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Abstract

Random projections are typically used to study low distortiinear embeddings that approxi-
mately preserve Euclidean distances between pairs ofgioiatsetS ¢ R”. Of particular interest
is when the sef is a low-dimensional submanifold &”. Recent results by Baraniuk and Wakin
[2007] and Clarkson [2007] shed light on how to pick the pectifn dimension to achieve low dis-
tortion of Euclidean distances between points on a maniféldile preserving ambient Euclidean
distances on a manifold does imply preserving intrinsi©igahgths between pairs of points on a
manifold, here we investigate how one can reagioectly about preserving path-lengths without
having to appeal to the ambient Euclidean distances betp@iets. In doing so, we can improve
upon Baraniuk and Wakin’s result by removing the dependendabe ambient dimensioR, and
simplify Clarkson’s result by using a single covering quignand giving explicit dependence on
constants.

1 Introduction

Random projections have turned out to be a powerful toolif@ar dimensionality reduction that approxi-
mately preserve Euclidean distances between pairs ofgioiatsetS ¢ R”. Their simplicity and universal-
ity stems from the fact the target embedding space is piekttbutlooking at the individual samples from
the setS. Interestingly, recent results by Baraniuk and Wakin [208Yd Clarkson [2007] show that even
if the underlying set is a non-linear manifold (say of insimdimensionality:), a random projection into a
subspace of dimensian(n) suffices to preserve interpoint Euclidean distances betwezpairs of points.

It turns out that requiring Euclidean distances to be apprately preserved between pairs of points in a
manifold is in a sense the strictest condition one can pobi dondition suffices to imply that the random
projection will also preserve several other useful prdpemn manifolds. For instance, if one has a random
projection that can approximately preserve the Euclidéstaaces, it will also approximately preserve the
lengths of arbitrary curves on the manifold, and the cumeatii the manifold.

Here we are interested in analyzing whether one can use mapdojections to reasodirectly about
preserving the lengths of arbitrary paths on a manifoldheut having to appeal to interpoint Euclidean
distances. There is a two-fold reason for doing this: i) caremossibly get a sharper bound on the dimension
of target space by relaxing the Euclidean interpoint distgoreservation requirement, and ii) since paths—
unlike Euclidean distances—are inherently an intrinsiargity, it should require a different technique to
show path length preservation. Thus, giving us an alterulatect proof.

In this manuscript, we make progress on both fronts. We caove the dependence on ambient dimen-
sion from the bound provided by Baraniuk and Wakin [2007]wa8l as simplify the bound provided by
Clarkson [2007] by giving an explicit bound for all settingthe isometry parameter (and not just asymp-
totically small values). Our key lemma (Lemma 6) uses analeghaining argument on the coverings of
vectors in tangent spaces providing an alternate proohigak.

2 Random projections for preserving paths on a manifold

2.1 Notation and Preliminaries

Let M c R” be a smooth compact-dimensional submanifold dk”. For any two pointg andg, we
shall useD¢(p, ¢) to denote the geodesic distance between peitsdg when the underlying manifold is
understood from the context.



Recall that the length of any given curye: [a,b] — M is given byf: IIv/(s)||ds (that is, length of a
curve is an infinitesimal sum of the lengths of vectors tangeipoints along the path). It thus suffices to
bound the distortion induced by a random projection to thgtles of arbitrary vectors tangentiad.

Since path lengths depend intimately on tangent vectorslseeneed to know how the tangent vectors
vary locally in the ambient space. This relationship betwie local curvature ol in the ambient space
R is captured formally by the notion of treecond fundamental forigsee e.g. Chapter 6 of do Carmo
[1992]). It is a symmetric bilinear forn,, : 1}, x 1), — TpL (for anyp € M, tangent spacg, and normal
spacel“;). We shall assume that the norm of the second fundamentalddi\/ is uniformly bounded by
1/7. Thatis, for allp € M, unitu € T}, and unity € T,", we have(n, B, (u,u)) < 1/7.

As a final piece of notation, we require a notion of coveringanmanifold) . We define ther-geodesic
covering numbeof M as the size of the smallest setC M, with the property: for alp € M, there exists
p’ € S such thatDg(p,p') < a.

2.2 Main Result

Theorem 1 Let M be a smooth compaci-dimensional submanifold @& with the norm on its second
fundamental form uniformly bounded byr. LetG(M, «) denote thex-geodesic covering number o1.
Pick any0 < ¢ < 1 and0 < § < 1. Let¢ be a random projection matrix that maps points frif into a
random subspace of dimensidifd < D) and defineb := /D /d¢ as a scaled projection mapping.

