in practice.

5.1 Problem formulation and analysis

Let I be the domain of instances (for the purposes of our discussion we

assume it to be RD for some large D), and let B be the domain of bags. Here

we impose a structural constraint on B: each bag from B is a low dimensional

manifold over the instances of I. More formally, each bag b ∈ B is a n-dimensional

submanifold of ambient instance space I (n � D). The geometric properties of

such bags are integral to our analysis. We shall use dim(b), vol(b), and cond(b)

to denote the intrinsic dimension, volume, and the condition number (cf. Definition

2.4) of the manifold bag b respectively.
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With this formalism, we can define a structured family of bag spaces.

Definition 5.1 We say that a bag space B belongs to class (V, n, τ), if for every

b ∈ B, we have that dim(b) = n, vol(b) ≤ V , and cond(b) ≤ 1/τ .

In what follows, we will assume that B belongs to class (V, n, τ). We now

provide our main results, with all the supporting proofs in Section 5.3.

5.1.1 Learning with manifold bags

Since we are interested in PAC-style analysis, we will be working with a

fixed hypothesis class H over the instance space I (that is, each h ∈ H is of the

form h : I → {0, 1}). The corresponding bag hypothesis class H over the bag

space B (where each h̄ ∈ H is of the form h̄ : B → {0, 1}) is defined as the set of

classifiers {h̄ : h ∈ H} where, for any b ∈ B, h̄(b) := maxα∈b h(α). We assume that

there is some unknown instance classification rule h∗ : I → {0, 1} that gives the

true labels for all instances.

The learner gets access to m bag/label pairs (bi, yi)
m
i=1, where each bag bi

is drawn independently from an unknown but fixed distribution DB over B, and is

labeled according to the MIL rule yi := maxα∈bi h
∗(α). We denote a sample of size

m as Sm.

Our learner should ideally return the hypothesis h̄ that achieves the low-

est bag generalization1 error: err(h̄) := Eb∼DB [h̄(b) 6= y]. This, of course, is not

possible as the learner typically does not have access to the underlying data distri-

bution DB. Instead, the learner has access to the sample Sm, and can minimize the

empirical error: êrr(h̄, Sm) := 1
m

∑m
i=1 1{h̄(bi) 6= yi}. Various PAC results relate

these two quantities in terms of the properties of H.

Perhaps the most obvious way to bound err(h̄) in terms of êrr(h̄, Sm) is

by analyzing the VC-dimension of the bag hypotheses, VC(H), and applying the

standard VC-bounds (see e.g. Vapnik and Chervonenkis [1971]). While finding

the VC-dimension of the bag hypothesis class is non-trivial, the VC-dimension of

1One can also talk about the generalization error over instances. As noted in previous work
(e.g. Sabato and Tishby [2009]), PAC analysis of the instance error typically requires stronger
assumptions.
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the corresponding instance hypotheses, VC(H), is well known for many popular

choices of H. Sabato and Tishby [2009] showed that for finite sized bags the VC-

dimension of bag hypotheses (and thus the generalization error) can be bounded in

terms of the VC-dimension of the underlying instance hypotheses. Although one

might hope that this analysis could be carried over to bags of infinite size that are

well structured, this turns out to not be the case.

VC(H) is unbounded for arbitrarily smooth manifold bags

We begin with a surprising result which goes against our intuition that

requiring bag smoothness should suffice in bounding VC(H). We demonstrate

that requiring the bags to be low-dimensional, arbitrarily flat manifolds with fixed

volume is not enough to get a handle on generalization error even for one of the

simplest instance hypothesis classes (set of hyperplanes in RD). In particular,

Theorem 5.2 For any V > 0, n ≥ 1, τ < ∞, let B contain all manifolds M

such that dim(M) = n, vol(M) ≤ V , and cond(M) ≤ 1/τ (i.e. B is the largest

member of class (V, n, τ)). Let H be the set of hyperplanes in RD (D > n).

Then for any m ≥ 1, there exists a set of m bags b1, . . . , bm ∈ B, such that the

corresponding bag hypothesis class H (over the bag space B) realizes all possible 2m

labelings.

Thus, VC(H) is unbounded making PAC-learnability seemingly impossi-

ble. To build intuition for this apparent richness of H, and possible alternatives

to bound the generalization error, let us take a quick look at the case of one-

dimensional manifolds in R2 with halfspaces as our H. For any m, we can place

a set of m manifold bags in such a way that all labelings are realizable by H (see

Fig. 5.2 for an example where m = 3; see Section 5.3.1 for a detailed construction).

The key observation is that in order to label a bag positive, the instance

hypothesis needs to label just a single instance in that bag positive. Considering

that our bags have an infinite number of points, the positive region can occupy an

arbitrarily small fraction of a positively labeled bag. This gives our bag hypotheses

immense flexibility even when the underlying instance hypotheses are quite simple.
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Figure 5.2: Bag hypotheses over manifold bags have unbounded VC-dimension.
Three bags (colored blue, green and red) go around the eight anchor points (shown
as black dots) that are arranged along a section of a circle. Notice that the hy-
perplanes tangent to the anchor points achieve all possible bag labelings. The
hypothesis h shown above, for example, labels the red and blue bags positive, and
the green bag negative.

It seems that to bound err(h̄) we must ensure that a non-negligible portion

of a positive bag be labeled positive. A natural way of accomplishing this is to

use a real-valued version of the instance hypothesis class (i.e., classifiers of the

form hr : I → [0, 1], and labels determined by thresholding), and requiring that

functions in this class (a) be smooth, and (b) label a positive bag with a certain

margin. To understand why these properties are needed, consider three ways that

hr can label the instances of a positive bag b as one varies the latent parameter α:

smooth
margin

smooth
margin

smooth
margin

1

½

1

½
+

–

1

½

margin margin margin

0 0 0

Figure 5.3: Potential ways classifier hr labels instances in a bag b. Ideally we
want a non-negligible portion of the bag b labeled positive (right figure).

In both the left and center panels, hr labels only a tiny portion of the bag

positive: in the first case hr barely labels any instance above the threshold of 1/2,

resulting in a small margin; in the second case, although the margin is large, hr
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changes rapidly along the bag. Finally, in the right panel, when both the margin

and smoothness conditions are met, a non-negligible portion of b is labeled positive.

We shall thus study how to bound the generalization error in this setting.

Learning with a margin

Let Hr be the real-valued relaxation of H (i.e. each hr ∈ Hr is now of the

form hr : I → [0, 1]). In order to ensure smoothness we impose a λ-Lipschitz

constraint on the instance hypotheses: ∀hr ∈ Hr, x, x
′ ∈ I, |hr(x) − hr(x

′)| ≤
λ‖x − x′‖2. We denote the corresponding bag hypothesis class as Hr. Note that

the true bag labels are still binary in this setting (i.e. determined by h∗).

Similar to the VC-dimension, the “fat-shattering dimension” of a real-

valued bag hypothesis class, fatγ(Hr), relates the generalization error to the em-

pirical error at margin γ (see for example Anthony and Bartlett [1999]):

êrrγ(h̄r, Sm) :=
1

m

m∑
i=1

1{margin(h̄r(bi), yi) < γ}, (5.1)

where margin(x, y) :=

{
x− 1/2 y = 1

1/2− x otherwise
.

Recall that it was not possible to bound generalization error in terms of

the instance hypotheses using VC dimension. However, analogous to Sabato &

Tishby’s analysis of finite size bags [2009], we can bound generalization error for

manifold bags in terms of the fat-shattering dimension of instance hypotheses,

fatγ(H). In particular, we have the following:

Theorem 5.3 Let B belong to class (V, n, τ). Let Hr be λ-Lipschitz smooth (w.r.t.

`2-norm), and Hr be the corresponding bag hypotheses over B. Pick any 0 < γ < 1

and m ≥ fatγ/16(Hr) ≥ 1. For any 0 < δ < 1, we have with probability at least

1− δ over an i.i.d. sample Sm (of size m), for every h̄r ∈ Hr:

err(h̄r) ≤ êrrγ(h̄r, Sm) +O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ

)
, (5.2)

where τ0 = min{ τ
2
, γ

8
, γ

8λ
}.
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Observe that the complexity term in Eq. (5.2) is independent of the “bag

size”; it has instead been replaced by the volume and other geometric properties

of the manifold bags. The other term captures the sample error for individual

hypotheses at margin γ. Thus a natural strategy for a learner is to return a

hypothesis that minimizes the empirical error while maximizing the margin.

5.1.2 Learning from queried instances

So far we have analyzed the MIL learner as a black box entity, which can

minimize the empirical bag error by somehow accessing the bags. Since the in-

dividual bags in our case are low-dimensional manifolds (with an infinite number

of instances), we must also consider how these bags are accessed by the learner.

Perhaps the simplest approach is to query ρ instances uniformly from each bag,

thereby “reducing” the problem to standard MIL (with finite size bags) for which

there are algorithms readily available (e.g. works by Maron and Lozano-Perez

[1998], Andrews et al. [2002], Zhang and Goldman [2002], Viola et al. [2005]).

More formally, for a bag sample Sm, let pi1, . . . , p
i
ρ be ρ independent instance sam-

ples drawn uniformly from the (image of) bag bi ∈ Sm, and let Sm,ρ :=
⋃
i,j p

i
j be

the set of all instances. Assuming that our manifold bags have well-conditioned

boundaries, the following theorem relates the empirical error of sampled bags,

êrrγ(h̄r, Sm,ρ) := 1
m

∑m
i=1 1{margin(maxj∈[ρ] h(pij), yi) < γ}, to the generalization

error.

Theorem 5.4 Let B belong to class (V, n, τ). Let Hr be λ-Lipschitz smooth (w.r.t.

`2-norm), and Hr be the corresponding bag hypotheses over B. Pick any 0 <

δ1, δ2 < 1, then with probability at least 1− δ1 − δ2, over the draw of m bags (Sm)

and ρ instances per bag (Sm,ρ), for all h̄r ∈ Hr we have the following:

Let 1
κ

:= maxbi∈Sm{cond(∂bi)} (where ∂bi is the boundary of the manifold

bag bi)
2 and set τ1 = min{ τ

32
, κ

8
, γ

9λ
, γ

9
}. If

ρ ≥ Ω

((
V/τ c0n

1

)(
n+ ln

(mV
τn1 δ2

)))
,

2If ∂bi is empty, then define cond(∂bi) = 0.
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then

err(h̄r) ≤ êrr2γ(h̄r, Sm,ρ) +O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ1

)
,

where τ0 = min{ τ
2
, γ

8
, γ

8λ
} and c0 is an absolute constant.

Notice the effect of the two key parameters in the above theorem: the num-

ber of training bags, m, and the number of queried instances per bag, ρ. Increasing

either quantity improves generalization – increasing m drives down the error (via

the complexity term), while increasing ρ helps improve the confidence (via δ2).

While ideally we would like both quantities to be large, increasing these parame-

ters is, of course, computationally burdensome for a standard MIL learner. Note,

however, the difference between m and ρ: increasing m comes at an additional cost

of obtaining extra labels, whereas increasing ρ does not. We would therefore like an

algorithm that can take advantage of using a large ρ while avoiding computational

costs.

Iterative querying heuristic

As we saw in the previous section, we would ideally like to train with a large

number of queried instances, ρ, per training bag. However, this may be impractical

in terms of both speed and memory constraints. Suppose we have access to a black

box MIL algorithm A that can only train with ρ̂ < ρ instances per bag at once.

We propose a procedure called Iterative Querying Heuristic (IQH), described in

detail in Algorithm 5.1 (the main steps are highlighted in blue).

Notice that IQH uses a total of T ρ̂ instances per bag for training (T it-

erations times ρ̂ instances per iteration). Thus, setting T ≈ ρ/ρ̂ should achieve

performance comparable to using ρ instances at once. The free parameter ω con-

trols how many new instances are considered in each iteration.

The intuition behind IQH is as follows. For positive bags, we want to ensure

that at least one of the queried instances is positive; hence we use the current

estimate of the classifier to select the most positive instances. For negative bags,

we know all instances are negative. In this case we select the instances that are
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Algorithm 5.1 Iterative Querying Heuristic (IQH)

Input: Training bags (b1, . . . , bm), labels (y1, . . . , ym), parameters T , ω and

ρ̂

1: Initialize I0
i = ∅, h0

r as any classifier in Hr.

2: for t = 1, . . . , T do

3: Query ω new candidate instances per bag:

Zt
i := I t−1

i ∪ {pi1, . . . , piω} where pij ∼ bi, ∀i.
4: Keep ρ̂ highest scoring inst. using ht−1

r :

I ti ⊂ Zt
i s.t. |I ti | = ρ̂ and ht−1

r (p) ≥ ht−1
r (p′)

for all p ∈ I ti , p′ ∈ Zt
i \ I ti .

5: Train h̄tr with the selected instances:

h̄tr ← A({I t1 . . . I tm}, {y1 . . . ym}).
6: end for

7: Return hTr and the corresponding h̄Tr

closest to the decision boundary of our current classifier (corresponding to the most

difficult negative instances); the motivation for this is similar to bootstrapping

negative examples [Felzenszwalb et al., 2009] and some active learning techniques

[Cohn et al., 1994]. We then use these selected instances to find a better classifier.

Thus one expects IQH to take advantage of a large number of instances per

bag, without actually having to train with all of them at one time.

