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What are manifolds?

Manifolds are geometric objects with that locally
look like n-dimensional subspace. More
formally: N

M < RP, is considered a n-dimensional manifold,
if for all p € M, we can find a smooth bijective
map between KR" and a neighborhood around p.

An example of a 1-dimensional
manifold in R3

 Manifolds are useful in modeling data:
Measurements we make for a particular observation are generally
correlated and have few degrees of freedom.

Say we make D measurements and there are n degrees of freedom, then such
data can be modeled as a n-dimensional manifold in $RP



Some examples of manifolds

Modeling movement of a robotic arm
* Measurements taken on joints and elsewhere

 There are two degrees of freedom
e Set of all possible valid positions traces out a
2-dimensional manifold in the measurement

space.

Natural process with physical constrains — speech
* Few anatomical characteristics, such as size of
the vocal chords, pressure applied, etc. govern

the speech signal.
e Whereas the standard representation of speech
for recognition purposes, such as MFCC embed

the data in fairly high dimensions.
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Learning on manifolds

Learning on manifolds can be broadly defined as establishing
methodologies and properties on samples coming from an
underlying manifold.

Kinds of methods machine learning researchers look at:

. Finding a lower dimensional representation of manifold data
. Density estimation and regression on manifolds

. Performing classification tasks on manifolds

. and much more...

Here we will study some of these methods.
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Dimension reduction on manifolds

Why dimension reduction?

e Learning algorithms scale poorly with increase in dimension

e Representing the data in fewer dimensions while still preserving relevant
information helps alleviate the computational issues

e |t provides a simpler (shorter) description of the observations.

Dimension reduction types:

Non linear methods for dimension reduction

e For curvy objects such as manifolds, its more intuitive to have non-linear maps
to lower dimension.
 Some popular techniques are: LLE, Isomap, Laplacian and Hessian Eigenmaps, etc.

Linear Methods for dimension reduction
e Popular techniques are: PCA, random projections.



Issues with dimension reduction

Information Loss

* Alow dimensional representation can result in information loss

Goal of dimension reduction

* Preserve as much relevant information as possible.

e In terms of machine learning, one good criterion is to preserve inter-point
distances



Random projections of manifolds

What is Random Projections?
* Projecting the data orthogonally onto a random subspace of fixed dimension.

e Performing a random operation without even looking at the data seems
guestionable in preserving any kind of relevant information, we will see that this
technique has strong theoretical guarantees in preserving inter-point distances!

Main Result (Baraniuk and Wakin [2])
Theorem: Let M be a n-dimensional manifold in RP, Pick € > 0 and

let d = Q(n/g? log D), then there is a linear map f: RP — RY, such that

forallx,y e M,
L-&)<|f )= f(y)|/|x-y|<@+e)

(a projection onto a random d dim subspace will satisfy this with high probability)
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Proof Idea

1. A set of m pointsin RP can be embedded into d=Q(log m) dimensions such
that all interpoint distances are approximately preserved using a random
projection (Johnson and Lindenstrauss [6], [5])

. Consider a D x d Gaussian random matrix R, then for any xe‘RP,
[R"x| is sharply concentrated around its expectation (= d/DIX[’).

e Itfollowsthat,if f:X+—+/D/dR"x,then w.h.p.

100 100 = ZIR 00 s ear g

e  Similarly we can lower bound. Apply union bound on all O(m?) pairs.

2. Not just a point-set, but an entire n-dimensional subspace
of RP can be preserved by a random projection onto Q(n)
dimensions (Baraniuk, et.al. [1])

. Due to linearity of norms, we only need to consider that
length of a unit vector is preserved after a random
projection.

. Note that a unit ball in $R", can be covered by (1/¢)" balls of
radius €. Apply step 1 to centers of these balls.

e  Any unit vector can be well approximated with one of these
representatives (for a small enough ¢)




Proof Idea (cont.)

