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Abstract

Manifold learning has recently gained a lot of inter-
est by machine learning practitioners. Here we pro-
vide a mathematically rigorous treatment of some of
the techniques in unsupervised learning in context of
manifolds. We will study the problems of dimension
reduction and density estimation and present some
recent results in terms of fast convergence rates when
the data lie on a manifold.

1 Introduction

With increase in the volume of data, both in terms of
number of observations as well as number of measure-
ments, traditional learning algorithms are now faced
with new challenges. One may expect that more data
should lead to more accurate models, however a large
collection of irrelevant and correlated features just
add on to the computational complexity of the al-
gorithm, without helping much to solve the task at
hand. This makes the learning task especially dif-
ficult. In an attempt to alleviate such problems, a
new model in terms of manifolds for finding relevant
features and representing the data by a few parame-
ters is gaining interest by machine learning and signal
processing communities.

Most common examples of superficially high di-
mensional data are found in the fields of data mining
and computer vision. Consider the problem of esti-
mating the face and body pose in humans. Know-
ing where a person is looking gives a wealth of infor-
mation to an automated agent regarding where the
object of interest is — whether the person wants to
interact with the agent or whether she is convers-
ing with another person. The task of deciding where
someone is looking seems quite challenging given the
fact that the agent is only receiving a large array of
pixels. However, knowing that a person’s orientation
only has one degree of freedom, the relevant infor-
mation in this data can be expressed by just a single

number — the angle of the turn, i.e. the orientation
of the body.

In a typical learning scenario the task is slightly
more complicated as the agent only gets to see a
few samples from which it somehow needs to inter-
polate and generalize various possible scenarios. In
our example this translates to the agent only hav-
ing access to few of the body poses, from which it
needs to predict where the person is looking. Thus
the agent is faced with the difficulty to find an ap-
propriate (possibly non-linear) basis to represent this
data compactly. Manifold learning can be broadly
described as the study of algorithms that use and in-
ferring the properties of data that is sampled from an
underlying manifold.

The goal of this survey is to study different math-
ematical techniques by which we can estimate some
global properties of a manifold from a few samples.
We will start by studying random projections as a
nonadaptive linear dimensionality reduction proce-
dure, which provides a probabilistic guarantee on pre-
serving the interpoint distances between all points on
a manifold. We will then focus on analyzing the spec-
trum of Laplace-Beltrami operator on functions on a
manifold for finding non-linear embeddings and sim-
plifying its structure. Lastly we will look at kernel
density estimation to estimate high density regions
on a manifold.

It is worth mentioning that our survey is by no
means comprehensive and we simply highlight some
of the recent theoretical advances in manifold learn-
ing. Most notably we do not cover the topics of
regularization, regression and clustering of data be-
longing to manifolds. In the topic of dimensional-
ity reduction, we are skipping the analysis of classic
techniques such as LLE (Locally Linear Embedding),
Isomap and their variants.

1.1 Preliminaries

We begin by introducing our notation which we will
use throughout the paper.



Figure 1: A l-manifold in R?

Definition 1. We say a function f : U — V is a
diffeomorphism, if it is smooth' and invertible with a
smooth inverse.

Definition 2. A subset M C R is said to be a
smooth n-manifold if M is locally diffeomorphic to
R"™, that is, at each p € M we can find an open neigh-
borhood U C RY such that there exist a diffeomorphic
map between U N M and R™.

It is always helpful to have a picture in mind. See
figure 1 for an example of 1-manifold in R®. Notice
that locally any small segment of the manifold “looks
like” an interval in R'.

Definition 3. A tangent space at a point p € M,
denoted by T, M , is the affine subspace formed by col-
lection of all tangent vectors to M at p.

For the purposes of this survey we will restrict our-
selves to the discussion of manifolds whose tangent
space at each point is equipped with an inner prod-
uct. Such manifolds are called Riemannian manifolds
and allow us to define various notions of length, an-
gles, curvature, etc. on the manifold.

Since we will largely be dealing with samples from
a manifold, we need to define

Definition 4. A sequence x1,...,x, C M C RP is
called independent and identically distributed (i.i.d.)
when each x; is picked independently from a fizved dis-
tribution D over M.

With this mathematical machinery in hand, we can
now demonstrate that manifolds incorporate a wide
array of important examples — we present two such
examples that serve as a motivation to study these
objects.

Irecall that a function is smooth if all its partial derivatives
o™ f/Ox;, ...0x;, exist and are continuous.