5.2 Experiments

Recall that we have shown that the generalization error is bounded in terms

of key geometric properties of the manifold bags, such as curvature (1/τ) and vol-

ume (V ). Here we will experimentally validate that generalization error does indeed

scale with these quantities, providing an empirical lower bound. Additionally, we

study how the choice of ρ affects the error, and show that our Iterative Heuristic

(IQH) is effective in reducing the number of instances needed to train in each itera-

tion. In all our experiments we use a boosting algorithm for MIL called MILBoost
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Figure 5.4: Results on synthetic data. Examples of four synthetically generated
bags in R2 with (A) low curvature and (B) high curvature. (C) and (D): Test error
scales with the manifold parameters: volume (V ), curvature ( 1

τ
), and dimension

(n).

[Viola et al., 2005] as the black box A. We expect the same for any other choice

of A. Note that we use IQH only where specified.

5.2.1 Synthetic data

We begin with a carefully designed synthetic dataset, where we have com-

plete control over the manifold curvature, volume and dimension, and study its

effects on the generalization. The details on how we generate the dataset are pro-

vided in Section 5.4; see Figure 5.4 (A) and (B) for examples of the generated

manifolds.

For the first set of experiments, we study the interplay between the volume

and curvature while keeping the manifold dimension fixed. Here we generated one-

dimensional curves of specified volume (V ) and curvature (1/τ) in R2. We set h∗

to be a vertical hyperplane and labeled the samples accordingly (see Section 5.4).

For training, we used 10 positive and 10 negative bags with 500 queried instances

per bag (forming a good cover); for testing we used 100 bags. Figure 5.4 (C) shows

the test error, averaged over 50 trials, as we vary these parameters. Observe that

for a fixed V , as we increase 1/τ (making the manifolds more curvy) generalization

error goes up.

For the next set of experiments, we want to understand how manifold di-

mensionality affects the error. Here we set the ambient dimension to 10 and varied

the manifold dimension (with all other experiment settings as before). Figure 5.4
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(D) shows how the test error scales for different dimensional bags as we vary the

volume (1/τ set to 1).

These results corroborate the general intuition of our analysis, and give an

empirical verification that the error indeed scales with the geometric properties of

a manifold bag.

5.2.2 Real data

In this section we present results on image and audio datasets. We will

see that the generalization behavior is consistent with our analysis across these

different domains. We also study the effects of varying ρ on generalization error,

and see how using IQH helps achieve similar error rates with less instances per

iteration.

positive bags

pa
d=

16

pa
d=

32

Figure 5.5: INRIA Heads dataset. For our experiments we have labeled the heads
in the INRIA Pedestrian Dataset [Dalal and Triggs, 2005]. We can construct bags
of different volume by padding the head region. The above figure shows positive
bags for two different amounts of padding.

INRIA Heads. For these experiments we chose the task of head detection

(e.g. positive bags are images which contain at least one head). We used the INRIA

Pedestrian Dataset Dalal and Triggs [2005], which contains both pedestrian and

non-pedestrian images, to create an INRIA Heads dataset as follows. We manually

labeled the location of the head in the pedestrian images. The images were resized

such that the size of the head is roughly 24× 24 pixels; therefore, instances in this
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Figure 5.6: Results on image and audio datasets. Three different experiments
(columns) – varying padding (volume), number of queried instances, and number
of IQH iterations – on two different datasets (rows); see text for details. Note that
x-axes are in logarithmic scale. All reported results are averages over 5 trials.

experiment are image patches of that size. For each image patch we computed

Haar-like features on various channels as in Dollár et al. [2009], which corresponds

to our instance space I.

Using the ground truth labels, we generated 2472 positive bags by cropping

out the head region with different amounts of padding (see Figure 5.5), which

corresponds to changing the volume of the manifold bags. For example, padding

by 6 pixels results in a bag that is a 30 × 30 pixel image. To generate negative

bags we cropped 2000 random patches from the non-pedestrian images, as well as

non-head regions from the pedestrian images. Unless otherwise specified, padding

was set to 16.

TIMIT Phonemes. Our other application is in the audio domain, and is

analogous to the image data described above. The task here was to detect whether

a particular phoneme is spoken in an audio clip (we arbitrarily chose the phoneme

“s” to be the positive class). We used the TIMIT dataset [Garofolo et al., 1993],

which contains recordings of over 600 speakers reading text; the dataset also con-

tains phoneme annotations. Bags in this experiment are audio clips, and instances
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are audio pieces of length 0.2 seconds (i.e. this is the size of our sliding window).

As in the image experiments, we had ground truth annotation for instances, and

generated bags of various volumes/lengths by padding. We computed features as

follows: we split each sliding window into 25 millisecond pieces, computed Mel-

frequency cepstral coefficients (MFCC) [Davis and Mermelstein, 1980, Ellis, 2005]

for each piece, and concatenated them to form a 104 dimensional feature vector for

each instance. The reported padding amounts are in terms of a 5 millisecond step

size (i.e., padding of 8 corresponds to 40 milliseconds of concatenation). Unless

otherwise specified, padding was set to 64.

Results. Our first set of experiments involved sweeping over the amount

of padding (corresponding to varying the volume of bags). We train with a fixed

number of instances per bag, ρ = 4. Results for different training set sizes (m) are

shown in the first column of Figure 5.6. As observed in the synthetic experiments,

we see that increasing the padding (volume) leads to poorer generalization for

both datasets. This corroborates our basic intuition that learning becomes more

difficult with manifolds of larger volume.

In our second set of experiments, the goal was to see how generalization error

is affected by varying the number of queried instances per bag, which compliments

Theorem 5.4. Results are shown in the middle column of Figure 5.6. Observe the

interplay between m and ρ: increasing either, while keeping the other fixed, drives

the error down. Recall, however, that increasing m also requires additional labels

while querying more instances per bag does not. The number of instances indeed

has a significant impact on generalization – for example, in the audio domain,

querying more instances per bag can improve the error by up to 15%. As per our

analysis, these results suggest that to fully leverage the training data, we must

query many instances per bag. Since training with a large number of instances can

become computationally prohibitive, this further justifies the Iterative Querying

Heuristic (IQH) described in Section 5.1.2.

Our final set of experiments evaluates the proposed IQH method (see Al-

gorithm 5.1). The number of training bags, m, was fixed to 1024, and the number

of candidate instances per iteration, ω, was fixed to 32 for both datasets. Note
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that T = 1 corresponds to querying instances and training MILBoost once (i.e. no

iterative querying). Results are shown in the right column of Figure 5.6. These

results show that our heuristic works quite well. Consider the highlighted points in

both plots: using IQH with T = 4 and just 2 instances per bag during training we

are able to achieve comparable test error to the naive method (i.e. T = 1) with 8

instances per bag. Thus, using IQH, we can obtain a good classifier while needing

to use less memory and computational resources per iteration.
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5.3 Supporting proofs

5.3.1 Proof of Theorem 5.2

We will show this for n = 1 and D = 2 (the generalization to D > n ≥ 1

is immediate). We first construct 2m anchor points p0, . . . , p2m−1 on a section of

a circle in R2 that will serve as a guide on how to place m bags b1, . . . , bm of

dimension n = 1, volume3 ≤ V , and condition number ≤ 1/τ in R2. We will then

show that the class of hyperplanes in R2 can realize all possible 2m labelings of

these m bags.

Let V0 := min(V/2, π). Define anchor points pi := 2τ
(

cos( V0i
2τ2m

), sin( V0i
2τ2m

)
)

for 0 ≤ i ≤ 2m−1. Observe that the points pi are on a circle centered at the origin

of radius 2τ in R2.

We use points p0, . . . , p2m−1 as guides to place m bags b1, . . . , bm in R2 that

are contained entirely in the disc of radius 2τ centered at the origin and pass

through the anchor points as follows. Let kim . . . k
i
1 represent the binary represen-

tation of the number i (0 ≤ i ≤ 2m − 1). Place bag bj such that bj passes through

3Volume of a 1-dimensional manifold is its length.
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the anchor point pi, if and only if kij = 1. (see figure below for a visual example for

3 bags and 8 anchor points). Note that since, by construction, the arc (the dotted

line in the figure) containing the anchor points has condition number at most 1/2τ

with volume strictly less than V , bags bj can be made to have condition number

at most 1/τ with volume at most V .

(001)

(011)(100)

(101)

(110)

(111)

(010)

(000)

Figure 5.7: Placement of arbitrarily smooth bags along a section of a disk. Three
bags (colored blue, green and red) go around the eight anchor points p0, . . . , p7 in
such a way that the hypothesis class of hyperplanes can realize all possible bag
labelings.

It is clear that hyperplanes in R2 can realize any possible labeling of these

m bags. Say, we want some arbitrary labeling (+1,+1, 0, . . . ,+1). We look at the

number i with the same bit representation. Then a hyperplane that is tangent

to the circle (centered at the origin and radius 2τ) at the anchor point pi, labels

pi positive, and all other pk’s negative. Note that this hypothesis will also label

exactly those bags bj positive that are passing through the point pi, and rest of

the bags labeled negative. Thus, realizing the arbitrary labeling.

5.3.2 Proof of Theorem 5.3

For any domain X, real-valued hypothesis class H ⊂ [0, 1]X , margin γ > 0

and a sample S ⊂ X, define

covγ(H,S) := {C ⊂ H : ∀h ∈ H,∃h′ ∈ C,max
s∈S
|h(s)− h′(s)| ≤ γ}

as a set of γ-covers of S by H. Let γ-covering number of H for any integer m > 0

be defined as

N∞(γ,H,m) := max
S⊂X:|S|=m

min
C∈covγ(H,S)

|C|.
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We will first relate the covering numbers of Hr and Hr with the fat-

shattering dimension in the following two lemmas.

Lemma 5.5 (relating hypothesis cover to the fat-shattering dimension

– see Theorem 12.8 Anthony and Bartlett [1999]) Let H be a set of real

functions from a domain X to the interval [0, 1]. Let γ > 0. Then for m ≥
fatγ/4(H),

N∞(γ,H,m) < 2
(
4m/γ2

)fatγ/4(H) log 4em
fatγ/4(H)γ .

Lemma 5.6 (adapted from Lemma 17 of Sabato and Tishby [2009]) Let

Hr be an instance hypothesis class such that each hr ∈ Hr is λ-lipschitz (w.r.t.

`2-norm), and let Hr be the corresponding bag hypothesis class over B that belongs

to the class (V, n, τ). For any γ > 0 and m ≥ 1, we have

N∞(2γ,Hr,m) ≤ N∞(γ,Hr,m2c0n(V/εn)),

where ε = min{ τ
2
, γ

2
, γ

2λ
}, and c0 is an absolute constant.

Proof. Let S = {b1, . . . , bm} be a set of m manifold bags. Set ε = min{ τ
2
, γ

2
, γ

2λ
}.

For each bag bi ∈ S, let Ci be the smallest ε-cover of (the image of) bi (by Lemma

A.7, we know that |Ci| ≤ 2c0n(V/εn) for some absolute constant c0).

Define S∪ := ∪iCi and let R ∈ covγ(Hr, S
∪) be some γ-cover of S∪. Now,

for any hr ∈ Hr, let h̄r ∈ Hr denote the corresponding bag classifier, and define

h̃r(Ci) := maxc∈Ci hr(c) as the maximum attained by hr on the sample Ci. Then,

since hr is λ-lipschitz (w.r.t. `2-norm), we have for any bag bi and its corresponding

ε-cover Ci,

|h̄r(bi)− h̃r(Ci)| ≤ λε.

It follows that ∀x ∈ S∪: for any hr ∈ Hr and h′r ∈ R such that |hr(x) −
h′r(x)| ≤ γ (and the corresponding bag classifiers h̄r and h̄′r in Hr),

max
i∈[m]
|h̄r(bi)− h̄′r(bi)| = max

i∈[m]
|h̄r(bi)− h̃r(Ci) + h̃r(Ci)− h̃′r(Ci) + h̃′r(Ci)− h̄′r(bi)|

≤ 2λε+ γ ≤ 2γ.
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Also, note that for any hr ∈ Hr and h′r ∈ R such that |hr(x) − h′r(x)| ≤
γ (x ∈ S∪), we have h̄′r ∈ {h̄r|hr ∈ R} := R̄. It follows that for any R ∈
covγ(Hr, S

∪), {h̄r|hr ∈ R} ∈ cov2γ(Hr, S). Thus,

{Hr|Hr ∈ covγ(Hr, S
∪)} ⊂ cov2γ(Hr, S).

Hence, we have

N∞(2γ,Hr,m) = max
S⊂B:|S|=m

min
R̄∈cov2γ(Hr,S)

|R̄|

≤ max
S⊂B:|S|=m

min
R̄∈{H̄r|Hr∈covγ(Hr,S∪)}

|R̄|

= max
S⊂B:|S|=m

min
R∈covγ(Hr,S∪)

|R|

= max
S⊂I:|S|=|S∪|m

min
R∈covγ(Hr,S)

|R|

≤ max
S⊂I:|S|=m2c0n(V/εn)

min
R∈covγ(Hr,S)

|R|

= N∞(γ,Hr,m2c0n(V/εn)),

where c0 is an absolute constant.

Now we can relate the empirical error with generalization error by noting

the following lemma.

Lemma 5.7 (generalization error bound for real-valued functions – The-

orem 10.1 of Anthony and Bartlett [1999]) Suppose that F is a set of real-

valued functions defined on the domain X. Let D be any probability distribution

on Z = X × {0, 1}, 0 ≤ ε ≤ 1, real γ > 0 and integer m ≥ 1. Then,

PrSm∼D
[
∃f ∈ F : err(f) ≥ êrrγ(f, Sm) + ε

]
≤ 2N∞

(γ
2
, F, 2m

)
e−ε

2m/8,

where Sm is an i.i.d. sample of size m from D, err(f) is the error of f with respect

to D, and êrrγ(f, Sm) is the empirical error of f with respect to Sm at margin γ.