3. Distances between points in a sufficiently small region of a manifold are well
preserved (Baraniuk and Wakin [2]).

e Assume manifold has bounded curvature, then a
small enough region approximately looks like a
subspace.

e We can apply the step 2, to preserve distances on
the subspace.

|
. . . |
4. Taking an g-cover of the manifold, distances //
between far away points are also well preserved '| Re
(Baraniuk and Wakin [2]). ! P
. 1 /
 For any two far away points x and y, we can look at Voo,

their closest €-cover representative.

e Step 3 ensures that distance between x and its
representative, and y and its representative is
preserved.

e Since e-cover is a point-set, step 1 ensures that ;
distances among representatives would be
preserved.




Random projections on manifolds

We have shown:

 An orthogonal linear projection onto a random subspace has a remarkable
property to preserve all interpoint distances on a manifold.
e This can be used to preserve geodesic distances as well.

It would be nice to know:
 What lower bounds (in terms of projection dimension) are achievable if we want
to preserve ‘average’ distortion as opposed to worst case distortion.
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Laplacian Eigenmaps on manifolds

Laplacian Eigenmaps are a non-linear
dimension reduction technique on
manifold

Basic idea:
* To preserve the local geometry of the manifold. \
e Has a remarkable effect of simplifying manifold - x = (fi(x),..., fa(x))

structure.

Uses:
e Aids in classification tasks on data from a

manifold.

15



Derivation of Laplacian Eigenmaps

Geometric derivation:
e Letf:M — R that maps nearby points on a manifold close together on a line.

For any closeby x,y € M, let I=d,,(x,y) be the geodesic distance. Then,
()= f(y)| <1|VE(x)|+o(l)

* Hence want to minimize |Vf (x)| in ‘sum squared sense’

arg mlnj |V xH

H =t

Now NVf (X)H2 =(Vf,vi)=(f,Af), where A is the Laplace-Beltrami operator.

Thus, minimum of (f,Af) is given by eigenfunction corresponding to the
lowest eigenvalue of A.

Generalizing to RY, we can map x> (f,(x),..., f,(x)) (f; eigenfunction).
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Derivation of Laplacian Eigenmaps

Laplace as smoothness functional:

* From theory of splins, we can measure the smoothness of a function as:

S(f)=|f (0 dx

e This can be naturally extended for functions over a manifold

S(f)=] [Vf o dx=(f,Af)

e Observe that smoothness of (unit norm) eigenfunction e; is controlled by the
corresponding eigenvalue. Since S(ei ) = <ei : Aei> = A

* Thus,since f =) ce , weimmediately get S(f)= <Zciei,zciAei> =3 Ac?
so, first d eigenfunctions, gives a way to control smoothness.
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Approximating Laplacian from samples

Graph Laplacian — a discrete approximation to A.

2
H . —|| Xj —Xj /4t
* Letxy,..,X, be sampled uniformly at random from a manifold. Let »; =€ el

then the matrix is called the graph Laplaican

(Lt ) _ —a)ij INE= J
" @ Otherwise
* Note that, foranyp e Mand fon M :

L f(p)= f(p)%Ze‘""‘xj” “ —%Z f(x,)e Pl
J j

Main Result (Belkin and Niyogi [4])

Theorem: For any p € M, and a smooth map f, if t — 0 sufficiently
fast, thenasm — oo

£ (p)=——

" Vol(M

)Af(p)
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Proof Idea

For a fixed p € M, and a smooth map f,

1. Using concentration inequalities, we can deduce that L, converges to its
continuous version Lt

Ltf (p): f (p)J'e‘"p‘Xj"Z’“ﬂdx_I f (Xj)e—llp—lelzmﬂdx

e This follows almost immediately from law of large numbers.

2. We can relate L' with A by

(a) Reducing the entire integral to a small ball in M. This would help us

express the Lt in a single local coordinate system.
e  Choosing t small enough guarantees that most of the contribution to the
integral comes from points from a single local chart.
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Proof Idea (cont.)