Ifd>{%1n M + 842 1n 1171 then with probability at least — §, for any pathy in M ¢ R”,
and its projection®(v) in ®(M) c R,

(1= €)L(v) < L(2(7)) < (L + €)L(v),
whereL(-) denotes the length of the path

3 Proof

As discussed earlier, it suffices to uniformly bound theatistn induced by a random projection to the length
of an arbitrary vector tangent to our manifald. So we shall only focus on that. We start by stating a few
useful lemmas that would help in our discussion.

Lemma 2 (random projection of a fixed vector — see e.g. Lemma 2 of Dasgupta and Gupta [1999])
Fix a vectorv € R, Let¢ be a random projection map that maps points fiM to a random subspace of
dimensiond. Then,

i) Foranyg > 1,
P {Hgf)(v)HQ > ﬂ%Hv”? < e(B=1-1nB)(=d/2),

i) Forany0 < e < 1, we have

d d )
P16 < (1= O ol? or [6)I 2 (1+ O [o]?] < 2741

Lemma 3 (covering of a Euclidean unit-sphere — see e.g. Lemn3a2 of Vershynin [2010]) Let S™~! be
an (n — 1)-dimensional Euclidean unit sphere. Then there existsaver ofS™ ! of size at mos{l +2/¢)".

That is, there exists a sét C S 1, of size at mostl + 2/¢)", with the property: for any: € S"~1, exists
¢ € C such that|z — ¢|| <e.

Lemma 4 (covering of a section of a manifold — implicit in the poof of Theorem 22 of Dasgupta and
Freund [2008]) Let M c R” be a smooth compagtdimensional manifold with /7 uniform bound on the

norm of its second fundamental form. For any= R” and0 < » < 7/2, let M’ := M N B(x,r). Then,
M’ can be covered b9™ balls of radiusr/2. That is, there exist§’ C M’ with size at mos®™, with the
property: for anyp € M’, existsc € C such that|p — ¢|| < r/2.

Lemma 5 (relating closeby tangent vectors — implicit in the poof of Propositions 6.2 and 6.3 of Niyogi
et al. [2006])Let M C R” be a smooth compaet-dimensional manifold with /7 uniform bound on the
norm of its second fundamental form. Then,

i) Pick any two path-connected pointsq € M. Letu € T,M be a unit length tangent vector and
v € T, M beits parallel transport along the (shortest) geodesidyay. Then, iju-v > 1—D¢a(p, ¢)/T,

i) || — || < \/2Da(p,q)/7-



Pa1 level 0: 1 center

< 7e? /218
centers of balls—» level1: < 9™ centers

< 7e? /219
level2: < 927 centers

Figure 1:A hierarchy of covers of C B(p,7¢?/2'®) for some poinp in ann-manifold M with condition number
1/7. Observe that at any levélthere are at mos$t™ points in the cover. Also note that the Euclidean distan¢eéen
any pointp; ;. at leveli and its parenp;_1 ; in the hierarchy is at moste? /217,

i) If p,qg € M suchthat|p —q|| < 7/2,thenD¢(p,q) < 7(1 — /1 =2[[p—¢|/7) < 2|lp —q]|.

Lemma 6 Let M c R” be a smooth compaetdimensional manifold with /7 uniform bound on the norm
of its second fundamental form. Pick ahy: ¢ < 1. Fix somep in M and letS := {p’ € M : Dg(p,p’) <

Te2/2'8}. Let be a random orthoprojector from” to R?. Then, ifd > 30n1n 18,

P|3peS: eTyM:|o0) (1—en/ = H’U/H or ||¢(v' (I+e)/—= ||1/||]

< 2(e nIn(117/€)=(d/30) 4 onin(13/€)— de2/64))

Proof: Note that the se$ is path-connected, and (see for instance Lemma 4) for anjdeao ballB(zx, r)

in R”, SN B(x,r) can be covered by balls of half the radius. We will use this fact to create a &iehy

of covers of increasingly fine resolution. For each pointia hierarchy, we shall associate a covering of the
tangent space at that point. We will inductively show thatt{wigh probability) a random projection doesn’t
distort the lengths of the tangent vectors in the coverintbbymuch. We will then conclude by showing that
bounding the length distortion on tangent vectors in theeciog implies a bound on the length distortion of
all vectors in all the tangent spaces of all point$inwe now make this argument precise.

Constructing a hierarchical cover of S: Note thatS is contained in the Euclidean bah(p, 7¢2/2'). We
create a hierarchy of covers as follows. Pick a cove¥ of B(p, 7¢?/2'%) by 9" balls of radius-e? /21 (see
Lemma 4). WLOG, we can assume that the centers of these isqilfsd (see e.g. proof of Theorem 22 of
Dasgupta and Freund [2008]). Each of these balls inducebsesafS, which in turn can then be covered
by 9™ balls of radiusre?/22°. We can continue this process to get an increasingly findutso such that
at the end, any point of would have been arbitrarily well approximated by the cenfesome ball in the
hierarchy. We will use the notatign  to denote the center of thé" ball at leveli of the hierarchy (note
that with this notatiom, 1 = p). (see Figure 1).

