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Abstract

Random projections are typically used to study low distortion linear embeddings that approxi-
mately preserve Euclidean distances between pairs of points in a setS ⊂ R

D. Of particular interest
is when the setS is a low-dimensional submanifold ofRD. Recent results by Baraniuk and Wakin
[2007] and Clarkson [2007] shed light on how to pick the projection dimension to achieve low dis-
tortion of Euclidean distances between points on a manifold. While preserving ambient Euclidean
distances on a manifold does imply preserving intrinsic path-lengths between pairs of points on a
manifold, here we investigate how one can reasondirectly about preserving path-lengths without
having to appeal to the ambient Euclidean distances betweenpoints. In doing so, we can improve
upon Baraniuk and Wakin’s result by removing the dependenceon the ambient dimensionD, and
simplify Clarkson’s result by using a single covering quantity and giving explicit dependence on
constants.

1 Introduction

Random projections have turned out to be a powerful tool for linear dimensionality reduction that approxi-
mately preserve Euclidean distances between pairs of points in a setS ⊂ R

D. Their simplicity and universal-
ity stems from the fact the target embedding space is pickedwithout looking at the individual samples from
the setS. Interestingly, recent results by Baraniuk and Wakin [2007] and Clarkson [2007] show that even
if the underlying set is a non-linear manifold (say of intrinsic dimensionalityn), a random projection into a
subspace of dimensionO(n) suffices to preserve interpoint Euclidean distances between the pairs of points.

It turns out that requiring Euclidean distances to be approximately preserved between pairs of points in a
manifold is in a sense the strictest condition one can pose. This condition suffices to imply that the random
projection will also preserve several other useful properties on manifolds. For instance, if one has a random
projection that can approximately preserve the Euclidean distances, it will also approximately preserve the
lengths of arbitrary curves on the manifold, and the curvature of the manifold.

Here we are interested in analyzing whether one can use random projections to reasondirectly about
preserving the lengths of arbitrary paths on a manifold, without having to appeal to interpoint Euclidean
distances. There is a two-fold reason for doing this: i) one can possibly get a sharper bound on the dimension
of target space by relaxing the Euclidean interpoint distance preservation requirement, and ii) since paths—
unlike Euclidean distances—are inherently an intrinsic quantity, it should require a different technique to
show path length preservation. Thus, giving us an alternate, direct proof.

In this manuscript, we make progress on both fronts. We can remove the dependence on ambient dimen-
sion from the bound provided by Baraniuk and Wakin [2007], aswell as simplify the bound provided by
Clarkson [2007] by giving an explicit bound for all settingsof the isometry parameter (and not just asymp-
totically small values). Our key lemma (Lemma 6) uses an elegant chaining argument on the coverings of
vectors in tangent spaces providing an alternate proof technique.

2 Random projections for preserving paths on a manifold

2.1 Notation and Preliminaries

Let M ⊂ R
D be a smooth compactn-dimensional submanifold ofRD. For any two pointsp andq, we

shall useDG(p, q) to denote the geodesic distance between pointsp andq when the underlying manifold is
understood from the context.



Recall that the length of any given curveγ : [a, b] → M is given by
∫ b

a ‖γ′(s)‖ds (that is, length of a
curve is an infinitesimal sum of the lengths of vectors tangent to points along the path). It thus suffices to
bound the distortion induced by a random projection to the lengths of arbitrary vectors tangent toM .

Since path lengths depend intimately on tangent vectors, wealso need to know how the tangent vectors
vary locally in the ambient space. This relationship between the local curvature ofM in the ambient space
R

D is captured formally by the notion of thesecond fundamental form(see e.g. Chapter 6 of do Carmo
[1992]). It is a symmetric bilinear formBp : Tp × Tp → T⊥

p (for anyp ∈ M , tangent spaceTp and normal
spaceT⊥

p ). We shall assume that the norm of the second fundamental form of M is uniformly bounded by
1/τ . That is, for allp ∈ M , unitu ∈ Tp, and unitη ∈ T⊥

p , we have〈η,Bp(u, u)〉 ≤ 1/τ .
As a final piece of notation, we require a notion of covering onour manifoldM . We define theα-geodesic

covering numberof M as the size of the smallest setS ⊂ M , with the property: for allp ∈ M , there exists
p′ ∈ S such thatDG(p, p

′) ≤ α.

2.2 Main Result

Theorem 1 Let M be a smooth compactn-dimensional submanifold ofRD with the norm on its second
fundamental form uniformly bounded by1/τ . LetG(M,α) denote theα-geodesic covering number ofM .
Pick any0 < ǫ < 1 and0 < δ < 1. Letφ be a random projection matrix that maps points fromRD into a
random subspace of dimensiond (d ≤ D) and defineΦ :=

√

D/dφ as a scaled projection mapping.