Figure 2: Movement of a robot’s arm traces out a
2-manifold in R*

1.2 Some examples of manifolds

Movement of a robotic arm: Consider the prob-
lem of modelling the movement of a robotic arm with
two joints (see figure 2). For simplicity let’s restrict
the movement to the 2D-plane. Since there are two
degrees of freedom, intuitively one should suspect
that the movement should trace out a 2-manifold.
We now confirm this in detail.

Let’s denote the fixed shoulder joint as the
origin, the position of the elbow joint as (x1,y1)
and the position of wrist as (z2,y2). To see that
the movement of the robotic arm traces out a
2-manifold, consider the map f : R* — R? defined as
(1,91, %2, 42) = (2] + 47, (22 — 21)° + (y2 — v1)?).
Clearly M C R* st. M = f'(b?a?) is the
desired manifold. We can verify that locally M
is diffeomorphic to R? by looking at its derivative
mapr:2< o o 0 0 )

Ty —T2 Y1 —Y2 T2—T1 Y2 — Y1
and observing that it has maximal rank for non-
degenerate values of a and b.

Set of orthogonal n X n matrices: We present
this example to demonstrate that manifolds are not
only good for representing physical processes with
small degrees of freedom but also to better under-
stand some of the abstract objects which we regularly
encounter. Consider the problem of understanding
the geometry the set of orthonormal matrices in the
space of real n x n matrices. Note that the set of
n X n orthonormal matrices is also called the orthog-
onal group, and is denoted by O(n). We claim that

this set forms a k(k — 1)/2-manifold in R™ .
To see this, consider the map f : R™ — RUnHD/2
2
defined by (A);; — ATA. Now M C R™ such that



M = f~1(I,xn) is exactly O(n). To see that M is
in fact a manifold, observe that the derivative map
Dfs.B=DBTA+ AT B is regular.

Observe that the examples above required us to
know the mapping f a priori. However in the context
of machine learning, the task is typically to estimate
properties about M without having access to f.

1.3 Outline

The paper is organized as follows. We will discuss
some linear and non-linear dimensionality reduction
methods on manifolds with a special focus on ran-
dom projections in section 2. We will then study
Laplacian-eigenmaps as a process to simplify mani-
fold structure in section 3, followed by nonparametric
density estimation techniques on manifolds in section
4. We will finally conclude by discussing the signif-
icance of the results and some directions for future
work in section 5.

2 Random projections for lin-
ear dimension reduction

Dimension reduction is an important preprocessing
step in data analysis that has been studied exten-
sively. Here we provide the motivation for why di-
mension reduction of data is desirable. We briefly
discuss different techniques that have been employed
for dimension reduction on data coming from an un-
derlying manifold and examine a recently analyzed
technique of random projections.

2.1 Dimensionality reduction

We know that learning algorithms scale poorly with
the dimension of the data. This makes dimension
reduction a popular preprocessing step — first map the
data into a lower dimensional space while preserving
the relevant information, and then run the regular
learning algorithms in the smaller projected space.

One reasonable criterion to measure the quality of
our low dimensional mapping is to test how well does
the mapping preserves pairwise distances. The basic
intuition is that the distances between points in space
relate to the dissimilarity between the corresponding
observations. Thus, it is undesirable that two points
that are far apart in the original space get mapped
close to each other by performing a dimension reduc-
tion. Similarly, we would not want points that were
close originally to get mapped far apart.

As one might expect, finding a mapping that pre-
serves all distances of an arbitrary dataset can be a
difficult task. Luckily in our case, the saving grace
comes from observing that the data has a manifold
structure. We are only required to preserve distances
between points that lie on the manifold and not the
whole ambient space.

2.1.1 Dimension reduction of manifold data

In the past decade, numerous methods for manifold
dimension reduction have been proposed. The clas-
sic techniques such as Locally Linear Embeddings
(LLE) and Isomaps, and newer ones such as Lapla-
cian Eigenmaps and Hessian Eigenmaps, all share a
common intuition — all these methods try to capture
the local manifold geometry by constructing the ad-
jacency graph on the sampled data. They all bene-
fit from the observation that inference done on this
neighborhood graph corresponds approximately to
the inference on the underlying manifold. For a com-
prehensive survey we refer the readers to [8].