Combining Lemmas 5.7, 5.6 and 5.5, we have (for m ≥ fat γ
16

(Hr)):

PrSm∼DB
[
∃h̄r ∈ Hr : err(h̄r) ≥ êrrγ(h̄r, Sm) + ε

]
≤ 2 N∞

(γ
2
,Hr, 2m

)
e−ε

2m/8

≤ 2 N∞
(γ

4
,Hr,m2c0n(V/τn0 )

)
e−ε

2m/8

≤ 4
(64 · 2c0nV m

γ2τn0

)d log
(

16e2c0nVm
τn0 dγ

)
e−ε

2m/8,
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where c0 is an absolute constant, d := fat γ
16

(Hr), and τ0 = min{ τ
2
, γ

8
, γ

8λ
}. For

d ≥ 1, the theorem follows.

5.3.3 Proof of Theorem 5.4

We start with the following useful observations that will help in our proof.

Notation: for any two points p and q on a Riemannian manifold M ,

• let DG(p, q) denote the geodesic distance between points p and q.

• BG(p, ε) := {p′ ∈M |DG(p′, p) ≤ ε} denote the geodesic ball centered at p of

radius ε.

Lemma 5.8 Let M ⊂ RD be a compact n-dimensional manifold with vol(M) ≤
V and cond(M) ≤ 1/τ . Let µ(M) denote the uniform probability measure over

M . Define F(M, ε) := {BG(p, ε) : p ∈M and BG(p, ε) contains no points from the

boundary of M}, that is, the set of all geodesic balls of radius ε that are contained

entirely in the interior of M . Let τ0 ≤ τ and ρ ≥ 1. Let p1, . . . , pρ be ρ independent

draws from µ(M). Then,

Prp1,...,pρ∼µ(M)

[
∃F ∈ F(M, τ0) : ∀i, pi /∈ F

]
≤ 2c0n(V/τn0 )e−ρ(τ

c0n
0 /V ),

where c0 is an absolute constant.

Proof. Let M◦ denote the interior of M (i.e., it contains all points of M that are

not at the boundary). Let q0 ∈ M be any fixed point such that BG(q0,
τ0
2

) ⊂ M◦.

Then, by Lemmas A.8 and A.2 we know that vol(BG(q0,
τ0
2

)) ≥ τ c0n
0 . Observing

that M has volume at most V , we immediately get that BG(q0,
τ0
2

) occupies at

least τ c0n
0 /V fraction of M . Thus

Prp1,...,pρ∼µ(M)

[
∀i, pi /∈ BG

(
q0,

τ0

2

)]
≤

(
1− τ c0n

0

V

)ρ
.

Now, let C ⊂ M be a ( τ0
2

)-geodesic covering of M . Using Lemmas A.7

and A.2, we can have |C| ≤ 2c1n(V/τn0 ) (where c1 is an absolute constant). Define
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C ′ ⊂ C as the set {c ∈ C : BG(c, τ0
2

) ⊂M◦}. Then by union bounding over points

in C ′, we have

Prp1,...,pρ∼µ(M)

[
∃c ∈ C ′ : ∀i, pi /∈ BG

(
c,
τ0

2

)]
≤ |C ′|

(
1− τ c0n

0

V

)ρ
.

Equivalently we can say that, with probability at least 1−|C ′|e−τ
c0n
0 ρ/V , for

all c′ ∈ C ′, there exists pi ∈ {p1, . . . , pρ} such that pi ∈ BG(c′, τ0
2

).

Now, pick any F ∈ F(M, τ0), and let q ∈ M denote its center (i.e., q such

that BG(q, τ0) = F ). Then since C is a ( τ0
2

)-geodesic cover of M , there exists

c ∈ C such that DG(q, c) ≤ τ0/2. Also, note that c belongs to the set C ′, since

BG(c, τ0/2) ⊂ BG(q, τ0) = F ⊂ M◦. Thus with probability ≥ 1 − |C ′|e−τ
c0n
0 ρ/V ,

there exists pi such that

pi ∈ BG(c, τ0/2) ⊂ BG(q, τ0) = F.

Observe that since the choice of F was arbitrary, we have that for any F ∈ F
(uniformly), there exists pi ∈ {p1, . . . , pρ} such that pi ∈ F . The lemma follows.

Lemma 5.9 Let B belong to class (V, n, τ). Fix a sample of size m {b1, . . . , bm} :=

Sm ⊂ B, and let ∂bi denote the boundary of the manifold bag bi ∈ Sm. Define

1
κ

:= maxbi∈Sm{cond(∂bi)}. Now let pi1, . . . , p
i
ρ be the ρ independent instances

drawn uniformly from (the image of) bi. Let Hr be a λ-lipschitz (w.r.t. `2-norm)

hypothesis class. Then, for any ε ≤ min{ τ
32
, κ

8
},

Pr
[
∃hr ∈ Hr,∃bi ∈ Sm : |h̄r(bi)−max

j∈[ρ]
hr(bi(p

i
j))| > 9ελ

]
≤ m2c0n(V/εn)e−ρε

c0n/V ,

where c0 is an absolute constant.

Proof. Fix a bag bi ∈ Sm, and let M denote the manifold bi. Quickly note that

cond(M) ≤ 1/τ .

Define M2ε := {p ∈ M : minq∈∂M DG(p, q) ≥ 2ε}. By recalling that

cond(∂M) ≤ 1
κ

and ε ≤ min{ τ
32
, κ

8
}, it follows that i) M2ε is non-empty, ii)

∀x ∈M \M2ε, miny∈M2ε DG(x, y) ≤ 8ε.

Observe that for all p ∈ M2ε, BG(p, ε) is in the interior of M . Thus by

applying Lemma 5.8, we have:

Prp1,...,pρ∼µ(M)

[
∃p ∈M2ε : ∀i, pi /∈ BG(p, ε)

]
≤ 2c0n(V/εn)e−ρ(εc0n/V ),
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where µ(M) denotes the uniform probability measure on M .

Now for any hr ∈ Hr, let x∗ := arg maxp∈M hr(p). Then with the same

failure probability, we have that there exists some pi ∈ {p1, . . . , pρ} such that

DG(pi, x
∗) ≤ 9ε. To see this, consider:

if x∗ ∈ M2ε, DG(x∗, pi) ≤ ε (for some pi ∈ {p1, . . . , pρ}), otherwise if x∗ ∈
M \M2ε, then exists q ∈M2ε such that DG(x∗, q) ≤ 8ε.

Noting that hr is λ-Lipschitz, and union bounding over m bags, the lemma

follows.

By Theorem 5.3 we have for any 0 < γ < 1, with probability at least 1− δ1

over the sample Sm, for every h̄r ∈ Hr:

err(h̄r) ≤ êrrγ(h̄r, Sm) +O

(√
n2fat γ

16
(Hr)

m
log2

( V m
γ2τn0

)
+

1

m
ln

1

δ1

)
,

where τ0 = min{ τ
2
, γ

8
, γ

8λ
}.

By applying Lemma 5.9 (with ε set to τ1 = min{ τ
32
, κ

8
, γ

9λ
, γ

9
}), it follows

that if ρ ≥ Ω
(
(V/τ c0n

1 )
(
n+ln

(
mV
τn1 δ2

)))
, then with probability 1−δ2: êrrγ(h̄r, Sm) ≤

êrr2γ(h̄r, Sm,ρ), yielding the theorem.

5.4 Synthetic dataset generation

We generate a 1-dimensional manifold (in R2) of curvature 1/τ and volume

(length) V as follows (see also Figure 5.8).

1. Pick a circle with radius τ , a point p on the circle, and a random angle θ

(less than π).

2. Choose a direction (either clockwise or counterclockwise) and trace out an

arc of length θτ starting at p and ending at point, say, q.

3. Now pick another circle of the same radius τ that is tangent to the original

circle at the point q.

4. Repeat the process of tracing out another arc on the new circle, starting at

point q and going in the reverse direction.
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Figure 5.8: Synthetic bags. An example of a synthetic 1-dimensional manifold of
a specified volume (length) V and curvature 1/τ generated by our procedure.

5. Terminate this process once we have a manifold of volume V .

Notice that this procedure can potentially result in a curve that intersects itself

or has the condition number less than 1/τ . If this happens, we simply reject

such a curve and generate another random curve until we have a well-conditioned

manifold.

To generate a higher dimensional manifold, we extend our 1-dimensional

manifold (M ⊂ R2) in the extra dimensions by taking a Cartesian product with a

cube: M × [0, 1]n−1. Notice that the “cube”-extension does not alter the condition

number (i.e. it remains 1/τ). Since the resulting manifold fills up only n + 1

dimensions, we randomly rotate it the ambient space.

Now, to label the generated manifolds positive and negative, we first fix h∗

to be a vertical hyperplane (w.r.t. the first coordinate) in RD. To label a manifold

b negative, we translate it such that the entire manifold lies in the negative region

induced by h∗. And to label it positive, we translate it such that a part of b lies

in the positive region induced by h∗.



Chapter 6

Formalizing Intrinsic Dimension

So far we have discussed how the complexity of various popular learning

algorithms scale with a known intrinsic structure, namely manifold structure. How-

ever, as discussed in Chapter 1, there are several other intrinsic structures of in-

terest. Consider for instance a sparse or a cluster structure. How do we guarantee

good rates for those structures? More importantly, what if our data conforms to

some low dimensional irregular structure? Ideally we would like to provide good

performance guarantees without having knowledge of the exact low-dimensional

intrinsic structure.

Here we survey some popular notions of intrinsic dimension that have been

inspired by data geometry. We evaluate strengths and weaknesses of each notion

and introduce a more statistically verifiable notion.

6.1 Intrinsic dimension

Let X denote the space in which data lie. Here we assume X is a subset of

RD, and that the metric of interest is Euclidean (L2) distance. How can we char-

acterize the intrinsic dimension of X ? This question has aroused keen interest in

many different scientific communities, and has given rise to a variety of definitions.

Here are four of the most successful such notions, arranged in decreasing order of

generality:

80



81

• Covering dimension

• Assouad dimension

• Manifold dimension

• Affine dimension

The most general is the covering dimension: the smallest d for which there is a

constant C > 0 such that for any ε > 0, X has an ε-cover of size C(1/ε)d. This

notion lies at the heart of much of empirical process theory. Although it permits

many kinds of analysis and is wonderfully general, for our purposes it falls short on

one count: for nonparametric estimators, we need small covering numbers for X ,

but also for individual neighborhoods of X . Thus we would like this same covering

condition (with the same constant C) to hold for all L2-balls in X . This additional

stipulation yields the Assouad dimension, which is defined as the smallest d such

that for any (Euclidean) ball B ⊂ RD, X ∩ B can be covered by 2d balls of half

the radius.

At the bottom end of the spectrum is the affine dimension, which is simply

the smallest d such that X is contained in a d-dimensional affine subspace of RD.

It is a tall order to expect this to be smaller than D, although we may hope that

X lies close to such a subspace. A more general hope is that X lies on (or close

to) a d-dimensional Riemannian submanifold of RD. This notion makes a lot of

intuitive sense, but in order for it to be useful either in algorithmic analysis or in

estimating dimension, it is necessary to place conditions on the curvature of the

manifold (as discussed in Chapter 2; see also works by Amenta and Bern [1998]

and Niyogi et al. [2008]).

In what sense is our list arranged by decreasing generality? If X has an

affine dimension of d, it certainly has manifold dimension at most d (whatever the

restriction on curvature). Similarly, low Assouad dimension implies small covering

numbers. The only nontrivial containment result is that if X is a d-dimensional

Riemannian submanifold with bounded curvature, then sufficiently small neigh-

borhoods of X (where this neighborhood radius depends on the curvature) have

Assouad dimension O(d). This result is formalized and proved in Dasgupta and
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Freund [2008]. The containment is strict: there is a substantial gap between man-

ifolds of bounded curvature and sets of low Assouad dimension, on account of the

smoothness properties of the former. This divide is not just a technicality but has

important algorithmic implications. For instance, a variant of the Johnson Linden-

strauss lemma states that when a d-dimensional manifold (of bounded curvature)

is projected onto a random subspace of dimension O(d/ε2), then all interpoint Eu-

clidean distances are preserved within 1 ± ε (see e.g. Baraniuk and Wakin [2009]

and Clarkson [2008]). This does not hold for sets of Assouad dimension d [Indyk

and Naor, 2007].

None of these four notions arose in the context of data analysis, and it is

not clear that any of them is well-suited to the dual purpose of (i) capturing a type

of intrinsic structure that holds (verifiably) for many data sets and (ii) providing a

formalism in which to analyze statistical procedures. In addition, they all describe

sets, whereas in statistical contexts we are more interested in characterizing the

dimension of a probability distribution. The recent machine learning literature,

while appealing to the manifold idea for intuition, seems gradually to be moving

towards a notion of “local flatness”. Dasgupta and Freund [2008] formalized this

notion and called it the local covariance dimension.

6.2 Local covariance dimension

Definition 6.1 Let µ be any measure over RD and let S be its covariance matrix.

We say that µ has covariance dimension (d, ε) if the largest d eigenvalues of S

account for (1 − ε) fraction of its trace. That is, if the eigenvalues of S are λ1 ≥
λ2 ≥ · · · ≥ λD, then

λ1 + · · ·+ λd ≥ (1− ε)(λ1 + · · ·+ λD).