A tangent space cover associated with each point in the hierehy: Associated with each; 5, we have
asetQ; C Tp, , M of unit-length vectors tangent & atp; , that forms a(¢/6)-cover of the unit-vectors
in T}, , M (that is, for all unitv € T}, , M, there existg; € Q; . where||q|| = 1 such that|q — v|| < ¢/6).
We will define the individual vectors ify; ;, as follows. The sef) ; is any(e/6)-cover of the unit-sphere
in T, , M. Note that, by Lemma 3, we can assume fldat;| =: L < e"'"(13/<)_ For levelsi = 1,2,...
deﬁneQZ « (associated with the poinf ;) as theparallel transport(wa the shortest geodesic path usmg the
standard manifold connection, see Figure 2) of the veciofk i1 ; (associated with the poipt_; ;) where
pi—1,; IS the parent op; ;. in the hierarchy. Note that parallel transporting a set ataes preserves certain
desirable properties — the dot product, for instance, batvilee vectors being transported is preserved (see,
for instance, page 161 of Stoker [1969]). Thus, by consnctve have that); i is a (e/6)-cover, since
parallel transport doesn’t change the lengths or the matgles between the vectors being transported.

A residual associated with each vector in the tangent spaceeer: Fori > 1, let qli”C be thel™ vector
in @Q; %, which Was formed by the transport of the vecd;(j)Tl’-7 in Qi—1,;. We define the “residual” as
k= g% — ¢/~ (forl =1,..., L). Then we have thalr;""|| is bounded. In particular, sinde; 7| =
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Figure 2: Parallel transport of the vectaer at pointp € M to the pointg € M. The resulting transported vector is

v'. Parallel transport is the translation of a (tangent) vefitam one point to another while remaining tangent to the

manifold. As the vector is transported infinitesimally ajanpath, it is also required to be parallel. Note that theltiegu
vectorv’ is typically path-dependent: that is, for different pathsnii p to ¢, the transport of) is generally different.
However, as expected, the transport does not change thi lefite original vector. That igjv|| = [|v’]].

llg"|| = 1 (since the transport doesn't change vector lengths), anak & (p; 1, pik) < 2||pi-1, —
pikl| < 7€2/216+% (cf. Lemma 5)
HTli’kHQ S 2DG(pi*1-,japi,k)/T S 62271',15.

Effects of a random projection on the length of the residual:Note that for a fixecl"l“C (corresponding to a
fixed pointp; . at leveli in the hierarchy and its parepf_, ; in the hierarchy), using Lemma 2 (i), we have
(forg > 1)

i d . i e InB)(—
lo(ri)1* = B llr || < e, )

By choosings = 2%/2 in Eq. (1), we have the following. For any fixédand k, with probability at least
1 — enln(13/e) (272 —1-In2"/?)(-d/2) > 1 — enIn(13/6)—=di/30 \ye havquS(rf’k)Hz < 622i/2%||r;,k”2 <

€22-(/2)=15(4/D) (for | = 1,...,L). By taking a union bound over all edges in the hierarchyd (it
30n1n 18)

P |3 leveli : 3 ball k at leveli with centerp; , : 3 residual™* : [|¢(ri*)[|? > 227 /D =154/ D) ]
o , 1
niln9 _nlIn(13/e) ,—di/30 _ _nln(13/€) _
<D emindenins/e = enint?/ (1_enln9—d/30 1)
=1

< 28nln(117/5)7(d/30)’

where the equality is by noting that the geometric serievemes (sincel > 30n1n 18), and the last in-
equality is by noting tha{i—s <l+2sfor0<s<1/2.

Effects of arandom projection on the vectors in the tangentgace cover:We now use the (uniform) bound
on ||gi>(rl“k)|\2 to conclude inductively thap doesn’t distort the length of any vect@’rk too much (for any

i, k, andl). In particular we will show that for all, k and!, we will have(1—£) 4 < [|¢(q,’ M2 < (1+£)%

Base case (level): Since|Qo1| < e™!"(13/€) we can apply Lemma 2 (ii), to conclude with probability at
least] — 2¢~4<*/644nn(13/¢) forallg € Qo 1, (1 — DL <o <(1+%)%