Note that these methods are examples of non-linear
dimensionality reduction techniques on manifolds.
However, we will present a linear dimension reduc-
tion technique that works surprisingly well on mani-
folds. The goal is to find a linear map ® : R” — RY,
preferably d < D, which when applied to the data,
preserves all interpoint distances. More formally we
want to give guarantees of the form: for all z,y € M,
o — yll ~ [0z — Dy

2.1.2 Issues with principal component anal-

ysis

Arguably the most popular linear dimension reduc-
tion technique is the Principal Component Analy-
sis (PCA). The main idea is to find an affine sub-
space of a specified dimension that captures maxi-
mum amount of variance in the data. It turns out
that this optimization problem can be solved effi-
ciently in closed form, and the desired optimal sub-
space is given by the span of the top d eigenvectors
(corresponding to the top eigenvalues) of the covari-
ance matrix of the data [17].

Unfortunately PCA, like all deterministic lin-
ear projection methods, is not suited for asserting
global distance preservation guarantees on all pair-
wise points. One can easily construct examples where
distances among far away points in the original space
get collapsed in the projected space (see figure 3).
Instead we will look at projecting the data onto a
random subspace.



Figure 3: PCA projection can sometimes collapse dis-
tances between faraway points, making it an undesir-
able choice for distance preserving dimension reduc-
tion.

2.1.3 Random projections of manifolds

As the name suggests, random projections is con-
cerned with projecting the data onto a random sub-
space of a fixed dimension d. We would be able to
conclude that if the data lie on a manifold M, with
high probability, projecting the data downto a suffi-
ciently large random subspace would approximately
preserve all interpoint distances. At a first glance this
result appears very counter-intuitive — after all how
can projecting the data onto a random subspace, that
doesn’t even take into account the samples, has the
capability to preserve distances?

Starting point of such a counter-intuitive result is
the much celebrated theorem of Johnson and Linden-
strauss which states that any point-set of size m in
R” can be embedded in R21°8™) with small distor-
tion by using a linear map. Moreover, this linear map
is essentially a random subspace of the desired em-
bedding dimension.

We can leverage this result and get the basic proof
outline for preserving distances on a manifold [2]:

1. We will show that not just a pointset, but an
entire subspace can be preserved by a random
projection.

2. We will show that distances between points
within a small region of the manifold, can be
approximated by a subspace, and thus are well
preserved.

3. By taking a e-net of suitable resolution over the
manifold, distances between points that are far
away are also well preserved.

Figure 4: Tubular neighborhood of a manifold. Note
that the normals (dotted lines) of a particular length
incident at each point of the manifold (solid line) will
intersect if the manifold is too curvy.

We can now provide the results in detail®. We will
start by defining one extra piece of notation which
would help our discussion.

Definition 5 ([26]). The condition number of a man-
ifold M is %, if the normals of length r < T at any
two distinct points p,q € M don’t intersect.

Look at figure 4 to see the normals of a manifold.
Notice that long non-intersecting normals are possi-
ble only if manifold is relatively flat. Hence the con-
dition number of M gives us a handle on how curvy
can M be.

Lemma 6 (Johnson-Lindenstrauss [19], [12]). For
any 0 < € < 1 and any integer m, let d be a positive
integer such that d = ) (12—2’”) Then for any set V of
m points in RP, there is a linear map P : RP — R?
such that for all x,y € V,

[z — Dy

(1—¢)<
[z =yl

< <(1+e€)
A projection onto a random subspace (of d dimen-
sions) will satisfy this with high probability.

Proof. Let ®(x) = \/gRTa:, where R is a D x d
Gaussian random matrix with entries v;; ~ N(0,1)
i.i.d. Note that RTx (for a fixed z) is distributed as
a Gaussian random vector, and from concentration
properties of Gaussians, it follows that

2
L Pr[|R7aP > (L4 o] < 1)

2for clarity of the exposition we only provide a proof sketch
here and refer the readers to the original papers for detailed
proof arguments.



2
2. Pr|RTz|? < (1 — ) &|z|?] < e~ Mde™

This immediately implies that (with high probabil-
ity)

[Pz — Dyl|?

@G )
= IR @ -yl

D d
< . . _ 2
< Z(+aple -yl

= (1+ofe—yl?