If d ≥
{
64
ǫ2 ln 4G(M,τǫ2/218)

δ + 64n
ǫ2 ln 117

ǫ

}
, then with probability at least1 − δ, for any pathγ in M ⊂ R

D,
and its projectionΦ(γ) in Φ(M) ⊂ R

d,

(1− ǫ)L(γ) ≤ L(Φ(γ)) ≤ (1 + ǫ)L(γ),

whereL(·) denotes the length of the path·.

3 Proof

As discussed earlier, it suffices to uniformly bound the distortion induced by a random projection to the length
of an arbitrary vector tangent to our manifoldM . So we shall only focus on that. We start by stating a few
useful lemmas that would help in our discussion.

Lemma 2 (random projection of a fixed vector – see e.g. Lemma 2.2 of Dasgupta and Gupta [1999])
Fix a vectorv ∈ R

D. Letφ be a random projection map that maps points fromRD to a random subspace of
dimensiond. Then,

i) For anyβ ≥ 1,

P

[

‖φ(v)‖2 ≥ β
d

D
‖v‖2

]

≤ e(β−1−lnβ)(−d/2).

ii) For any 0 < ǫ < 1, we have

P

[

‖φ(v)‖2 ≤ (1 − ǫ)
d

D
‖v‖2 or ‖φ(v)‖2 ≥ (1 + ǫ)

d

D
‖v‖2

]

≤ 2e−dǫ2/4.

Lemma 3 (covering of a Euclidean unit-sphere – see e.g. Lemma5.2 of Vershynin [2010]) LetSn−1 be
an(n−1)-dimensional Euclidean unit sphere. Then there exists aǫ-cover ofSn−1 of size at most(1+2/ǫ)n.
That is, there exists a setC ⊂ Sn−1, of size at most(1 + 2/ǫ)n, with the property: for anyx ∈ Sn−1, exists
c ∈ C such that‖x− c‖ ≤ ǫ.

Lemma 4 (covering of a section of a manifold – implicit in the proof of Theorem 22 of Dasgupta and
Freund [2008]) LetM ⊂ R

D be a smooth compactn-dimensional manifold with1/τ uniform bound on the
norm of its second fundamental form. For anyx ∈ R

D and0 < r ≤ τ/2, let M ′ := M ∩ B(x, r). Then,
M ′ can be covered by9n balls of radiusr/2. That is, there existsC ⊂ M ′ with size at most9n, with the
property: for anyp ∈ M ′, existsc ∈ C such that‖p− c‖ ≤ r/2.

Lemma 5 (relating closeby tangent vectors – implicit in the proof of Propositions 6.2 and 6.3 of Niyogi
et al. [2006])LetM ⊂ R

D be a smooth compactn-dimensional manifold with1/τ uniform bound on the
norm of its second fundamental form. Then,

i) Pick any two path-connected pointsp, q ∈ M . Let u ∈ TpM be a unit length tangent vector and
v ∈ TqM be its parallel transport along the (shortest) geodesic path toq. Then, i)u·v ≥ 1−DG(p, q)/τ ,
ii) ‖u− v‖ ≤

√

2DG(p, q)/τ .
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centers of balls

level0: 1 center
p0,1

level1: ≤ 9n centers

level2: ≤ 92n centers

≤ τǫ2/218

≤ τǫ2/219

Figure 1:A hierarchy of covers ofS ⊂ B(p, τǫ2/218) for some pointp in ann-manifoldM with condition number
1/τ . Observe that at any leveli, there are at most9ni points in the cover. Also note that the Euclidean distance between
any pointpi,k at leveli and its parentpi−1,j in the hierarchy is at mostτǫ2/217+i.

ii) If p, q ∈ M such that‖p− q‖ ≤ τ/2, thenDG(p, q) ≤ τ(1 −
√

1− 2‖p− q‖/τ) ≤ 2‖p− q‖.

Lemma 6 LetM ⊂ R
D be a smooth compactn-dimensional manifold with1/τ uniform bound on the norm

of its second fundamental form. Pick any0 < ǫ < 1. Fix somep in M and letS := {p′ ∈ M : DG(p, p
′) ≤

τǫ2/218}. Letφ be a random orthoprojector fromRD toR
d. Then, ifd ≥ 30n ln 18,

P

[

∃p′ ∈ S : ∃v′ ∈ Tp′M : ‖φ(v′)‖ ≤ (1− ǫ)

√

d

D
‖v′‖ or ‖φ(v′)‖ ≥ (1 + ǫ)

√

d

D
‖v′‖

]

≤ 2(en ln(117/ǫ)−(d/30) + en ln(13/ǫ)−(dǫ2/64)).