Inductive hypothesisiVe assume that for all vectoq%k € Qi (forall k) at levels

<____Zza/4>—<||¢< >||2s(1+ +—Z2”“) @

Inductive casePick anyp;;1  at leveli + 1 in the hlerarchy and let; ; be its parenti > 0). Then, for

any l1+1 Fe Qi+1,x (associated with the poipi; 1 1), letq,” € Q; ; (associated with the poim; ;) be the
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vector which after the parallel transport resulte@[ﬁl * Then, we have:

lp(a T2 = llo(g?) + o(ry )12 |
= [lo(g )+ lo(ry )% + 20(q,7) - p(r]THF)
> lo(g))I1? + lle(r 1+1k)||2—2|\¢ (@)™
d € € d €29—(i/2)—15.5
2185 / il
> D(l 1 3222 74 ,/ 1+ D\/
>

d € € o .
- ____2:7/4 — /92— (i/2)—12.
D{<1 277 > e/ 2—(i/2) 125}

j=1

> 4 1_f_ii+l2—j/4
- D 4 327,: '

Now, in the other direction we have

e e A T s [ ]
e29-(i/2)-15.5 4 622 /D155
52 2 2 1
<+ +3 E ) €27 +2

[(1 + 4 _22 7/4) 42— (1/2)=15.5 2—(1’/2)—12.5]
<te2-Gi/H-1/1)=5

>_e2—(i/H=(1/9)-5

IN

IN

4
D

d i+1
< 1 — ) 2794,
< prirmre)

So far we have shown that by pickialg> 307 1n 18, with probability at least — 2(em(117/€)=(d/30) 1
enIn(13/e)=(de*/64)) for all §, k andl,

(1 —¢/2)(d/D) < l|l¢(q;")I* < (1 + €/2)(d/D).

Effects of a random projection on any tangent vector at any pot in the hierarchy: Now, pick any
pointp; ;. in the hierarchy and consider the correspondingiget. We will show that for any unit vector

vE T, M, (1D < [$(v)]l < (1+€)y/d/D.

Define A := max,er,  m|o=1¢(v)[| and letvy be a unit vector that attains this maximum. Let
q € Qi be such thativy — ¢|| < €/6. Now, if lug — ¢|| = 0, then we get thatl = [¢(vo)|| = [|o(q)] <
(1+¢€)4/d/D. Otherwise,

A= o(w0)]] < 6]+ 60—l = 6@+ oo q|H¢(” q”)H (L+¢/2)\/ATD+ (¢/6)(A).

This yields thatA < (1 + ¢)/d/D, and thus for any univ € T, , M, ||¢(v)|| < |l¢(vo)| =
(1 4+ €)y/d/D. Now, in the other direction, pick any unit ¢ T, , M, and letq € Q;; be such that
v — gl < €/6. Again, if |[u — ¢|| = 0, then we have thdto(v)|| = ||¢(q)|| > (1 — €)y/d/D. Otherwise,

6l = ot - (e = Oll = ool ~ 1o al o722 )|
> (1—¢/2)\/d/D — (¢/6)(1 + )\/A/D > (1 — €)\/d/D.

Since¢ is linear, it immediately follows that faall v € T}, , M (not just unit-lengthy) we have

(1 =)V d/Dlv]| < fl¢()] < (1 +€)v/d/D]v].

Observe that since the choice of the pgint was arbitrary, this holds true fanypoint in the hierarchy.

Effects of a random projection on any tangent vector at any pmt in .S: We can finally give a bound on
any tangent vectar at anyp € S. Pick anyv tangenttal/ atp € S. Then, for any > 0 such that < 7/2,
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we know that there exists somey, in the hierarchy such thdlp — p; || < ¢. Letwu be the parallel transport
(via the shortest geodesic path)ofrom p to p; .. Then, we know thafju| = |v|| and (cf. Lemmas 5)

H”—ZH - Hz—H” < y/46/7. Thus,
o)l < )| + 6w — u)| < (1 +e)v/d/Dlull + ||(v — u)| < (1+ €)y/d/Dljv|| +21/5/7,

Similarly, in the other direction

[l = [lp(u)l] = ll¢(v —w)l = (1 = e)/d/Djull = [[(v = w)| = (1 = €)v/d/D]jv] -2

Note that since the choice 6fwas arbitrary, by letting — 0 from above, we can conclude

(1 —6)\/%”14 <o)l <1 +€)\/%Ilv|-

All the pieces are now in place to compute the distortion tayémt vectors induced by a random projec-
tion mapping. LetC be a(re?/2'%)-geodesic cover of/. Noting that one can havé' of size at most
G(M, e /2!8), we have (ford > 30n1n9)

d
P |Jc € C: Jpsuch thatDg(c,p) < 7€*/2'8 : Jv € T,M : ||¢(v) (1—e)/—= ||vH or ||o(v)|| > (1+6)\/5|’UH‘|
< 2G(M, 7_62/218)( nIn(117/€)=(d/30) 4 onin(13/e)— (de2/64))_
The theorem follows by bounding this quantity &y
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