Similarly we can also assert that ||®z — ®y|? >
(1— )l -y

Now, requiring this property to hold for all pairwise
distances between n points, a simple application of
union bound gives the desired result. I

Lemma 7 (subspace preservation [1]). Let L be a n-
dimensional affine subspace of RP. Pick €,6 > 0 and
d>Q (6% log% + E% log %) If @ is a random subspace
of d dimensions, then with probability > 1—¢, we have
that for all x € L,

(1 —e)vd/D|z| < [|®z[| < (1+€)\/d/Dllz|

Proof. By positive homogeneity of norms, it suffices
to prove the result for vectors of length 1. Let V be
a €/4-cover of a ball B of radius 1. Note that B can
be covered by a e/4-net of size < (12/€)"™. Applying
lemma 6 from above with distortion €/2, immediately
yields for all v € V' (with high probability)

(L= ¢/2)[v]* < [@v]* < (1 +¢/2)] 0]

Let A be the smallest number such that ||®z| <
(14 A)||z| for all z € L, ||z|| < 1. Note that

[®z]| < [[Pv]| + [[D(z —v)[| <1+ €/24 (1+ A)e/4

Now since A is the smallest such number, we have

that A < ¢/2+(14+A)e/4 or equivalently A < 13_1/;14 <
€. Similarly we can obtain a lower bound, yielding the

desired result. 1

Lemma 8 (effects on close-by points [2]). Suppose
S = M N B, where ball B has radius r. Pick d,e >0

and d = Q(e%log%—i—g%log%). If r < %
® is a random projection to d dimensions then with
probability > 1 — 9, for all x,y € S

d | P2 — Dyl d
(1—6)\/;<|$_y”<(1+6)\/;

and

Proof. Since we have chosen S small enough, pick
any p € S and consider its tangent space 7j,. For
any z € S, let & € R? be its projection onto T, and
!t =z — . Note that for any z,y € S, we have that

lzt vl o
T/T.
el <7/

Now by applying subspace preservation lemma to
T,, we have that (with high probability)

|0z~ By| < (07— 0] + |2t — @y
o d
< Ja—gly 5 (U +e/2) + ot~y
d
< o —ylly/ 5 U+ e/2) + e —ylr/r
d
< -yl 51+

Similarly we can bound |[[®z — Dyl

> o -
yll\/ S (1 =€), giving us the desired result. |

Theorem 9 (manifold preservation [2]). Suppose M
is a compact n-dimensional Riemannian manifold in
RP with condition number 1/7. Suppose that for all
e > 0, M has an e-cover of size < Ny (%)n Pick
any €,0 > 0 and d = Q(e%log£+s%log%). Let
® be a random subspace of d dimensions. Then with
probability > 1 — 6, for all x,y € M,

d | Pz — Dyl d
(16)\/;§||33—y| §(1+e)\/;

Proof. For ¢y = %\/d/D, let pq,. ..
cover of M. Note that N < Ny (%) .

, N, be an €o-

Let B; be a ball of radius %\/% centered at p;, we
can apply lemma 8 to By,..., By, to have distances
within B; be preserved upto (1 £ ¢).

Pick any z,y € M, if ||z — y|| < e7/8y/d/D, then
x,y € B; and thus the projected distances are pre-
served.

If |z —yl| > er/8+/d/D, let p; and p; be their
closest representatives. Then



[Pz —@y|| < [|Ppi — Ppuyll +
[Pz — Dpil| + ([ @y — Dy
d
< b=l 51 +€/2) +
d d
eo\/ﬁ(l—&-e)-i-eovﬁ(l-i-e)
d
< (vl +20)y L4 e+
/d
2¢ 5(1—1—6)
d
< Je—yly/S0+9

Similarly we can find a lower bound, yielding the
final result. 1

2.2 Discussion

Random projection of manifolds was first considered
in [2] and the result was later improved in [10]. Note
that the methodology of random projections provides
a nonadaptive dimensionality reduction approach for
manifold learning, where the projection map is inde-
pendent of the actual data. The result presented is
significant because data-independent projections are
rarely seen in manifold learning literature. It is also
worth mentioning that the main result on the min-
imum number of dimensions needed bears a strong
resemblance to results seen in the area of Compressed
Sensing for encoding sparse vectors (see [15] for more
details) and some of the ideas presented in [2] are
borrowed from Compressed Sensing literature.

Note that manifold learning practitioners are more
interested in geodesic distances (distances along the
manifold) rather than the standard Euclidian dis-
tances considered in the analysis above. The result
of theorem 9 is easily extendible to geodesic distances
by considering limits of sums of Euclidian distances
[2].

Observe that the result presented here is a worst
case analysis; it gives us an estimate of the minimum
number of dimensions needed to preserve all inter-
point distances within factor of (1 + ¢). It would be
interesting to see bound on the number of dimensions
needed to preserve distances in an average sense.