A distribution has covariance dimension (d, ε) if all but an ε fraction of its variance

is concentrated in a d-dimensional affine subspace. Equivalently, the projection

of the distribution onto this subspace leads to at most an ε total loss in squared

distances. It is, in general, too much to hope that an entire data distribution
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would have low covariance dimension. But we might hope that this property

holds locally; or more precisely, that all (or most) sufficiently-small neighborhoods

have low covariance dimension. At this stage, we could make this definition more

complicated by quantifying the “most” or “sufficiently small” (as Dasgupta and

Freund [2008] did to some extent), but it will turn out that we don’t need to do

this in order to state our theorems, so we leave things as they are.

Intuitively, the local covariance condition lies somewhere between manifold

dimension and Assouad dimension, although it is more general in that merely

requires points to be close to a locally flat set, rather than exactly on it.

6.3 Experiments with dimension

Covariance dimension is an intuitive notion, and recalls standard constructs

in statistics such as mixtures of factor analyzers. It is instructive to see how it

might be estimated, and whether there is evidence that many data sets do exhibit

low covariance dimension.

First let’s set our expectations properly. Even if data truly lies near a low-

dimensional manifold, this property would only be apparent at a certain scale, that

is, when considering neighborhoods whose radii lie within an appropriate range.

For larger neighborhoods, the data set might seem slightly higher dimensional: the

union of a slew of local low-dimensional subspaces. And for smaller neighborhoods,

all we would see is pure noise, and the data set would seem full-dimensional.

Thus we will empirically estimate covariance dimension at different reso-

lutions. First, we determine the diameter ∆ of the dataset X by computing the

maximum interpoint distance, and we choose multiple values r ∈ [0,∆] as our

different scales (radii). For each such radius r, and each data point point x ∈ X,

we compute the covariance matrix of the data points lying in the ball B(x, r), and

we determine (using a standard eigenvalue computation) how many dimensions

suffice for capturing a (1− ε) fraction of the variance. In our experiments, we try

ε = 0.1 and 0.01. We then take the dimension at scale r (call it d(r)) to be average

of all these values (over x).



84

If the balls B(x, r) are so small as to contain very few data points, then the

estimate d(r) is not reliable. Thus we also keep track of n(r), the average number

of data points within the balls B(x, r) (averaged over x). Roughly, we can expect

d(r) to be a reliable estimate if n(r) is an order of magnitude larger than d(r).

Figure 6.1 plots d(r) against r for several data sets. The numerical annota-

tions on each curve represent the values n(r). The larger the ratio n(r)/d(r), the

higher our confidence in the estimate.

The top figure shows dimensionality estimates for a noisy version of the

ever-popular “swiss roll”. In small neighborhoods, it is noise that dominates,

and thus the data appear full-dimensional. In larger neighborhoods, the two-

dimensional structure emerges: notice that the neighborhoods have very large

numbers of points, so that we can feel very confident about the estimate of the

local covariances. In even larger neighborhoods, we capture a significant chunk of

the swiss roll and again revert to three dimensions.

The middle figure is for a data set consisting of images of a rotating teapot,

each 30 × 50 pixels in size. Thus the ambient dimension is 1500, although the

points lie close to a one-dimensional manifold (a circle describing the rotation).

There is clear low-dimensional structure at a small scale, although in the figure,

these d(r) values seem to be 3 or 4 rather than 1.

The figure on the bottom is for a data set of noisy measurements from 12

sensors placed on a robotic arm with two joints. Thus the ambient dimension is

12, but there are only two underlying degrees of freedom.

In the next chapter we shall relate the learning rates with data’s local

covariance dimension using partition based trees datastructures.
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Figure 6.1: Local covariance dimension estimates for various datasets. The bold
line shows the dimension estimate, with dashed confidence bands giving standard
deviations over the different balls of each radius. The numeric annotations are
average numbers of datapoints falling in balls of the specified radius. Left: Noisy
swissroll (ambient dimension 3). Middle: Rotating teapot dataset (ambient di-
mension 1500). Right: Sensors on a robotic arm (ambient dimension 12).



Chapter 7

Learning Rates with Partition

Trees

A spatial partitioning tree recursively divides space into increasing fine par-

titions. The most popular such data structure is probably the k-d tree, which

splits the input space into two cells, then four, then eight, and so on, all with

axis-parallel cuts. Each resulting partitioning has cells that are axis-aligned hy-

perrectangles (see Figure 7.1, middle). Once such a hierarchical partitioning is

built from a data set, it can be used for standard statistical tasks. When a new

query point q arrives, that point can quickly be moved down the tree to a leaf cell

(call it C). For classification, the majority label of the data points in C can be

returned. For regression, it will be the average of the response values in C. For

nearest neighbor search, the closest point to q in C can be returned; of course, this

might not be q’s nearest neighbor overall, but if the cell C is sufficiently small,

then it will at any rate be a point close enough to q to have similar properties.

There are different ways to build a k-d tree, depending on which split coordi-

nate is chosen at each stage. There are also many other types of spatial partitioning

trees, such as dyadic trees (Figure 7.1, left) and PCA trees. We are interested in

understanding the relative merits of these different data structures, to help choose

between them. A natural first step, therefore, is to look at the underlying statisti-

cal theory. This theory, nicely summarized in Chapter 20 of Devroye et al. [1996],

says that the convergence properties of tree-based estimators can be characterized

86
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Figure 7.1: Some examples of spatial trees. Left: dyadic tree – cycles through
coordinates and splits the data at the mid point. Middle: k-d tree – picks the
coordinate direction with maximum spread and splits the data at the median
value. Right: RP tree – picks a random direction from the unit sphere and split
the data at the median value.

in terms of the rate at which cell diameters shrink as you move down the tree. The

more rapidly these cells shrink, the better.

For k-d trees, these cell diameters can shrink very slowly when the data

is high-dimensional. For D-dimensional data, it may require D levels of the tree

(and thus at least 2D data points) to just halve the diameter. Thus k-d trees suffer

from the same curse of dimensionality as other nonparametric statistical methods.

But what if the data has low intrinsic dimension; for instance, if it lies close to

a low-dimensional manifold? We are interested in understanding the behavior of

spatial partitioning trees in such situations.

Some recent work Dasgupta and Freund [2008] provides new insights into

this problem. It begins by observing that there is more than one way to define a

cell’s diameter. The statistical theory has generally considered the diameter to be

the distance between the furthest pair of points on its boundary (if it is convex,

then this is the distance between the furthest pair of vertices of the cell). It is

very difficult to get bounds on this diameter unless the cells are of highly regular

shape, such as hyperrectangles. A different, more flexible, notion of diameter

looks at the furthest pair of data points within the cell, or even better, the typical

interpoint distance of data within the cell (see Figure 7.2). It turns out that rates

of convergence for statistical estimators can be given in terms of these kinds of data

diameter (specifically, in terms of the rate at which these diameters decrease down

the tree). Moreover, these data diameters can be bounded even if the cells are of
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unusual shapes. This immediately opens the door to analyzing spatial partitioning

trees that produce non-rectangular cells.

Dasgupta and Freund [2008] introduced random projection trees—in which

the split at each stage is at the median along a direction chosen at random from the

surface of the unit sphere (Figure 7.1, right)—and showed that the data diameter

of the cells decreases at a rate that depends only on the intrinsic dimension of the

data, not D:

Let d be the intrinsic dimension of data falling in a particular cell C of
an RP tree. Then all cells O(d) levels below C have at most half the
data diameter of C.

(There is no dependence on the ambient dimension D.) They proved this for

two notions of dimension: Assouad dimension, which is standard in the literature

on analysis on metric spaces, and local covariance dimension (see Chapter 6 for

details).

We are interested in exploring these phenomena more broadly, and for other

types of trees. We start by examining the notion of local covariance dimension, and

contrast it with other notions of dimension through a series of inclusion results.

To get more intuition, we then investigate a variety of data sets and examine the

extent to which these data verifiably have low local covariance dimension. The

results suggest that this notion is quite reasonable and is of practical use. We

then consider a variety of spatial partition trees: (i) k-d trees (of two types), (ii)

dyadic trees, (iii) random projection trees, (iv) PCA trees, and (v) 2-means trees.

We give upper and lower bounds on the diameter decrease rates achieved by these

trees, as a function of local covariance dimension. Our strongest upper bounds on

these rates are for PCA trees and 2-means trees, followed by RP trees. On the

other hand, dyadic trees and k-d trees are weaker in their adaptivity. Our next

step is to examine these effects experimentally, again on a range of data sets. We

also investigate how the diameter decrease rate is correlated with performance in

standard statistical tasks like regression and nearest neighbor search.
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7.1 Spatial partition trees

Spatial partition trees conform to a simple template:

Algorithm 7.1 PartitionTree(dataset A ⊂ X )

if |A| ≤ MinSize then

return leaf

else

(Aleft, Aright)← SplitAccordingToSomeRule(A)

LeftTree← PartitionTree(Aleft)

RightTree← PartitionTree(Aright)

end if

return (LeftTree, RightTree)

Different types of trees are distinguished by their splitting criteria. Here

are some common varieties:

• Dyadic tree: Pick a coordinate direction and splits the data at the mid-

point along that direction. One generally cycles through all the coordinates

as one moves down the tree.

• k-D tree: Pick a coordinate direction and splits the data at the median

along that direction. One often chooses the coordinate with largest spread.

• Random Projection (RP) tree: Split the data at the median along a

random direction chosen from the surface of the unit sphere.

• Principal Direction (PD) tree: Split at the median along the principal

eigenvector of the covariance matrix.

• Two Means (2M) tree: Pick the direction spanned by the centroids of the

2-means solution, and split the data as per the cluster assignment.

7.1.1 Notions of diameter

The generalization behavior of a spatial partitioning has traditionally been

analyzed in terms of the physical diameter of the individual cells (see, for in-
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stance, Devroye et al. [1996], Scott and Nowark [2006]). But this kind of diameter

is hard to analyze for general convex cells. Instead we consider more flexible no-

tions that measure the diameter of data within the cell. It has recently been shown

that such measures are sufficient for giving generalization bounds (see Kpotufe and

Dasgupta [2012] for the case of regression).

data diam.

cell diameter

avg. data diam.

Cell of a Partition Tree

Figure 7.2: Various notions of diameter.

For any cell A, we will use two types of data diameter: the maximum

distance between data points in A, denoted ∆(A), and the average interpoint

distance among data in A, denoted ∆a(A) (Figure 7.2).

7.2 Theoretical guarantees

Let X = {X1, . . . , Xn} be a data set drawn from underlying space X , and

let µ be the empirical distribution that assigns each weight to each of these points.

Consider a partition of X into a collection of cells A. For each such cell A ∈ A, we

can look at its maximum (data) diameter as well as its average (data) diameter;

these are, respectively,

∆(A) := max
x,x′∈A∩X

‖x− x′‖

∆a(A) :=
1

(nµ(A))

( ∑
x,x′∈A∩X

‖x− x′‖2

)1/2
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(for the latter it turns out to be a big convenience to use squared Euclidean dis-

tance.) We can also average these quantities all over cells A ∈ A:

∆(A) :=

(∑
A∈A µ(A)∆2 (A)∑

A∈A µ(A)

)1/2

∆a(A) :=

(∑
A∈A µ(A)∆2

a (A)∑
A∈A µ(A)

)1/2

7.2.1 Irregular splitting rules

This section considers the RPTree, PDtree, and 2Mtree splitting rules. The

nonrectangular partitions created by these trees turn out to be adaptive to the local

dimension of the data: the decrease in average diameter resulting from a given

split depends just on the eigenspectrum of the data in the local neighborhood,

irrespective of the ambient dimension.

For the analysis, we consider a slight variant of these trees, in which an

alternative type of split is used whenever the data in the cell has outliers (here,

points that are much farther away from the mean than the typical distance-from-

mean).

Algorithm 7.2 split(region A ⊂ X )

if ∆2 (A) ≥ c ·∆2
a (A) then

{//SPLIT BY DISTANCE: remove outliers.}
Aleft ← {x ∈ A, ‖x−mean(A)‖ ≤ median{‖z −mean(A)‖ : z ∈ X ∩ A}}

else

{//SPLIT BY PROJECTION: no outliers.}
Choose a unit direction v ∈ RD and a threshold t ∈ R.

Aleft ← {x ∈ A, x · v ≤ t}
end if

Aright ← A \ Aleft

The distance split is common to all three rules, and serves to remove outliers.

It is guaranteed to reduce maximum data diameter by a constant fraction:
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Lemma 7.1 (Lemma 12 of Dasgupta and Freund [2008]) Suppose ∆2 (A) >

c·∆2
a (A), so that A is split by distance under any instantiation of procedure split.

Let A = {A1, A2} be the resulting split. We have

∆2 (A) ≤
(

1

2
+

2

c

)
∆2 (A) .

We consider the three instantiations of procedure split in the following

three sections, and we bound the decrease in diameter after a single split in terms

of the local spectrum of the data.

RPtree

For RPtree, the direction v is picked randomly, and the threshold t is the

median of the projected data.

The diameter decrease after a split depends just on the parameter d of the

local covariance dimension, for ε sufficiently small.

Theorem 7.2 (Theorem 4 of Dasgupta and Freund [2008]) There exist

constants 0 < c1, c2 < 1 with the following property. Suppose ∆2 (A) ≤ c ·∆2
a (A),

so that A is split by projection into A = {A1, A2} using the RPtree split. If A∩X

has covariance dimension (d, c1), then

E
[
∆2
a (A)

]
< (1− c2/d)∆2

a (A) ,

where the expectation is over the choice of direction.