(b) Applying change of coordinates so that L can be expressed as a new
integral in a n-dimensional Euclidian space.

e Canonical exponential map on manifolds / 0 \_T,(M)
sends vectors emanating from 0 in tangent /U :z-; \
space to geodesics from p in M. i exp

«  We can use the reverse exponential map /p—-\u
to represent Lt in tangent space. / w/‘?i:)

(c) Relating the new integral in SR" to A.

e Using Taylor approximation and choosing t appropriately,
t o -1 1+ X 14t
L f(p)NWI\/I)IB(XVf +oX ije dx
—tr(H) 1
~Vol(M) Vol(M)

Noting that since M is compact and any f can be approximated arbitrarily well by a
sequence of functions f,, we can get a uniform convergence for the entire M for

any f.

20



Laplacian Eigenmaps on manifolds

We have shown:

e Preserving local distances yield a natural non-linear dimension reduction method

that has a remarkable property of finding a smoother representation of the
manifold.

e |f the points are sampled uniformly at random from the underlying manifold, then
the graph Laplacian approximates the true Laplacian.

It would be nice to know:

e What if the points are sampled independently from a non-uniform measure?
 We have seen that the spectrum of Laplacian basis gives a smooth approximation
for functions on a manifold. What effects do Fourier basis or Lagrange basis have?
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Density estimation

Let f be an underlying density on R and fm be our estimate from m
independent samples.

We can define quality of our estimate as Ej(fm (x)— f (X))de
This is also called the expected risk.

We are interested in how fast does expected risk decrease with increase in
samples.

How to estimate fm from samples?

* Histograms
— issues with smoothness
— issues with grid placement

e Kernel density estimators
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Kernel density estimation

e Density estimator that alleviates the problems of
histograms

* Places a ’kernel function’ on each observed sample
i.e. a function that is non-negative, has zero mean, finite
variance, and integrates to one.

* Estimator is given by f_ 1 Zm:K(”X X”j

D
mh )

(h is a bandwidth parameter)

Properties:

e Bandwidth parameter is more important than the form
of the kernel function for fAm

 For optimal value of h, risk decreases as O(m/4?)

L




Kernel Density estimation on manifolds

 We will use the following modified estimator:

fc(p)=m Y K(dm(p,xi)j

m < h'e, (p) h

where 6 (q) is the volume density function R exp(q) at p.

R is the ratio of canonical measure to the Lebesgue measure

Main Result (Pelletier [7])
Theorem: Let f be the underlying density over a n-dimensional manifold

in RP and f,, « as above, then:

o= 1] <0 o]

E

setting h ~ mY/"4  we get the rate of convergence of O(m/"*4)
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Proof Idea

1. Separately bounding the squared bias and variance of the estimator.
e  We can bound the pointwise bias by applying change of coordinates via the
exponential map and using Taylor approximation (as before).
. Integrating the squared pointwise bias gives the following

[ b?(p)dp < o(h*vol(M))

¢ We can bound the pointwise variance by using Var(X) <EX?*
. Integrating variance and using properties of §,(q) gives the following

JM VarfmK (p)dp < O(l/ mh“)

2. Decomposing the risk to its bias and variance components.
e Note that

Bl fo — | = [6F,c ()= 1 () f o+ [ Ve, () oo

26



Kernel density estimation on manifolds

We have shown:

e Rates of convergence of a kernel density estimator on manifolds are independent
of the ambient dimension D.
 They depend exponentially on the manifold’s intrinsic dimension n.

It would be nice to know:

* How to estimate 6,(q)?
e What about rates of convergence in{; or ¢, ?
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e Questions / Discussion
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Summary of results

e Random projections for manifolds
* An orthogonal linear projection onto a random subspace can preserve all
interpoint distances on a manifold.
e Random projections can also preserve geodesic distances.

e Laplacian Eigenmaps for manifold smoothness
e Preserving local distances yield a natural non-linear dimension reduction
method for finding a smoother representation of the manifold.
e |f the points are sampled uniformly at random from the underlying
manifold, then the graph Laplacian approximates the true Laplacian.

e Manifold density estimation using kernels
e Rates of convergence of a kernel density estimator on manifolds are
independent of the ambient dimension D.

* They depend exponentially on the manifold’s intrinsic dimension n.
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Questions/Discussion

e What is the best (isometric) embedding dimension can we
hope for?

e Results depend heavily on intrinsic manifold dimension. How to
estimate this quantity?

e How can we relax the ‘manifold assumption’?
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