3 Laplacian Eigenmaps for sim-
plifying manifold structure

Laplacian Eigenmaps was recently proposed as a sim-
ple and intuitive algorithm for providing a low di-
mensional representation of data lying on a manifold.
Like many manifold learning algorithms, it finds a low
dimensional representation by performing computa-
tions on the adjacency graph of the sampled data.
The basic intuition is that the graph constructed
from the samples serves as a discrete approximation
for the manifold; and inference based on the graph
should correspond to desired inference on the un-
derlying manifold. What sets Laplacian Eigenmaps
apart is that the choice of weight used in construct-
ing the graph and the subsequent spectral analysis is
formally justified as a process which “simplifies” the
manifold structure.

In contrast to random projections that explicitly
attempts to preserve all pairwise distances, the op-
timization criterion of Laplacian Eigenmaps only in-
corporates the condition to preserve local distances.
It turns out that the solution to this optimization
criterion has a remarkable property of smoothing the
manifold structure. More precisely, as we will ob-
serve in the following sections, this mapping has the
property to reduce the curvature of high-curvature
regions, transforming the manifold into a smoother,
more manageable object.

3.1 Desirability of simple structure

As mentioned before, Laplacian Eigenmaps provide
a non-linear mapping that, in essence, smooths out
high curvature regions of the manifold. The power
and success of such a mapping comes from noting
that such regions can be thought as eccentricities in
the collected data. Thus smoothing out these regions
should provide a good generalization ability on man-
ifolds.

Consider, for instance, a typical machine learn-
ing task of discriminating two classes on a manifold.
Due to the inherent curvy manifold structure, it is
difficult to find a simple classifier that can separate
the classes. However, by first mapping the data via
Laplacian Eigenmaps, one can find a simple classifier
that can separate the classes well. See figure 5.

3.2 Geometric derivation of Laplacian
Eigenmaps
Suppose we want to map M to a line such that nearby

points get mapped close together. Let f : M — R
be a such a map. Then for any € M and y in the
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Figure 5: Laplacian eigenmaps maps a manifold of
complex structure to a relatively simpler structure.
This is beneficial for many learning tasks; the task
of discriminating two classes on a manifold becomes
easier, for instance.

neighborhood of x, we would like to have | f(z)— f(y)|
be bounded in terms of the original geodesic distance
dyr(z,y). Let | = dp(z,y), then using the Taylor
expansion around x

[f(z) = F)l < UV (@) + o(l)

Thus |V f(z)|| provides us with an estimate of how
far apart does f map nearby points. Hence in order to
preserve distances, one should look for a map f that
minimizes this quantity over all z € M. One sensi-
ble minimizing criterion (in “sum-squared” sense) is
argmin -y [y, V£ ()],

Note that [[|Vf(x)|> = (V£.Vf) = (f.Af),
where A = V2 is defined to be the Laplace-Beltrami
operator on f(x). Thus minimizing this objective
function is same as minimizing | v JAf. Notice that
this quantity has the same functional form as the
Rayleigh quotient (with ||f||?> = 1). Hence the prob-
lem reduces to finding the eigenfunctions correspond-
ing to the lowest eigenvalues of A [3].

This argument can be generalized for mappings to

RY. For a compact M, the optimal d-dimensional em-
bedding is given by the map = +— (fi(x),..., fa(x)),
where f; is the eigenfunction corresponding to the i*"
lowest (non-zero) eigenvalue of A [3].

3.2.1 Laplace as a smoothness functional

Note that A also has the desirable property of being a
smoothness functional [25]. Smoothness of a function
f over, say, a unit circle S can be defined as S(f) :=
Js1 |f(z)'|*dx. Then functions for which S(f) is close
to zero are considered smooth. Note that constant
functions over S! are clearly smooth. In general, for
any f: M — R,

S(f) = / IV 5 ()|Pde = / FAfde = (Af )iz
M M

Observe that the smoothness of a unit norm
eigenfunction e; of A is controlled by the corre-
sponding eigenvalue \;, since S(e;) = (Ae;,e;) = A;.
Therefore, approximating a function f in terms of
its first d eigenfunctions of A is a way of controlling
its smoothness.

So far we have established that spectrum of A of a
manifold M, provides us with a desirable mapping of
M. However, since we just have samples from M, we
need a way to approximate A.

3.2.2 The graph Laplacian

Graph Laplacian is considered as a discrete approxi-
mation to the Laplace-Beltrami operator introduced
in the previous section.