Proof: Note that the setS is path-connected, and (see for instance Lemma 4) for any Euclidean ballB(x, r)

in R
D, S ∩ B(x, r) can be covered by9n balls of half the radius. We will use this fact to create a hierarchy

of covers of increasingly fine resolution. For each point in the hierarchy, we shall associate a covering of the
tangent space at that point. We will inductively show that (with high probability) a random projection doesn’t
distort the lengths of the tangent vectors in the covering bytoo much. We will then conclude by showing that
bounding the length distortion on tangent vectors in the covering implies a bound on the length distortion of
all vectors in all the tangent spaces of all points inS. We now make this argument precise.

Constructing a hierarchical cover ofS: Note thatS is contained in the Euclidean ballB(p, τǫ2/218). We
create a hierarchy of covers as follows. Pick a cover ofS ⊂ B(p, τǫ2/218) by 9n balls of radiusτǫ2/219 (see
Lemma 4). WLOG, we can assume that the centers of these balls lie in S (see e.g. proof of Theorem 22 of
Dasgupta and Freund [2008]). Each of these balls induces a subset ofS, which in turn can then be covered
by 9n balls of radiusτǫ2/220. We can continue this process to get an increasingly fine resolution such that
at the end, any point ofS would have been arbitrarily well approximated by the centerof some ball in the
hierarchy. We will use the notationpi,k to denote the center of thekth ball at leveli of the hierarchy (note
that with this notationp0,1 = p). (see Figure 1).

A tangent space cover associated with each point in the hierarchy: Associated with eachpi,k, we have
a setQi,k ⊂ Tpi,k

M of unit-length vectors tangent toM at pi,k that forms a(ǫ/6)-cover of the unit-vectors
in Tpi,k

M (that is, for all unitv ∈ Tpi,k
M , there existsq ∈ Qi,k where‖q‖ = 1 such that‖q − v‖ ≤ ǫ/6).

We will define the individual vectors inQi,k as follows. The setQ0,1 is any(ǫ/6)-cover of the unit-sphere
in Tp0,1M . Note that, by Lemma 3, we can assume that|Q0,1| =: L ≤ en ln(13/ǫ). For levelsi = 1, 2, . . .,
defineQi,k (associated with the pointpi,k) as theparallel transport(via the shortest geodesic path using the
standard manifold connection, see Figure 2) of the vectors inQi−1,j (associated with the pointpi−1,j) where
pi−1,j is the parent ofpi,k in the hierarchy. Note that parallel transporting a set of vectors preserves certain
desirable properties – the dot product, for instance, between the vectors being transported is preserved (see,
for instance, page 161 of Stoker [1969]). Thus, by construction, we have thatQi,k is a (ǫ/6)-cover, since
parallel transport doesn’t change the lengths or the mutualangles between the vectors being transported.

A residual associated with each vector in the tangent space cover: For i ≥ 1, let qi,kl be thelth vector
in Qi,k, which was formed by the transport of the vectorqi−1,j

l in Qi−1,j . We define the “residual” as
ri,kl := qi,kl − qi−1,j

l (for l = 1, . . . , L). Then we have that‖ri,kl ‖ is bounded. In particular, since‖qi−1,j
l ‖ =
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p

M v′

v

q

Figure 2: Parallel transport of the vectorv at pointp ∈ M to the pointq ∈ M . The resulting transported vector is
v′. Parallel transport is the translation of a (tangent) vector from one point to another while remaining tangent to the
manifold. As the vector is transported infinitesimally along a path, it is also required to be parallel. Note that the resulting
vectorv′ is typically path-dependent: that is, for different paths from p to q, the transport ofv is generally different.
However, as expected, the transport does not change the length of the original vector. That is,‖v‖ = ‖v′‖.

‖qi,kl ‖ = 1 (since the transport doesn’t change vector lengths), and sinceDG(pi−1,j , pi,k) ≤ 2‖pi−1,j −
pi,k‖ ≤ τǫ2/216+i (cf. Lemma 5)

‖ri,kl ‖2 ≤ 2DG(pi−1,j , pi,k)/τ ≤ ǫ22−i−15.