PDtree

For PDtree, the direction v is chosen to be the principal eigenvector of the

covariance matrix of the data, and the threshold t is the median of the projected

data.

The diameter decrease after a split depends on the local spectrum of the

data. Let A be the current cell being split, and suppose the covariance matrix of

the data in A has eigenvalues λ1 ≥ · · · ≥ λD. If the covariance dimension of A is

(d, ε), define

k :=
1

λ1

d∑
i=1

λi, (7.1)
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By definition, k ≤ d.

The diameter decrease after the split depends on k2, the worst case being

when the data distribution in the cell has heavy tails. In the absence of heavy tails

(condition (7.2)), we obtain a faster diameter decrease rate that depends just on k.

This condition holds for any logconcave distribution (such as a Gaussian or uniform

distribution), for instance. The decrease rate of k could be much better than d in

situations where the first eigenvalue is dominant; and thus in such situations PD

trees could do a lot better than RP trees.

Theorem 7.3 There exists constant 0 < c1, c2 < 1 with the following property.

Suppose ∆2 (A) ≤ c · ∆2
a (A), so that A is split by projection into A = {A1, A2}

using the PDtree split. If A ∩X has covariance dimension (d, c1), then

∆2
a (A) < (1− c2/k

2)∆2
a (A) ,

where k is as defined in (7.1).

If in addition the empirical distribution on A ∩X satisfies (for any s ∈ R
and some c0 ≥ 1)

EA[(X · v − s)2] ≤ c0 (EA[X · v − s])2 (7.2)

we obtain a faster decrease where

∆2
a (A) < (1− c2/k)∆2

a (A) .

Proof. The argument is based on the following fact which holds for any bi-partiton

A = {A1, A2} of A (see Lemma 15 of Dasgupta and Freund [2008]):

∆2
a (A)−∆2

a (A) = 2µ(A1) · µ(A2) ‖mean(A1)−mean(A2)‖2 . (7.3)

We start with the first part of the statement with no assumption on the

data distribution. Let x̃ ∈ R be the projection of x ∈ A ∩ X to the principal

direction. WLOG assume that the median on the principal direction is 0. Notice

‖mean(A1)−mean(A2)‖ ≥ E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0]

≥ max {E [x̃ |x̃ > 0] ,−E [x̃ |x̃ ≤ 0]} ,
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where the expectation is over x chosen uniformly at random from A ∩ X. The

claim is therefore shown by bounding the r.h.s. below by O(∆a(A)/k and applying

Equation (7.3).

We have E [x̃2] ≥ λ1, so either E [x̃2|x̃ > 0] or E [x̃2|x̃ ≤ 0] is greater than

λ1. Assume WLOG that it is the former. Let m̃ = max{x̃ > 0}. We have that

λ1 ≤ E [x̃2|x̃ > 0] ≤ E [x̃ |x̃ > 0] m̃, and since m̃2 ≤ c∆2
a (A), we get E [x̃ |x̃ > 0] ≥

λ1

∆a(A)
√
c
. Now, by the assumption on covariance dimension,

λ1 =

∑d
i=1 λi
k

≥ (1− c1)

∑D
i=1 λi
k

= (1− c1)
∆2
a (A)

2k
.

We therefore have (for appropriate choice of c1) that E [x̃ |x̃ > 0] ≥ ∆a(A)/4k
√
c,

which concludes the argument for the first part.

For the second part, assumption (7.2) yields

E [x̃ |x̃ > 0]− E [x̃ |x̃ ≤ 0] = 2E |x̃| ≥ 2

√
E |x̃|2

c0

≥ 2

√
λ1

c0

= 2

√
∆2
a (A)

4c0k
.

We finish up by appealing to Equation (7.3).

2Mtree

For 2Mtree, the direction v = mean(A1) −mean(A2) where A = {A1, A2}
is the bisection of A that minimizes the 2-means cost. The threshold t is the half

point between the two means.

The 2-means cost can be written as∑
i∈[2]

∑
x∈Ai∩X

‖x−mean(Ai)‖2 =
n

2
∆2
a (A) .

Thus, the 2Mtree (assuming an exact solver) minimizes ∆2
a (A). In other words,

it decreases diameter at least as fast as RPtree and PDtree. Note however that,

since these are greedy procedures, the decrease in diameter over multiple levels

may not be superior to the decrease attained with the other procedures.

Theorem 7.4 Suppose ∆2 (A) ≤ c ·∆2
a (A), so that A is split by projection into

A = {A1, A2} using the RPtree split. There exists constants 0 < c1, c2 < 1 with
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the following property. Assume A ∩X has covariance dimension (d, c1). We then

have

∆2
a (A) < (1− c2/d

′)∆2
a (A) ,

where d′ ≤ min{d, k2} for general distributions, and d′ is at most k for distributions

satisfying (7.2).

Diameter decrease over multiple levels

The diameter decrease parameters d, k2, k, d′ in Theorems 7.2, 7.3, 7.4 above

are a function of the covariance dimension of the data in the cell A being split. The

covariance dimensions of the cells may vary over the course of the splits implying

that the decrease rates may vary. However, we can bound the overall diameter

decrease rate over multiple levels of the tree in terms of the worst case rate attained

over levels.

Lemma 7.5 (diameter decrease over multiple levels) Suppose a partition

tree is built by calling split recursively (under any instantiation). Assume further-

more that every node A ⊂ X of the tree satisfies the following: let A = {A1, A2}
represent the child nodes of A, we have for some constants 0 < c1, c2 < 1 and

κ ≤ D that

(i) If A is split by distance, ∆2 (A) < c1∆2 (A).

(ii) If A is split by projection, E [∆2
a (A)] < (1− c2/κ)∆2

a (A).

Then, there exists a constant C such that the following holds: let Al be the partition

of X defined by the nodes at level l, we have

E
[
∆2
a (Al)

]
≤ E

[
∆2 (Al)

]
≤ 1

2bl/Cκc
∆2 (X ) ,

where the expectation is over the randomness in the algorithm for X fixed.

So if every split decreases average diameter at a rate controlled by κ as de-

fined above, then it takes at most O(κ log(1/ε)) levels to decrease average diameter

down to an ε fraction of the original diameter of the data. Combined with Theo-

rems 7.2, 7.3, 7.4, we see that the three rules considered will decrease diameter at

a fast rate whenever the covariance dimensions in local regions are small.
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7.2.2 Axis parallel splitting rules

It was shown by Dasgupta and Freund [2008] that axis-parallel splitting

rules do not always adapt to data that is intrinsically low-dimensional. They

exhibit a data set in RD that has low Assouad dimension O(logD), and where k-d

trees (and also, it can be shown, dyadic trees) require D levels to halve the data

diameter.

The adaptivity of axis-parallel rules to covariance dimension is unclear. But

they are guaranteed to decrease diameter at a rate depending on D. The following

result states that it takes at most O(D(logD) log(1/ε)) levels to decrease average

diameter to an ε fraction of the original data diameter.

Theorem 7.6 Suppose a partition tree is built using either k-d tree or dyadic tree

by cycling through the coordinates. Let Al be the partition of X defined by the

nodes at level l. Then we have

∆2
a (Al) ≤ ∆2 (Al) ≤

D

2bl/Dc
∆2 (X ).

7.3 Experiments

To highlight the adaptivity of these spatial trees, we need to resort to syn-

thetic datasets where we can fully control the intrinsic and the ambient space. We

will vary the ambient dimension while keeping the intrinsic dimension fixed and

empirically calculate the rate at which the diameter decreases for various trees. We

will then evaluate their performance on some common learning tasks on typical

realworld datasets to see how these trees fair in practice.

Spatial trees – versions used: As discussed earlier, many versions are

available for different spatial trees. Here we restrict our attention to the following

variants: dyadic trees – fix a permutation and cycle through the coordinates, k-D

trees – determine the spread over each coordinate by computing the coordinate

vise diameter and picking the coordinate with maximum diameter, RP trees – pick

the direction that results in the largest diameter decrease from a bag of 20 random
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Figure 7.3: Local covariance dimension estimate of a space-filling 1-d manifold.

directions, PD trees – pick the principal direction in accordance to the data falling

in each node of the tree, 2M trees – solve 2-means via the Lloyd’s method and pick

the direction spanned by the centroids of the 2-means solution.

7.3.1 Synthetic dataset: Space-filling manifold

To create a well behaved low dimensional manifold that shows adaptivity,

one needs to take care of the following. As we vary the ambient dimension (keeping

intrinsic dimension fixed) we want that: i) the curvature of the manifold shouldn’t

change by too much, ii) diameter of the manifold should remain constant, iii)

the manifold should fill up the ambient space D (it doesn’t reside in some affine

subspace of D).

We thus resort to a continuous 1-dimensional manifold on the surface of a

D − 1 dimensional sphere constructed via the sinusoidal basis. Data is generated

by by sampling 20, 000 points uniformly at random from the interval [0, 2π] and

applying the map M : t 7→
√

2
D

(
sin(t), cos(t), sin(2t), cos(2t) . . . , sin(Dt

2
), cos(Dt

2
)
)
.

Figure 7.3 shows the local covariance dimension estimate for this space-

filling 1-manifold (embedded in ambient space of dimension 10, 30, 50 and 80).

To show that these trees are adaptive to the intrinsic dimension of this

space-filling manifold, we need to show that the number of levels needed to reduce

the diameter by a certain factor eventually becomes constant (regardless of the
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Figure 7.4: Adaptivity plots for various spatial trees on synthetic space-filling
curve dataset. Note that the slope of the plotted curve shows the decrease rate
(cf. (7.4)). Parallel lines highlight that the diameter decrease rates eventually
become independent of the ambient dimension adapting to the low dimensional
intrinsic structure of the manifold.
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ambient dimension). More formally, since the average diameter decrease rate is

given by
change in log avg. diameter

change in levels
, (7.4)

we plot of log of the average diameter (y-axis) against the tree depth (x-axis)

for different spatial trees (see Figure 7.4). Notice that the quantity of interest –

Equation (7.4) is the slope of the plotted curves. The annotated number on the

curves is the average slope value of the last five measurements.

Observe, as one expects, that it takes a few levels to get down to the low

dimensional manifold structure in the data. Notice that for RP, PD and 2M trees,

the plots for various ambient dimensions essentially become parallel, highlighting

that the decrease rates all converge to a single stable number regardless of the size

of the ambient dimension, showing adaptivity to the data’s intrinsic dimension.

Notice that for dyadic trees the rate estimates (slopes) for high ambient dimension

are not consistent with the low ambient dimension indicating that even after about

12 levels (dividing the space into 4096 partitions), showing lack of adaptivity.

Note that the version of k-D tree that explicitly minimizes the diameter decrease

criterion performs remarkably well. Note, however, that at each step the k-D has

to compute this diameter decrease calculation, making it an expensive operation.

7.3.2 Real-world datasets

We now compare the performance of different spatial trees for typical learn-

ing tasks on some real-world dataset clusters. To exhibit a wide range of applica-

bility, we choose the ‘digit 1’ cluster from the MNIST OCR dataset of handwrit-

ten digits, ‘love’ cluster from Australian Sign Language time-series dataset from

UCI Machine Learning Repository [Kadous, 2002], and ‘aw’ phoneme from MFCC

TIMIT dataset.

Experiments have been set as follows. For each cluster, we first estimate

its local covariance dimension (as discussed in Sections 6.2 and 6.3). See Figure

7.5. We then do a 10-fold cross validation. For each fold, we use the training

data to build the partition tree, and for each test point we compute the vector

quantization error and the closest neighbor as it trickles down the tree.
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Figure 7.7: Results for near neighbor query. The annotated number shows the
average ratio of the distance between the query point and found neighbor to the
distance between the query point and the true nearest neighbor.
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gression task.
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We report the average quantization error at different tree levels for various

datasets (Figure 7.6). Notice that the PD and 2M trees consistently produce better

quantization results than other trees.

Figure 7.7 shows the result of a near neighbor search. The plot shows the

true percentile order of the found neighbor to the query point at different tree

levels. The annotated numbers show the ratio of the distance between the query

point and found neighbor to the distance between the query point and its true

nearest neighbor. This helps in gauging the quality of the found neighbor in terms

of distances.

As before, 2M and PD trees consistently yield better near neighbors to

the query point. We should remark that the apparent good results of dyadic

trees on the ASL dataset (middle row, middle column) should be taken in context

with the number of datapoints falling in a particular node. For dyadic trees it is

common to have unbalanced splits resulting in high number of datapoints falling

in an individual cell. This significantly increases the chance of finding a close

neighbor but also significantly increases the computational cost of finding that

close neighbor.

Diverting our attention to the task of regression, we use the rotating teapot

dataset (to predict the angle of rotation) and the robotic arm dataset (to predict

the angular positions of the first and the second arm) (see Section 6.3 for description

of the datasets). Figure 7.8 shows the relative performance of different spatial trees.
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7.4 Supporting proofs

7.4.1 Proof of Lemma 7.5

Fix X. Consider the random variable X drawn uniformly from X. Let the

r.v’s Ai = Ai(X), i = 0, . . . , l denote the cell to which X belongs at level i in the

tree. Define I(Ai) := 1{∆2 (Ai) ≤ c∆2
a (Ai)}.

Let Al be the partition of X defined by the nodes at level l, we’ll first show

that E [∆2 (Al)] ≤ 1
2
∆2 (X ) for l = Cκ for some constant C. We point out that

E [∆2 (Al)] = E [∆2 (Al)] where the last expectation is over the randomness in the

algorithm and the choice of X.