Let x1,..., %, be an independent sample from the
uniform distribution over M and let ¢ be a free pa-
rameter (optimized later). We can then construct
a completely connected weighted undirected graph
with samples as the vertices and edge weights w;;
as e~ lei=25l*/4t | The corresponding graph Laplacian
operator is given by the matrix [6]:

—wy;

m/t] >, wir  otherwise
We may think of it as an operator on functions on

points from the manifold. Let p € M, and f: M —
R, then

Lfnf(p) :f(p)aze 4t 7EZf(xj)@ at
J J
We can now relate L!, to Ay? for any function f
on M.

3For conciseness we will denote A operator on M as Ajy.




3.2.3 Connecting together

Let L!f(p) be the continuous approximation of the
graph Laplacian operator defined by

—lp—y)l? —lp

e 4t

L) = 1) [

M

We can show that L, is a functional approximation

to Aps. The proof outline goes as follows ([5], [6]).

For a fixed p € M, and a smooth map f, (note that
all statements are pointwise in p and f)

1. We will first deduce that L!, converges to L.
This follows almost immediately from law of
large numbers.

2. We will relate L' to Ay by

(a) Restricting the L' integral to a small ball
in M. This would help us express the L! in
a single local coordinate system.

(b) By applying change of coordinates, we can
express L' as an integral in R".

(¢) Finally we will relate the new integral in R"
to A]u.

Noting that since M is compact and any f can
be approximated arbitrarily well by a sequence of
functions {f;}, we can get a uniform convergence for
the entire M for any f (see [6] for details).

Lemma 10 (continuous approximation of Lf, [6]).
Let Lt and L' be defined as above, then for any e > 0

Pr[|L, f(p) — L'f(p)| > €] < 2~ 2(m)

Proof. Note that since L!, is the empirical average
of m independent samples sampled uniformly from
M and Lt is its expectation. Since M is compact, we
can use Hoeffding’s inequality to bound the deviation,
giving the result. I

Lemma 11 (restricting L' to local coordinates [6]).
Let B C M be a sufficiently small open ball contain-
ing p such that B can be expressed in a single chart.
For anya >0, ast — 0,

‘Ltf(p) - [ 1) - 1w)ay| = ot

Proof. For any point z € M — B, let d =
infoerr—p|lp — 2/|>. Note that d > 0 (since B is
open). Hence the total contribution of such points to
the integral is bounded by Ce=4’/4 for some constant
C. Note that as t tends to zero, this term decreases
exponentially, giving the desired result. I

—y 2
dvy— / fly)e = dvy
M

Since we have restricted the integral to a small
enough ball, we can now use the local coordinate sys-
tem around an open neighborhood of p. We can apply
the canonical change of coordinates by using the ex-
ponential map exp,, : T, M (= R"™) — M, that carries
radial lines from 0 in T,,M into geodesics starting at
p in M. Note that exp,(0) = p.

To reduce the computations to R", any y € M (in
neighborhood of p) can be written as exp, () for some
z € T,M. Let f(z) := f(exp,(x)). Then a key fact
about Laplace-Beltrami operator is that A/ f(p) =
Apn f(0) == ﬂ(0). Hence we can analyze L' in

)
i Ox;

Euclidian space via the (inverse) exponential map [6]:

= ﬁ / 555 (F(0) = F(@)) (14 O(2]2) e

B

Using Taylor approximation about 0, we have that:

F(a) ~ 7(0) = 29 + 5o" Ha + O(|’)

Hence for functions with bounded third order
derivatives and letting ¢ — 0, we have that (see [6]
for details)

0 = o [, (s9F+ 5 e ) e s
. —tr(H) 1 92 £(0)
~ Vol(M) — Vol(M) da?

Combining above lemmas immediately yields the
main result

Theorem 12 (relating L' to Ay [6]). Let L' and
Ay be as defined above. Then for anyp € M and any
smooth function f with bounded third order deriva-
tive, if t — 0 sufficiently fast, then

1

L'f(p) = Vol(M)

A f(p)

3.3 A practical algorithm

As seen in previous sections, Laplacian Eigenmaps
have a sound mathematical basis for simplifying data
representation. [3] gives a practical algorithm for em-
bedding the data in lower dimensions using this tech-
nique. Let X = z1,...,2, € R” an independent
sample drawn uniformly at random from M, d be the
embedding dimension and ¢ be the bandwidth param-
eter,

Algorithm 3.1: Laplacian Eignmaps (X, d,t)

12 .
e~ llzi=zil7/tif 2. and x; are close

1. Let W;; = { 0 otherwise



2. Let L = A— W, where A is a diagonal matrix
Aii = Zj Wﬂ

3. Compute eigenvectors and eigenvalues for gener-
alized eigenvector problem Lf = ABf. Let the
solutions be column vectors of F.