Effects of a random projection on the length of the residual:Note that for a fixedri,kl (corresponding to a
fixed pointpi,k at leveli in the hierarchy and its parentpi−1,j in the hierarchy), using Lemma 2 (i), we have
(for β > 1)

P

[

‖φ(ri,kl )‖2 ≥ β
d

D
‖ri,kl ‖2

]

≤ e(β−1−lnβ)(−d/2). (1)

By choosingβ = 2i/2 in Eq. (1), we have the following. For any fixedi andk, with probability at least
1 − en ln(13/ǫ)e(2

i/2−1−ln 2i/2)(−d/2) ≥ 1 − en ln(13/ǫ)−di/30, we have‖φ(ri,kl )‖2 ≤ ǫ22i/2 d
D‖ri,kl ‖2 ≤

ǫ22−(i/2)−15(d/D) (for l = 1, . . . , L). By taking a union bound over all edges in the hierarchy, (ifd ≥
30n ln 18)

P

[

∃ level i : ∃ ball k at leveli with centerpi,k : ∃ residualri,kl : ‖φ(ri,kl )‖2 ≥ ǫ22−(i/2)−15(d/D)
]

≤

∞∑

i=1

eni ln 9en ln(13/ǫ)e−di/30 = en ln(13/ǫ)
( 1

1− en ln 9−d/30
− 1

)

≤ 2en ln(117/ǫ)−(d/30),

where the equality is by noting that the geometric series converges (sinced ≥ 30n ln 18), and the last in-
equality is by noting that 11−s ≤ 1 + 2s for 0 ≤ s ≤ 1/2.

Effects of a random projection on the vectors in the tangent space cover:We now use the (uniform) bound
on ‖φ(ri,kl )‖2 to conclude inductively thatφ doesn’t distort the length of any vectorqi,kl too much (for any
i, k, andl). In particular we will show that for alli, k andl, we will have(1− ǫ

2 )
d
D ≤ ‖φ(qi,kl )‖2 ≤ (1+ ǫ

2 )
d
D .

Base case (level0): Since|Q0,1| ≤ en ln(13/ǫ) we can apply Lemma 2 (ii), to conclude with probability at
least1− 2e−dǫ2/64+n ln(13/ǫ), for all q ∈ Q0,1, (1− ǫ

4 )
d
D ≤ ‖φ(q)‖2 ≤ (1 + ǫ

4 )
d
D .

Inductive hypothesis:We assume that for all vectorsqi,kl ∈ Qi,k (for all k) at leveli

(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)
d

D
≤ ‖φ(qi,kl )‖2 ≤

(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)
d

D
. (2)

Inductive case:Pick anypi+1,k at leveli + 1 in the hierarchy and letpi,j be its parent (i ≥ 0). Then, for
anyqi+1,k

l ∈ Qi+1,k (associated with the pointpi+1,k), let qi,jl ∈ Qi,j (associated with the pointpi,j) be the
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vector which after the parallel transport resulted inqi+1,k
l . Then, we have:

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl ) + φ(ri+1,k

l )‖2

= ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 + 2φ(qi,jl ) · φ(ri+1,k

l )

≥ ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 − 2‖φ(qi,jl )‖‖φ(ri+1,k

l )‖

≥
d

D

(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)

− 2

√
(

1 +
ǫ

2

)
d

D

√

ǫ22−(i/2)−15.5d

D

≥
d

D

[(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)

−ǫ
√

2−(i/2)−12.5
︸ ︷︷ ︸

≥−ǫ2−(i/4)−(1/4)−5

]

≥
d

D

(

1−
ǫ

4
−

ǫ

32

i+1∑

j=1

2−j/4

)

.

Now, in the other direction we have

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl )‖2 + ‖φ(ri+1,k

l )‖2 + 2‖φ(qi,jl )‖‖φ(ri+1,k
l )‖

≤
d

D

(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)

+
ǫ22−(i/2)−15.5d

D
+ 2

√
(

1 +
ǫ

2

)
d

D

√

ǫ22−(i/2)−15.5d

D

≤
d

D

[(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)

+ǫ2−(i/2)−15.5 + ǫ
√

2−(i/2)−12.5
︸ ︷︷ ︸

≤+ǫ2−(i/4)−(1/4)−5

]

≤
d

D

(

1 +
ǫ

4
+

ǫ

32

i+1∑

j=1

2−j/4

)

.

So far we have shown that by pickingd ≥ 30n ln 18, with probability at least1 − 2(en ln(117/ǫ)−(d/30) +

en ln(13/ǫ)−(dǫ2/64)), for all i, k andl,

(1− ǫ/2)(d/D) ≤ ‖φ(qi,kl )‖2 ≤ (1 + ǫ/2)(d/D).