To bound E [∆2 (Al)], note that one of the following events must hold:

(a) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2
, I
(
Aij
)

= 0

(b) ∃ 0 ≤ i1 < · · · < im < l, m ≥ l
2
, I
(
Aij
)

= 1

Let’s first condition on event (a). We have

E
[
∆2 (Al)

]
≤ E

[
∆2 (Aim+1)

]
= E

[
E
[
∆2 (Aim+1) |Aim

]]
,

and since by the assumption, E [∆2 (Aim+1) |Aim ] ≤ c1∆2 (Aim), we get E [∆2 (Al)]

≤ c1E [∆2 (Aim)]. Applying the same argument recursively on ij, j = m, (m− 1),

. . . , 1, we obtain E [∆2 (Al)] ≤ cm1 · E [∆2 (Ai1)] ≤ c
l/2
1 ∆2 (X ) .

Now condition on event (b). Using the fact that E [∆2
a (Ai)] is non-increasing

in i (see Dasgupta and Freund [2008]), we can apply a similar recursive argument

as above to obtain that E [∆2
a (Aim)] ≤ (1− c2/d)m−1 E [∆2

a (Ai1)]. It follows that

E [∆2 (Al)] ≤ E [∆2 (Am)] ≤ cE [∆2
a (Am)] ≤ c

(
1− c2

d

)l/2−1
∆2 (X ) .

Thus, in either case we have

E
[
∆2 (Al)

]
≤ max

{
c
l/2
1 , c (1− c2/d)l/2−1

}
·∆2 (X ) ,

and we can verify that there exists C such that the r.h.s. above is at most 1
2
∆2 (X )

for l ≤ Cκ. Thus, we can repeat the argument over every Cκ levels to obtain the

statement of the lemma.
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7.4.2 Proof of Theorem 7.6

We assume that the procedure builds the tree by cycling through the coor-

dinates (a single coordinate is used at each level).

Suppose a cell A is split into A = {A1, A2} along some coordinate ei. Then

the average diameter along coordinate i decreases under either split

1

µ(A)

(
µ(A1)∆2 (A1 · ei) + µ(A2)∆2 (A2 · ei)

)
≤ 1

2
∆2 (A · ei) .

To see this, notice that the masses of the resulting cells are halved under

k-d tree splits (we assume that n is a power of 2), while the diameters are halved

under the dyadic tree splits.

We can derive an upper bound on the diameter decrease rate over multiple

levels as follows. Let X ∼ U(X), and let Al be the cell to which X̃ belongs at

level l ≥ 0 in the tree (built by either procedure). Let l ≥ 1, if we condition on

the event that the split at level l − 1 is along coordinate i, we have by the above

argument that EX [∆2 (Al · ei)] ≤ 1
2
EX [∆2 (Al−1 · ei)] . No matter the coordinate

used for the previous split, we always have EX [∆2 (Al · ei)] ≤ EX [∆2 (Al−1 · ei)] ,
and it follows that after a multiple of D levels we have

EX
[
∆2 (Al · ei)

]
≤ 1

2l/D
∆2 (X · ei),

for all i ∈ [D]. Summing over all coordinates, we then get

EX
[
∆2 (Al)

]
≤ EX

[
D∑
i

∆2 (Al · ei)

]
≤ D

2l/D
∆(X ).

To conclude, notice that EX [∆2 (Al)] is exactly ∆2 (Al) where Al is the

partition defined by the nodes at level l.

7.5 Empirical and distributional covariance di-

mensions

Theorems 7.2, 7.3, 7.4 concern the case when the data itself has low co-

variance dimension in local regions. For the sake of completeness, one may be
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interested in what happens if the data is drawn from a distribution with low co-

variance dimension in local regions. Would the data also have low covariance

dimension in most neighborhoods? This depends on whether enough points fall

into a neighborhood, and also on the amount of outliers in the region since spectral

quantities are very sensitive to outliers.

In this section we’ll distinguish between the empirical measure and the

underlying distribution. We denote the underlying distribution by µ while the

empirical measure is denoted µn. We have the following result.

Lemma 7.7 (convergence of covariance dimension) Consider a collection C
of subsets of X , where C has VC dimension V. The following holds simultaneously

for all A ⊂ C, with probability at least 1− 2δ over the sampling of X.

Suppose A ⊂ C has covariance dimension (d, ε)µ, and

µn(A) ≥ 28672

(
∆(A)

∆n,a(A)

)4 V log n+ log(12/δ)

nε2
.

Then A has empirical covariance dimension (d, 2ε)n.

The sets of interest are the cells obtained by the partitioning procedures. By

the nature of the splitting rules, these cells are intersections of at most O(log n) hy-

perplanes since the trees would typically be grown to a height of at most O(log n).

Thus, the cells belong to a collection C of VC dimension at most O(D log n) using

standard arguments on composition of VC classes and the fact that the class of

half spaces has VC dimension D + 1.

The rest of the section gives an overview of the proof of Lemma 7.7. We

will require additional notation to distinguish between empirical and distributional

quantities. Notation will therefore be introduced where needed.

Lemma 7.8 (relative VC bounds) Consider a class C of VC dimension V.

With probability at least 1 − δ/3 over the choice of the sample X, we have for

all A ∈ C ′ that

µ(A) ≤ µn(A) + 2

√
µn(A)

V ln(2n) + ln 12
δ

n
+ 4
V ln(2n) + ln 12

δ

n
, (7.5)

µn(A) ≤ µ(A) + 2

√
µ(A)

V ln(2n) + ln 12
δ

n
+ 4
V ln(2n) + ln 12

δ

n
. (7.6)
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Lemma 7.9 Let C be a class of subsets of RD of VC-dimension V. Consider a

mapping which associates an orthonormal projection matrix PA ∈ RD×D to A ∈ C.

Let En,A and EA denote expectations taken with respect to µn and µ conditioned

on x ∈ A. Also, let νA and νn,A denote the mean of A under µ and the empirical

mean. With probability at least 1 − δ over the sample X, the following holds for

all A ∈ C satisfying µ(A) ≥ V ln(2n)+ln(12/δ)
n

:∣∣En,A ‖PA(x− νn,A)‖2 − EA ‖PA(x− νA)‖2
∣∣

≤ 8
∆2(A)

µn(A)

√
µ(A)

V log n+ log(12/δ)

n
+ 64∆2(A) · µ(A)

V log n+ log(12/δ)

n(µn(A))2
.

Proof. [Proof Idea] It can be verified that∣∣En,A ‖PA(x− νn,A)‖2 − EA ‖PA(x− νA)‖2
∣∣

≤
∣∣En,A ‖PA(x− νA)‖2 − EA ‖PA(x− νA)‖2

∣∣+ ‖νn,A − νA‖2 .

The proof proceeds with standard symmetrization arguments (using Rademacher

random variables) to bound the two terms on the r.h.s. separately.

Proof. [Proof of Lemma 7.7] Let A ∈ C have covariance dimension (d.ε)µ and

satisfy µn(A) ≥ 28672
(

∆(A)
∆n,a(A)

)4 V logn+log(12/δ)
nε2

. We’ll show that A has empirical

covariance dimension (d, 2ε) with probability at least 1 − 2δ by applying Lemma

7.9.

Assume Equations (7.5) and (7.6) hold (as is assumed in Lemma 7.9). Since

µn(A) ≥ 7V
′ ln(2n)+ln(12/δ)

n
, we have by Equation (7.6),that µ(A) ≥ V ln(2n)+ln(12/δ)

n
.

By Equation (7.5), µ(A) ≤ 7µ(A). The following then holds with probability at

least 1− 2δ by Lemma 7.9:

Let V = [vd+1, . . . , vD] be the eigenvectors of the covariance of A∩X corre-

sponding to the smallest D − d eigenvalues {λi}Dd+1, and let {λn,i}D1 be the eigen-

values of the empirical covariance on A. Now define ε0 := 8
√

7V logn+log(12/δ)
nµn(A)

.

We set PA to ID, then to V V >, to obtain the two inequalities below:

D∑
i=1

λi ≤
D∑
i=1

λn,i + ∆2(A)(ε0 + ε20), and
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En,A
∥∥V V >(x− νn,A)

∥∥2 ≤
D∑

i=d+1

λi + ∆2(A)(ε0 + ε20).

Write c := (∆2(A)/∆2 (A)), and note that ∆2(A) ≤ c · ∆2
a (A) = 2c ·∑D

i=1 λn,i. It follows that

D∑
i=d+1

λn,i ≤ En,A
∥∥V V >(x− νn,A)

∥∥2 ≤
D∑

i=d+1

λi + 2ε0∆2(A)

≤ ε

(
D∑
i=1

λi

)
+ 2ε0∆2(A) ≤ ε

(
D∑
i=1

λn,i + 2ε0∆2(A)

)
+ 2ε0∆2(A)

≤ (ε+ 8c · ε0)
D∑
i=1

λn,i ≤ 2ε ·
D∑
i=1

λn,i,

where the last inequality follows from the setting of µn(A).



Chapter 8

Regression Rates with Other

Low-dimensional Structures

Chapters 6 and 7 discussed how tree based regressors adapt well to a spe-

cific statistical notion of intrinsic dimension. This adaptivity yielded good nearest

neighbor and vector quantization performance along with the regression perfor-

mance. Here we show the universality of the phenomenon of adaptivity to intrinsic

dimension in non-parametric regression.

It turns out that as long as one can exhibit some sort of low-dimensional

organized structure on a given dataset (perhaps by showing some kind of small

covering, or by some easily parameterizable sophisticated data-structure), a stan-

dard space partition based regressor induced by the organized structure yields good

regression rates.

8.1 Partition based non-parametric regression

Given an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) of size n, from an underlying

distribution on X ×Y , we want to study what kinds of regression rates one can get

by using a piecewise constant non-parametric regressor using a space partitioning

method on X . Here we assume that X ⊆ RD and Y ⊆ Rm.

Let X denote the set of Xi’s and Y denote the Yi’s from the sample. Define

110
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Figure 8.1: An example space partitioning of X . Left: an example space X with
a i.i.d. samples. Right: A partitioning of X in four cells (A1, . . . A4).

f(X) as the regression function, that is,

f(X) := E[Y |X].

Let A be some partitioning of X , and for some X ∈ X , let A(X) denote the cell

A ∈ A such that X ∈ A (see Figure 8.1). For simplicity we shall assume that

each cell in the partitioning contains at least one sample. We define the piecewise

constant regressor w.r.t. the partition A as

fn,A(X) :=
1

|A(X) ∩X|
∑
i

Yi 1[Xi ∈ A(X)]. (8.1)

We are interested in bounding the excess “integrated” risk. Let ∆2(S)

denote the squared diameter of a set S, that is, ∆2(S) := supx,y∈S ‖x− y‖2,

and let ∆2
a(S) denote the average squared diameter of S, that is, ∆2

a(S) :=

1
|S|2
∑

x,y∈S ‖x− y‖2. Then we have the following (see Section 8.4 for all the sup-

porting proofs).

Theorem 8.1 (excess integrated risk in the fixed design setting) Let

(X1, Y1), . . . , (Xn, Yn) =: (X,Y) be an i.i.d. sample from the underlying distribu-

tion on X ×Y. Let A be any partition of X that is independent of Y, and fn,A be a

piecewise constant regressor w.r.t. A (as defined above). If the regression function

f is λ-Lipschitz (w.r.t. L2-norm)1, then with probability at least 1 − δ, the excess

1In light of Theorem 3.1 of Györfi et al. [2002], a Lipschitz-type smoothness assumption on f
is necessary to get non-trivial bounds.
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integrated risk (in the fixed design setting) is

1

n

n∑
i=1

‖fn,A(Xi)− f(Xi)‖2

≤ 4∆2(Y)
|A|(ln(|A|/δ) + 2)

n
+ λ2

∑
A∈A

|A ∩X|
n

∆2
a(A ∩X).

Theorem 8.2 (excess integrated risk in the random design setting) Let

(X1, Y1), . . . , (Xn, Yn) =: (X,Y) be an i.i.d. sample from the underlying distribu-

tion on X × Y. Let A be any partition of X ⊂ RD that is independent of Y,

and whose cells come from a fixed collection A, and fn,A be a piecewise constant

regressor w.r.t. A (as defined above). If VC-dimension of A is at most V < ∞,

and the regression function f is λ-Lipschitz (w.r.t. L2-norm), then with probability

at least 1− δ, the excess integrated risk (in the random design setting) is∫
‖fn,A(x)− f(x)‖2 dµ(x)

≤ 14λ2

[∑
A∈A

|A ∩X|
n

∆2(A ∩X)

]
+ 42∆2(Y)|A|8 + 3V ln(6n) + ln(|A|/δ2)

n
.

Theorems 8.1 and 8.2 provide a powerful relationship between the under-

lying regression function and our piecewise constant estimate via the partitioning.

It turns out that arranging our data in an organized structure that induces a

good partition2 can yield good regression rates. Let’s study some interesting data

arrangements.

8.2 Organized structures that adapt to intrinsic

dimension

8.2.1 Spatial trees

As discussed in Chapter 7 (see e.g. Lemma 7.5) several tree based parti-

tioning procedures guarantee a diameter decrease rate of 2−l/d(X ) for going l levels

2A good partition is typically the one that produces a good balance between the total number
of cells and the data diameter in each cell.
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down the tree (here d(X ) is some deterministic function of the geometry of the

underlying data X , such as doubling dimension or local covariance dimension of

X ). A quick calculation yields the following rate.