4. return [F|py., eigenvectors corresponding to
lowest non-zero eigenvalues.

This algorithm has been applied successfully to
real-world datasets in [25], giving promising results.

3.4 Discussion

Laplacian Eigenmaps provide a sound low-
dimensional representation of a manifold, which
has the benefit of simplifying its structure. The
corresponding algorithm presented here is simple
and intuitive - it requires a few computations and
one eigenvalue problem making it quite appealing.

One major limitation of the result presented is that
points are sampled i.i.d. from the uniform measure
over the manifold. In general, one would like to relax
this condition and this problem is still open.

[25] exploits the fact that the embedding simpli-
fies the structure of the manifold for semi-supervised
learning on data generated from manifolds. They also
show an improvement in classification accuracy for
certain real-world datasets.

As discussed, Laplace-Beltrami operator A pro-
vides a good measure of smoothness, [7] and [25] have
used this fact to develop a theory of regularization of
functions on a manifold.

Just like the spectrum of Laplace-Beltrami opera-
tor yields a smoother representation of a manifold, it
would be interesting to study what conditions are op-
timized if we explore a different basis for functions on
a manifold. For instance, the benefits of approximat-
ing functions on a manifold using the Lagrange basis
(for polynomials) or the Fourier basis (for square in-
tegrable functions) is largely unexplored.

4 Kernel methods for manifold
density estimation

Many manifold learning methods rely heavily on hav-
ing independent samples from uniform distribution
on M. However, in general, we can’t expect such re-
strictive conditions on the underlying density. Even-
though the analysis of many procedures in the non-
uniform setting largely remains an open problem, we

do, however, have a handle on estimating the underly-
ing density from independent samples via the method
of kernels.

Since we would like to make fewest possible as-
sumptions on the underlying density, we will focus on
nonparametric density estimation techniques in this
section. We refer the readers to [14], [13], and [31] for
an excellent treatment of the subject.

4.1 Density estimation

Density estimation is an important problem in statis-
tics and machine learning. Here the goal is to esti-
mate the underlying density from an i.i.d. sample.
Let f be the true density and fm be our estimate
(from m samples). Note that we will make little as-
sumptions about the structural form of f.

Given f and fm, we can evaluate the quality of
our estimate by looking at the associated deviation
(called the risk) of fim from f. One popular way to
analyze risk is by looking at the expected squared
difference between the true density and our estimate.
Thus, risk can be defined as

R=E / (Fonla) — f(x))da

Of course for any reasonable estimator, as the sam-
ple size gets larger, one would expect the risk to go
down. Here we are interested in studying how fast
does the risk go to zero for different estimators.

One intuitive estimator which works well in low di-
mensions is the histogram estimate. The idea is that
we can grid the space and count the relative frequency
of points falling into each bin. Though quite intuitive,
histograms have their share of disadvantages which
make them quite unappealing [31]. Primarily due to
sharp boundary between adjacent bins, histogram es-
timates are not smooth. Moreover the estimator fm
is heavily dependent on the placement of the grid; by
slightly moving the grid, one can get a wildly different
estimator.

This motivates the study of kernel density estima-
tors which largely alleviates these problems by giving
smooth approximation to the underlying density, and
doesn’t suffer from choice of grid placement.

4.1.1 Kernel density estimation

As mentioned in previous section, kernel density es-
timation provides an attractive alternative to naive
histogram estimates, that works well in practice.
The basic idea behind kernel estimate is as follows.
To remove the dependence on the grid edges, kernel
estimators center a “kernel function” at each sampled



data point. By placing a smooth kernel function, the
resulting estimator will have a smooth density esti-
mate.

More formally, let K be a kernel function. That is,
a smooth function with the properties:

1. Non-negative: K(z) >0

2. Integrates to one: [ K(z)dz =1

3. Zero mean: [zK(z)dx =0, and

4. Finite variance: [ 22K (z)dx < oo

5. Maximum at zero: sup, K (z) = K(0)

Then a kernel density estimate on a sample
T1,...,T, sampled independently from a fixed un-
derlying distribution on R” is given by

. 1 & —
fmx(2) = 5 YK (W)
i=1

where h is the bandwidth parameter dependent on
the number of samples. It is easy to check the f,, x
is a well defined density function.