Effects of a random projection on any tangent vector at any point in the hierarchy: Now, pick any
point pi,k in the hierarchy and consider the corresponding setQi,k. We will show that for any unit vector
v ∈ Tpi,k

M , (1− ǫ)
√

d/D ≤ ‖φ(v)‖ ≤ (1 + ǫ)
√

d/D.
DefineA := maxv∈Tpi,k

M,‖v‖=1 ‖φ(v)‖ and letv0 be a unit vector that attains this maximum. Let

q ∈ Qi,k be such that‖v0 − q‖ ≤ ǫ/6. Now, if ‖v0 − q‖ = 0, then we get thatA = ‖φ(v0)‖ = ‖φ(q)‖ ≤

(1 + ǫ)
√

d/D. Otherwise,

A = ‖φ(v0)‖ ≤ ‖φ(q)‖+‖φ(v0−q)‖ = ‖φ(q)‖+‖v0−q‖

∥
∥
∥
∥
φ

(
v0 − q

‖v0 − q‖

)∥
∥
∥
∥
≤ (1+ǫ/2)

√

d/D+(ǫ/6)(A).

This yields thatA ≤ (1 + ǫ)
√

d/D, and thus for any unitv ∈ Tpi,k
M , ‖φ(v)‖ ≤ ‖φ(v0)‖ = A ≤

(1 + ǫ)
√

d/D. Now, in the other direction, pick any unitv ∈ Tpi,k
M , and letq ∈ Qi,k be such that

‖v − q‖ ≤ ǫ/6. Again, if ‖v − q‖ = 0, then we have that‖φ(v)‖ = ‖φ(q)‖ ≥ (1− ǫ)
√

d/D. Otherwise,

‖φ(v)‖ ≥ ‖φ(q)‖ − ‖φ(v − q)‖ = ‖φ(q)‖ − ‖v − q‖

∥
∥
∥
∥
φ

(
v − q

‖v − q‖

)∥
∥
∥
∥

≥ (1− ǫ/2)
√

d/D − (ǫ/6)(1 + ǫ)
√

d/D ≥ (1− ǫ)
√

d/D.

Sinceφ is linear, it immediately follows that forall v ∈ Tpi,k
M (not just unit-lengthv) we have

(1 − ǫ)
√

d/D‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ǫ)
√

d/D‖v‖.

Observe that since the choice of the pointpi,k was arbitrary, this holds true foranypoint in the hierarchy.

Effects of a random projection on any tangent vector at any point in S: We can finally give a bound on
any tangent vectorv at anyp ∈ S. Pick anyv tangent toM atp ∈ S. Then, for anyδ > 0 such thatδ ≤ τ/2,

5



we know that there exists somepi,k in the hierarchy such that‖p− pi,k‖ ≤ δ. Letu be the parallel transport
(via the shortest geodesic path) ofv from p to pi,k. Then, we know that‖u‖ = ‖v‖ and (cf. Lemmas 5)
‖ u
‖u‖ − v

‖v‖‖ ≤
√

4δ/τ . Thus,

‖φ(v)‖ ≤ ‖φ(u)‖+ ‖φ(v − u)‖ ≤ (1 + ǫ)
√

d/D‖u‖+ ‖(v − u)‖ ≤ (1 + ǫ)
√

d/D‖v‖+ 2
√

δ/τ.

Similarly, in the other direction

‖φ(v)‖ ≥ ‖φ(u)‖ − ‖φ(v − u)‖ ≥ (1− ǫ)
√

d/D‖u‖ − ‖(v − u)‖ ≥ (1 − ǫ)
√

d/D‖v‖ − 2
√

δ/τ.

Note that since the choice ofδ was arbitrary, by lettingδ → 0 from above, we can conclude

(1− ǫ)

√

d

D
‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ǫ)

√

d

D
‖v‖.

All the pieces are now in place to compute the distortion to tangent vectors induced by a random projec-
tion mapping. LetC be a(τǫ2/218)-geodesic cover ofM . Noting that one can haveC of size at most
G(M, τǫ2/218), we have (ford > 30n ln 9)

P

[

∃c ∈ C : ∃p such thatDG(c, p) ≤ τǫ2/218 : ∃v ∈ TpM : ‖φ(v)‖ ≤ (1 − ǫ)

√

d

D
‖v‖ or ‖φ(v)‖ ≥ (1 + ǫ)

√

d

D
‖v‖

]

≤ 2G(M, τǫ2/218)(en ln(117/ǫ)−(d/30) + en ln(13/ǫ)−(dǫ2/64)).

The theorem follows by bounding this quantity byδ.
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