Let (X,Y) be a size n i.i.d. sample. Pick any 0 < c < 1/2, and using

the sample X , grow a spatial tree to depth c log(n) (see Section 7.1 for example

trees). Since each node of the spatial tree partitions the space in two cells, the

leaves of a depth c log(n) tree induces a partition A of size 2c log(n) = nc. Assuming

c log n ≥ log(log(nc/δ) + 2), with probability at least 1− δ, the piecewise constant

regressor estimate fn,A (cf. Eq. (8.1)) induced by the partition A gets the regression

rate (cf. Theorem 8.1):

4∆2(Y)n2c−1 + λ2∆2(X )n−c/d(X ).

Optimizing for c by setting it to d(X )
2d(X )+1

gives the rate of(
4∆2(Y) + λ2∆2(X )

)
n−1/1+2d(X ).

It is instructive to contrast this rate to the standard Cn−O(1/D) rate induced

by a “cube”-partitioning of X ⊂ RD (see for instance Theorem 4.3 of Györfi et al.

[2002]). Our derivation signifies that the choice of partition is crucial to achieve

good rates: a clever organization of data (an organization into partitions induced

by spatial trees, in this case) can yield rates that are dependent only on the intrinsic

geometry (d(X )) and not the ambient dimension (D).

8.2.2 Covering with balls

Suppose for all r > 0, we can exhibit an r-cover of size at most (∆(X )/r)d(X )

(here d(X ) is again a deterministic function of the geometry of the underlying data

X ). Recall from Section 6.1 that for X with covering dimension or with manifold

dimension at most b, d(X ) = O(b).

Let (X,Y) be a size n i.i.d. sample and let C be an r-cover of X (of size

at most (∆(X )/r)d(X )). Let A be any partition of X induced3 by C. Assuming

3Given a covering C of samples X, we can induce a partition of our space X as follows. Let
C1, . . . , Cp be the covering elements in some arbitrary but fixed order. Define cell Ai of the
partition as Ci \ ∪i−1

i′=1Ci′ (for 1 < i ≤ p). Finally define cell A1 as C1 ∪ (∪iCi)
C. Define the

partitioning A := ∪iAi.
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that d(X ) log(∆(X )/r) ≥ log(log((∆(X )/r)d(X )/δ) + 2), with probability at least

1− δ, the piecewise constant regressor estimate fn,A yields the regression rate (cf.

Theorem 8.1):

4∆2(Y)(∆(X )/r)2d(X )/n+ 4λ2r2.

By picking cover radius r = (1/n)1/2+2d(X ), gives the rate(
4∆2(Y)∆(X )2d(X ) + 4λ2

)
n−1/1+d(X ).

Our derived rate can be compared directly with Bickel and Li’s [2006] man-

ifold dimension adaptive rate of Cn−1/O(d) using a kernel based regressor (here d

is the dimension of the underlying manifold). The cover radius r above has a role

similar to the bandwidth parameter in Bickel and Li’s work. Both results show

adaptivity to data’s intrinsic dimension. It is interesting to note that the struc-

ture induced by using localizing kernels (such as Gaussian kernel or box kernel) is

similar to that induced by our partition A resulting in similar rates.

8.2.3 Covering with k-flats

Instead of an arbitrary r-covering with balls (as done above), suppose we

can exhibit a more structured covering4: an ε-covering of our samples with k-flats.

That is, given an i.i.d. sample (X,Y) of size n, we construct a collection of k-

dimensional flats F such that for every X ∈ X, there exists a flat F ∈ F, such

that ‖X − πF (X)‖ ≤ ε (here πF (·) denotes the projection of · into F ). Let N be

the size of this collection, i.e. N = |F |.
We can create a partition of X using our k-flat ε-cover F as follows. For each

flat F in the cover, let XF ⊂ X be the samples closest to F (break ties arbitrarily).

Let CF be a regular r-cover of πF (XF ) in F (note that we can do it in such a way

that |CF | ≤ C0(∆(X )/r)k, for some constant C0 independent of r). Note that CF

is a collection of k-dimensional balls in our k-flat F . We create the corresponding

cover in X by extending k-dimensional balls in each CF in the ambient space by

4An advantage of such a structured covering is that we don’t need to understand the underlying
geometry of X as needed for an arbitrary cover.
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extending it by ε amount in orthogonal complement of F . This gives us a cover

of X, which can now be made into a proper partition in a standard way (as done

in previous section). We call this partition A as the partition induced by k-flat

covering.

By our construction, we have a partition with total number of cells at most

NC0(∆(X )/r)k. Again, by assuming thatNC0(∆(X )/r)k ≥ log(NC0∆k(X )/rkδ)+

2, with probability at least 1 − δ, the piecewise constant regressor estimate fn,A

yields the following regression rate (cf. Theorem 8.1):

4∆2(Y)N2C2
0(∆(X )/r)2k/n+ 8λ2(r2 + ε2).

Optimizing for r by setting it to (N2/n)1/2+2k, yields the rate of(
4C2

0∆2(Y)∆2k(X ) + 8λ2
)
N2/1+kn−1/1+k + 8λ2ε2.

It is instructive to note that as long as N = o(
√
n), the l.h.s. converges to zero

as we increase the number of samples n. This provides an interesting trade-off:

(i) how well does the collection F fits the sample X (via ε in r.h.s.), and (ii) how

“complex” is this collection (via N = |F | in l.h.s.). A balance between the two

terms yields a good, ambient dimension independent rate.

8.2.4 Compression schemes

Suppose we have a compression scheme (φ, ψ, d, ε, α, β) on X . That is,

• a compressor φ : X → Rd such that ∆(φ(X )) is bounded by α,

• a decompressor ψ : Rd → X such that ‖X − ψ(φ(X))‖ ≤ ε for all X ∈ X ,

• ‖ψ(Y )− ψ(Y ′)‖ ≤ β‖Y − Y ′‖.

We can create a partition of X from this compression as follows. Let (X,Y) be a

size n i.i.d. sample. Let C be an r-cover of φ(X) in Rd. Note that |C| ≤ C0(α/r)d.

Let P be a partition induced by C of φ(X ) in Rd. Now consider any P-respecting

partition A of X , that is, for any φ(X), φ(X ′) in the same cell P in P, X,X ′ is in

the same cell in A.
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Assuming that C0(α/r)d ≥ log(C0(α/r)d/δ + 2), with probability at least

1− δ, the piecewise constant regressor estimate fn,A yields the regression rate of:

4∆2(Y)C2
0(α/r)2d/n+ 2λ2(β2r2 + 4ε2).

Optimizing for r by setting it to (α2d/β2n)1/2+2d, yields the rate(
4C2

0∆2(Y) + 2λ2
)
(αβ)2d/1+dn−1/1+d + 8λ2ε2.

α and β are complementary scaling parameters for the compression and

decompression stages. A good compression scheme will typically have αβ ≈ 1 and

the reconstruction error ε ≈ 0. Thus, if one can find a good compression scheme

of our data into Rd, then the regression rates depend only on d, independent of

the ambient dimension. As a quick example, consider data sampled uniformly

from a patch parameterized manifold M ⊂ RD. That is, M = f(H) for some

d-dimensional patch H ⊂ Rd. Then, the piecewise constant regression estimate

derived from the partition induced by (f−1, f, d, 0, α, β)-compression scheme yields

regression rates that scale with only with the manifold dimension d.

8.3 Discussion

Our results from previous section show that if one can find a clever way to

arrange high-dimensional data in an organized structure, then the complexity of

learning scales only with the intrinsic property of the structure, thus escaping the

traditional curse of dimensionality.
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8.4 Supporting proofs

8.4.1 Proof of Theorem 8.1

Consider the excess integrated risk (in the fixed design setting):

1

n

n∑
i=1

‖fn,A(Xi)− f(Xi)‖2 =
1

n

∑
A∈A

∑
Xi∈A

‖fn,A(Xi)− f(Xi)‖2

≤ 1

n

∑
A∈A

∑
Xi∈A

2

[ ∥∥∥ 1

|A ∩X|
∑

j:Xj∈A∩X

(Yj − f(Xi))
∥∥∥2

︸ ︷︷ ︸
variance

+
∥∥∥( 1

|A ∩X|
∑

j:Xj∈A∩X

f(Xj)
)
− f(Xi)

∥∥∥2

︸ ︷︷ ︸
sq. bias

]

≤ 4∆2(Y)
|A|(ln(|A|/δ) + 2)

n
+ λ2

∑
A∈A

|A ∩X|
n

∆2
a(A ∩X)︸ ︷︷ ︸

avg. sq. data diameter

,

where the last inequality is by noting Lemma 8.4 (for variance) and Lemma 8.3

for squared bias.

Lemma 8.3 (bounding squared bias) Let f be the λ-Lipschitz regression func-

tion, and X be the sample (as described above), and let A be some cell in the

partition of X . Then,

1

|A ∩X|
∑

Xi∈A∩X

∥∥∥( 1

|A ∩X|
∑

Xj∈A∩X

f(Xj)
)
− f(Xi)

∥∥∥2

≤ λ2

2
∆2
a(A ∩X).

Proof. Observe that

1

|A ∩X|
∑

Xi∈A∩X

∥∥∥( 1

|A ∩X|
∑

Xj∈A∩X

f(Xj)
)
− f(Xi)

∥∥∥2

=
1

2

1

|A ∩X|2
∑

X,X′∈A∩X

‖f(X)− f(X ′)‖2

≤ λ2

2|A ∩X|2
∑

X,X′∈A∩X

‖X −X ′‖2

=
λ2

2
∆2
a(A ∩X),

where the first equality is by noting Lemma 8.5.
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Lemma 8.4 (bounding variance) Let f be the regression function, (X1, Y1), . . . ,

(Xn, Yn) =: (X,Y) be an i.i.d. sample, and let A be some partition of X that is

independent of Y (as described above). Pick any δ > 0, then for all cells A in the

partition A of X , we have

1

|A ∩X|
∑

Xi∈A∩X

∥∥∥ 1

|A ∩X|
∑

j:Xj∈A∩X

(Yj − f(Xi))
∥∥∥2

≤ 2∆2(Y)
2 + ln(|A|/δ)
|A ∩X|

.

Proof. For each cell A in A, let YA := {Yi ∈ Y : Xi ∈ A} = (YA,1, . . . , YA,|A∩X|).

Define the function gA : (YA,1, . . . , YA,|A∩X|) 7→ ‖ 1
|A∩X|

∑
YA,j∈YA

(YA,j − f(Xi))‖
(for any Xi ∈ A). Then noting that changing a single YA,j changes gA by only

∆(Y)/|A∩X| amount, we can apply Lemma 8.6 and get: with probability at least

1− δ/|A|,

|gA − EgA| ≤ ∆(Y)

√
ln(|A|/δ)
2|A ∩X|

. (8.2)

Also note that,

EYA

∥∥∥ 1

|A ∩X|
∑

YA,j∈YA

YA,j − f(Xi)
∥∥∥ ≤ 1

|A ∩X|

(
EYA

∥∥ ∑
YA,j∈YA

YA,j − f(Xi)
∥∥2
) 1

2

=
1

|A ∩X|

(∑
YA,j

EYA,j‖YA,j − f(Xi)‖2
) 1

2

≤ ∆(Y)√
|A ∩X|

. (8.3)

Union bounding over all the gA’s, and by combining Eqs. (8.2) and (8.3), we have

with probability at least 1− δ, for all gA

∑
Xi∈A∩X

g2
A ≤ 2

∑
Xi∈A∩X

[
∆2(Y)

|A ∩X|
+

∆2(Y) ln(|A|/δ)
2|A ∩X|

]
= 2∆2(Y)

2 + ln(|A|/δ)
|A ∩X|

.

Lemma 8.5 (Corollary 14 of Dasgupta and Freund [2008]) For any set S

of numbers, let µ(S) := (1/|S|)
∑

x∈S x, then

2

|S|
∑
x∈S

‖x− µ(S)‖2 =
1

|S|2
∑
x,x′∈S

‖x− x′‖2.



119

Lemma 8.6 (McDiarmid’s concentration inequality [1989]) Let X1, . . . , Xn

be n independent random variables taking values in a set A. Let g : An → R be a

function such that for any 1 ≤ i ≤ n,

sup
x1,...,xn,x̂i

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ c.

Pick any δ > 0, then with probability at least 1− δ,

g(X1, . . . , Xn)− Eg(X1, . . . , Xn) ≤
√

n

2c2
ln

1

δ
.

8.4.2 Proof of Theorem 8.2

Given the partition A of X consider a refinement of A as follows. For

each A ∈ A we partition, let BA be the smallest enclosing ball, centered at

one of the sample points from A ∩ X, that contains all the sample points from

A ∩ X (if A contains no samples then set BA = φ). Define a refined partition

A′ as {A ∩ BA}A∈A ∪ {A ∩ BC
A}A∈A. Observe that the cells A′ of this refined

partition come from the concept class: A′ := {A ∩ BA}A∈A ∪ {A ∩ BC
A}A∈A.

Quickly note that the shatter coefficient S(A′, 2n, n) (see Definition 8.7) is at most

d := 2(2ne/V)V(2n)2 = 8n2(2ne/V)V . This follows from noting (i) Lemmas 8.10

and 8.9, and (ii) the concept class of balls centered at data has shatter coefficient

at most (2n)2.

Then the excess integrated risk (in the random design setting) becomes:∫
‖fn,A(x)− f(x)‖2 dµ(x) =

∑
A′∈A′

∫
A′
‖fn,A(x)− f(x)‖2 dµ(x)

Now let A′> := {A′ ∈ A′ : µn(A′) ≥ (ln(d) + ln(8/δ))/n} and A′< := A′ \ A′>.

