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Nature of collected data Proposed datastructure

Theoretical basis

Experiments

PCA vs. Random projection

 Synthetic datasets

MNIST dataset (digit 1 cluster)

 Random projection trees

Theorem  (Dasgupta & Freund ’07) Pick any cell C  in the RPTree, and 
suppose the data in C have intrinsic dimension (doubling dimension or local 
covariance dimension) d. Then with constant probability, any descendant cell 
≥ O(d) levels below will have expected diameter at most half that of C.

procedure MakeRPTree (S)
  if |S| < MinSize  then return(Leaf)
  else
     Rule ← ChooseRule (S)
     LTree ← MakeRPTree({x∈S: Rule(x)})
     RTree ← MakeRPTree({x∈S: ¬ Rule(x)})
     return ([Rule, LTree, RTree])

In many applications, the data we collect resides in a very low 
dimensional subspace (manifold) of the ambient space.

Examples

Traditional learning algorithms, don’t exploit this fact and suffer from 
computations done in high dimensions 2000 images (28x28 pixels) of 

handwritten digit one. This 
dataset is widely believed to 
have a low intrinsic 
dimension.

RPTree datastructure 
(right) adapts very well 
to the underlying 
manifold.

Visualizing the data in the top principal components. (Colors represent 
different cells of the RPTree)

For each xi ∈ ℜD:
  choose pi ~ U[0,1]
   xij ~ N (pi,1)

For each xi ∈ ℜD:
  choose pi = -1 or +1
                       (with equal probability)

  xij ~  N (pi,1)

Note that, locally, since most of the variance is concentrated in a few 
directions (in a manifold), the benefits of a PCA based split can be realized 
by simply picking a random direction.

RPTrees quickly reduce the avg. VQ error, where k-D trees fail:

Even though the surface (right) 
resides in ℜ3, we would like the 
learning algorithm only depend on 
the intrinsic dimension, which can be 
different in different parts of the 
space.

Handwritten characters (there are only a few relevant parameters such 
as shape, tilt and curvature of the characters) 

Spoken Natural Language (only a certain set of phonemes follow 
other phonemes) 

and much more!

News articles (frequencies of certain words increase if the document 
belongs to the politics class as opposed to sports) 

RPTrees for vector quantization and nearest neighbors Compression of pathology images
Vector Quantization: A quantization technique in signal processing, which 
allows modeling of a probability density by a few vectors. VQ is a widely 
applicable technique for lossy data compression.
Since the diameter of a cell in the RPTree decreases quickly with height, 
the mean vector of a leaf cell can be regarded as a good quantizer for the 
data belonging to that cell. 

Original Image Reconstructed Image

RPTrees learn the structure of the underlying image manifold from a 
specific domain. Preliminary results show good reconstruction accuracy.

Notions of intrinsic dimension

A set S ⊂ ℜD is said to have local covariance dimension (d, ε) if the largest d
eigenvalues of its covariance matrix satisfy σ1

 +…+ σd ≥ (1-ε) (σ1 +…+ σD) 2 2 2 2

Near Neighbor queries: since Bayes Risk of nearest neighbor applies well 
to majority vote in a small enough cells, RPTrees can quickly find a near 
neighbor of a query point without significant amount of error. 

Algorithm in action:

procedure ChooseRule (S)
  if ∆2(S) ≤ c.∆avg(S)
      u ← random unit vector
      sort projected values ai ← si · u   [ ∀ si ∈ S ]
      ci = i var(a1, … , ai) + (n - i) var(ai+1, … , an) 
      find i that minimizes ci and set θ = (ai + ai+1)/2 
      Rule(x) ← x · u  ≤ θ
  else
      Rule(x) ← || x – mean(S) || ≤ median{ || z – mean(S) || : z ∈ S }
  return (Rule) 
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[where ∆2(S) is the square diameter of S,  ∆avg(S) is the average square diameter of s]2

Doubling dimension  of S  ⊂  ℜD  is the smallest integer d  such that for any 
ball B(x,r), the set B(x,r) ∩ S can be covered by 2d balls of radius r/2.

(i) (ii)

RPTree is trained on data 
generated by sliding a 
20x20 window over the 
training images. 
For compressing a test 
image, we encode a few 
representative leaf cells 
and its deviations from the 
mean.

1st level of RPTree 2nd level of RPTree

Note that even 
though we choose a 
random direction to 
partition the data, it 
is as good as using 
the PCA direction.Main Result

Note that a split based on the red vector 
(random) is just as good as the black vector 
(PCA) in reducing the diameter of the set, since 
the fraction of points falling to the other side 
(two triangular regions) is very small.

Note that a d  dimensional Riemannian manifold  in ℜD  has a doubling 
dimension of O(d) (for bounded curvatures), so the theorem applies well to 
manifolds. A key benefit of using RPTree over traditional manifold learning 
techniques is that it doesn’t construct an explicit nearest neighbor graph 
(which scales quadratically with number of points), instead it partitions the 
space by choosing random vectors (which scales linearly).