Observe that (cf. Lemma 8.8) for every A′> ∈ A′>, µ(A′>) ≤ 7µn(A′>), and for every

A′< ∈ A′<, µ(A′<) ≤ 7(ln(d) + ln(8/δ))/n. Thus, with probability at least 1− δ/2∑
A′<∈A′<

∫
A′<

‖fn,A(x)− f(x)‖2 dµ(x) ≤
∑

A′<∈A′<

∆2(Y)µ(A′<)

≤ 14∆2(Y)|A| ln(d) + ln(8/δ)

n
. (8.4)
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Also, with probability at least 1− δ/2∑
A′>∈A′>

∫
A′>

‖fn,A(x)− f(x)‖2 dµ(x) =
∑

A′>∈A′>

∫
A′>

‖fn,A′(x)− f(x)‖2 dµ(x)

≤
∑

A′>∈A′>

2λ2∆2(A′> ∩X)µ(A′>) +
∑

A′>∈A′>

2∆2(Y)
2 + ln(4|A|/δ)
|A′> ∩X|

µ(A′>)

≤ 14λ2
[ ∑
A>∈A>

|A> ∩X|
n

∆2(A> ∩X)
]

+ 28∆2(Y)|A|2 + ln(4|A|/δ)
n

. (8.5)

The theorem follows by combining Equations (8.4) and (8.5).

Definition 8.7 (shatter coefficient) Given a concept C and a sample X :=

(x1, . . . , xn) from some underlying space X , define the labeling function L(C,X)

as how the concept C labels the sample X. That is,

L(C,X) := (1[x1 ∈ C], . . . ,1[xn ∈ C]).

Now let C be any data dependent concept class. Then, for m > n, the shatter

coefficient is defined as

S(C,m, n) := sup
Xm⊂X

∣∣∣∣∣ ⋃
Xn⊂Xm,C∈CXn

L(C,Xn)

∣∣∣∣∣
That is, it is the worst case number of distinct dichotomies of m points generated

as the concepts vary over the union of data dependent concept classes of all size n

subsets of the m points.

Lemma 8.8 (data dependent relative uniform convergence) Suppose a sam-

ple X := (x1, . . . , xn) of size n is drawn i.i.d. from a fixed probability measure µ over

a measurable space X , with resulting empirical measure µn. Fix a concept class CX
over X that may depend on the sample. Then for any δ > 0, with probability at

least 1− δ we have the following: for all C ∈ CX

µ(C) ≤ µn(C) + 2

√
µn(C)

ln(S(CX, 2n, n)) + ln(4/δ)

n
+ 4

ln(4S(CX, 2n, n)/δ)

n
.

Proof. The proof follows from closely following the arguments presented in Sec-

tion 5.1 of Boucheron et al. [2005] for the specified notion for shatter coefficient

(Definition 8.7).
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Lemma 8.9 (shatter coefficients of unions and intersections of concept

classes) Let C1 and C2 be two concept class over a measurable space X . De-

fine C∪ := C1 ∪ C2 and C∩ := {c1 ∩ c2 : c1 ∈ C1, c2 ∈ C2}. Then for m > n, (i)

S(C∪,m, n) ≤ S(C1,m, n)+S(C2,m, n), (ii) S(C∩,m, n) ≤ S(C1,m, n)S(C2,m, n).

Lemma 8.10 (Sauer’s lemma [1972]) Let C be any concept class with VC-

dimension at most V <∞. Then, for m > n

S(C,m, n) ≤
(me
V

)V
.



Chapter 9

Conclusion

This dissertation focused on theoretical and practical issues in designing

effective learning algorithms (both unsupervised and supervised) when the given

high-dimensional data conforms to some low dimensional intrinsic structure. Our

results on manifold structured data show that the complexity of various learning

algorithms is intimately tied with the geometric properties (such as dimension,

volume and curvature) of the underlying manifold.

We then explored a holistic way to formalize and test the intrinsic dimen-

sion hypothesis on modern datasets. The accompanying sampling complexity re-

sults on different learning algorithms highlight good performance guarantees when

datasets have low intrinsic dimension.

These results provide a theoretical justification why we can expect learning

algorithms—that suffer from the traditional curse of dimensionality—perform well

on modern high-dimensional structured datasets.
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Appendix A

Properties of a Well-Conditioned

Manifold

Throughout this section we will assume that M is a compact submanifold of

RD of dimension n, and condition number 1/τ . The following are some properties

of such a manifold that would be useful throughout the text.

Lemma A.1 (relating closeby tangent vectors – implicit in the proof of

Proposition 6.2 Niyogi et al. [2008]) Pick any two (path-connected) points

p, q ∈M . Let u ∈ TpM be a unit length tangent vector and v ∈ TqM be its parallel

transport along the (shortest) geodesic path to q. Then1, i) u · v ≥ 1−DG(p, q)/τ ,

ii) ‖u− v‖ ≤
√

2DG(p, q)/τ .

Lemma A.2 (relating geodesic distances to ambient distances – Propo-

sition 6.3 of Niyogi et al. [2008]) If p, q ∈ M such that ‖p − q‖ ≤ τ/2, then

DG(p, q) ≤ τ(1−
√

1− 2‖p− q‖/τ) ≤ 2‖p− q‖.

Lemma A.3 (projection of a section of a manifold onto the tangent

space) Pick any p ∈ M and define Mp,r := {q ∈ M : ‖q − p‖ ≤ r}. Let f

1Technically, it is not possible to directly compare two vectors that reside in different tangent
spaces. However, since we only deal with manifolds that are immersed in some ambient space,
we can treat the tangent spaces as n-dimensional affine subspaces. We can thus parallel translate
the vectors to the origin of the ambient space, and do the necessary comparison (such as take
the dot product, etc.). We will make a similar abuse of notation for any calculation that uses
vectors from different affine subspaces to mean to first translate the vectors and then perform
the necessary calculation.
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denote the orthogonal linear projection of Mp,r onto the tangent space TpM . Then,

for any r ≤ τ/2

(i) the map f : Mp,r → TpM is one-to-one. (see Lemma 5.4 of Niyogi et al.

[2008])

(ii) for any x, y ∈Mp,r, ‖f(x)− f(y)‖2 ≥ (1− (r/τ)2) · ‖x− y‖2. (implicit in the

proof of Lemma 5.3 of Niyogi et al. [2008])

Lemma A.4 (coverings of a section of a manifold) Pick any p ∈ M and

define Mp,r := {q ∈ M : ‖q − p‖ ≤ r}. If r ≤ τ/2, then there exists C ⊂ Mp,r

of size at most 9n with the property: for any p′ ∈ Mp,r, exists c ∈ C such that

‖p′ − c‖ ≤ r/2.

Proof. The proof closely follows the arguments presented in the proof of Theorem

22 of Dasgupta and Freund [2008].

For r ≤ τ/2, note that Mp,r ⊂ RD is (path-)connected. Let f denote the

projection of Mp,r onto TpM ∼= Rn. Quickly note that f is one-to-one (see Lemma

A.3(i)). Then, f(Mp,r) ⊂ Rn is contained in an n-dimensional ball of radius r.

By standard volume arguments, f(Mp,r) can be covered by at most 9n balls of

radius r/4. WLOG we can assume that the centers of these covering balls are in

f(Mp,r). Now, noting that the inverse image of each of these covering balls (in Rn)

is contained in a D-dimensional ball of radius r/2 (see Lemma A.3(ii)) finishes the

proof.

Lemma A.5 (relating closeby manifold points to tangent vectors) Pick

any point p ∈ M and let q ∈ M (distinct from p) be such that DG(p, q) ≤ τ . Let

v ∈ TpM be the projection of the vector q − p onto TpM . Then, i)
∣∣∣ v
‖v‖ ·

q−p
‖q−p‖

∣∣∣ ≥
1− (DG(p, q)/2τ)2, ii)

∥∥∥ v
‖v‖ −

q−p
‖q−p‖

∥∥∥ ≤ DG(p, q)/τ
√

2.

Proof. If vectors v and q − p are in the same direction, we are done. Otherwise,

consider the plane spanned by vectors v and q − p. Then since M has condition

number 1/τ , we know that the point q cannot lie within any τ -ball tangent to M

at p (see Figure A.1). Consider such a τ -ball (with center c) whose center is closest
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Figure A.1: Plane spanned by vectors q − p and v ∈ TpM (where v is the
projection of q− p onto TpM), with τ -balls tangent to p. Note that q′ is the point
on the ball such that ∠pcq = ∠pcq′ = θ.

to q and let q′ be the point on the surface of the ball which subtends the same

angle (∠pcq′) as the angle formed by q (∠pcq). Let this angle be called θ. Then

using cosine rule, we have cos θ = 1− ‖q′ − p‖2/2τ 2.

Define α as the angle subtended by vectors v and q − p, and α′ the angle

subtended by vectors v and q′ − p. WLOG we can assume that the angles α

and α′ are less than π. Then, cosα ≥ cosα′ = cos θ/2. Using the trig identity

cos θ = 2 cos2
(
θ
2

)
− 1, and noting ‖q − p‖2 ≥ ‖q′ − p‖2, we have∣∣∣∣ v‖v‖ · q − p

‖q − p‖

∣∣∣∣ = cosα ≥ cos
θ

2
≥
√

1− ‖q − p‖2/4τ 2 ≥ 1− (DG(p, q)/2τ)2.

Now, by applying the cosine rule, we have
∥∥ v
‖v‖ −

q−p
‖q−p‖

∥∥2
= 2(1 − cosα). The

lemma follows.

Lemma A.6 (approximating tangent space by closeby samples) Let 0 <

δ ≤ 1. Pick any point p0 ∈ M and let p1, . . . , pn ∈ M be n points distinct from p0

such that (for all 1 ≤ i ≤ n)

(i) DG(p0, pi) ≤ τδ/
√
n,

(ii)
∣∣ pi−p0

‖pi−p0‖ ·
pj−p0

‖pj−p0‖

∣∣ ≤ 1/2n (for i 6= j).

Let T̂ be the n dimensional subspace spanned by vectors {pi−p0}i∈[n]. For any unit

vector û ∈ T̂ , let u be the projection of û onto Tp0M . Then,
∣∣û · u

‖u‖

∣∣ ≥ 1− δ.
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Proof. Define the vectors v̂i := pi−p0

‖pi−p0‖ (for 1 ≤ i ≤ n). Observe that {v̂i}i∈[n]

forms a basis of T̂ . For 1 ≤ i ≤ n, define vi as the projection of vector v̂i onto

Tp0M . Also note that by applying Lemma A.5, we have that for all 1 ≤ i ≤ n,

‖v̂i − vi‖2 ≤ δ2/2n.

Let V = [v̂1, . . . , v̂n] be the D × n matrix. We represent the unit vector û

as V α =
∑

i αiv̂i. Also, since u is the projection of û, we have u =
∑

i αivi. Then,

‖α‖2 ≤ 2. To see this, we first identify T̂ with Rn via an isometry S (a linear

map that preserves the lengths and angles of all vectors in T̂ ). Note that S can be

represented as an n×D matrix, and since V forms a basis for T̂ , SV is an n× n
invertible matrix. Then, since Sû = SV α, we have α = (SV )−1Sû. Thus, (recall

‖Sû‖ = 1)

‖α‖2 ≤ max
x∈Sn−1

‖(SV )−1x‖2 = λmax((SV )−T(SV )−1)

= λmax((SV )−1(SV )−T) = λmax((V TV )−1) = 1/λmin(V TV )

≤ 1/1− ((n− 1)/2n) ≤ 2,

where i) λmax(A) and λmin(A) denote the largest and smallest eigenvalues of a

square symmetric matrix A respectively, and ii) the second inequality is by noting

that V TV is an n × n matrix with 1’s on the diagonal and at most 1/2n on the

off-diagonal elements, and applying the Gershgorin circle theorem.

Now we can bound the quantity of interest. Note that∣∣∣û · u

‖u‖

∣∣∣ ≥ |ûT(û− (û− u))| ≥ 1− ‖û− u‖ = 1−
∥∥∑

i

αi(v̂i − vi)
∥∥

≥ 1−
∑
i

|αi|‖v̂i − vi‖ ≥ 1− (δ/
√

2n)
∑
i

|αi| ≥ 1− δ,

where the last inequality is by noting ‖α‖1 ≤
√

2n.

Lemma A.7 (manifold covers – see Section 2.4 of Clarkson [2008]) Let

M ⊂ RN be a compact n-dimensional manifold with vol(M) ≤ V and cond(M) ≤
1/τ . Pick any 0 < ε ≤ τ/2. There exists an ε-covering of M of size at most

2c0n(V/εn), where c0 is an absolute constant. That is, there exists C ⊂M such that

|C| ≤ 2c0n(V/εn) with the property: for all p ∈M , ∃ q ∈ C such that ‖p− q‖ ≤ ε.
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Lemma A.8 (manifold volumes – see Lemma 5.3 Niyogi et al. [2008])

Let M ⊂ RN be a compact n-dimensional manifold with cond(M) ≤ 1/τ . Pick

any p ∈ M and let Aε := M ∩ B(p, ε), where B(p, ε) is a Euclidean ball in RN

centered at p of radius ε. If Aε does not contain any boundary points of M , then

vol(Aε) ≥ (cos(arcsin(ε/2τ)))nvol(Bn
ε ), where Bn

ε is a Euclidean ball in Rn of

radius ε. In particular, noting that vol(Bn
ε ) ≥ εc0n for some absolute constant c0,

if ε ≤ τ , we have vol(Aε) ≥ εc0n.
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