It is known that the quality of the kernel estimate
is particularly sensitive to the value of the bandwidth
parameter h and less on the form of K [31]. Hence,
the choice of bandwidth is important for a good ap-
proximation. See figure 6 to see how the changes
in the bandwidth result in varying approximations to
the underlying density. Small values of h lead to spiky
estimates (without much smoothing) while larger h
values lead to oversmoothing.

For the optimal choice of bandwidth, the risk de-
creases as O(m~4/(4+D)) (see [31] for details). Note
that due to the exponential dependence on D, the
quality of the estimate decreases sharply with in-
crease in the dimension; we require exponential num-
ber of points to get the same level of accuracy in high
dimensions. This is generally referred as the curse of
dimensionality.

In the context of manifolds, one would hope that
since the manifold occupies a small fraction of the
entire ambient space, better convergence rates should
be possible. We will study this next.

4.2 Manifold density estimation using
Kernels

For a curvy object such as a manifold, we need to
define a modified version of the kernel density esti-
mator [27]:

h

-<p>K<
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Undersmoothed

Probability density

Probability density
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Probability density

Figure 6: Kernel density estimate of one dimensional
data generated from a mixture of two Gaussians. For
a fixed independent sample of size 20, and using the
Gaussian kernel function (dotted curves), we see that
different choices of bandwidth yield significantly dif-
ferent kernel estimators (solid line). Top figure shows
the effect of small bandwidths, middle figure shows
the effect of large bandwidth, and the bottom figure
shows the choice of optimal bandwidth. Note that
the optimal bandwidth recovers that the underlying
density is in fact a mixture of two Gaussians.



where dy/(p,q) is the geodesic distance between
p,q € M and 6,(q) is the volume density function on
M defined as K(exp, ' (¢)) (K is the ratio of canonical
measure of Riemannian metric on 7, M to Lebesgue
measure of Euclidian metric on T,M).

Note that this estimator is a well defined proba-
bility density. We will be able to relate it to the
underlying true density by [27]:

1. Separately bounding the squared bias and the
variance of the estimator. To do this, we will
apply change of coordinates to express the inte-
gral in R".

Decomposing the expected risk to its bias and
variance components. We can then apply the
calculated bounds, yielding the optimal conver-
gence rates.

Lemma 13 (bounding the squared bias [27]). Let f
be a probability density on M and f,, ik be its esti-
mator. If f is square integrable with bounded second

covariant derivative, then there exists a constant C1,
such that

| (Bfuro) = @) dp < ot

Proof. Consider the pointwise bias,

b(p) E frn,ic(p) — f(p)

/qu o (
[ (||x|

h
Where the last step is by applying change of co-
ordinates via the canonical exponential map exp,, :
T,M +— M, and applying Taylor approximation
around 0, f(exp,(z)) f(z) = f(0) + 2V f(0) +

DD fla)ia - £10)

1
—K
er,m b

) OllelPyis

O(||z||?). Hence, by applying change of variables
y=ua/h:
2
[ war < on ([ s ([ )
M M M
< C'h* Vol(M)
1

Lemma 14 (bounding the variance [27]). Let f and
fm, i be defined as above. Then there exists a con-
stant Cs, such that

1
mhn

[ vat fusclo)dp < C
M
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Proof. Since Var(X) < EX?2, we have that for any

pEM,
e (dM(h )
i f sy (M)

h
Integrating both sides over the entire M, we have
that [, Var fo x(p)dp is
en mh"

/p /qu 92(19)
1

o) [ s |
O NOI(S™) o

thn

1 1 P, x1)

N

Var fo, i (p)

1

(dM (}f’ 2 > dqdp

1
cM 93 (p)

f(g)dgq

IN

dpdq

qeM

where last inequality is by letting C' = sup, , 0, " (p)
and noting [1/6,(p) = h™ Vol(S™). The desired re-
sult follows. 1

Theorem 15 (kernel density estimation on mani-
folds [27]). Let M be a compact n dimensional Rie-
mannian manifold in RY, and let f, fm,k be defined
as above, then there exists a constant C' such that

+ h4>

Proof. By doing the standard bias-variance decom-
position, we have that

Elfox — fII? < c(

mh™

E| fon, i — fII

/M (Efm,K(p) - f(p))2 dp

+ [ Var (fuxlo) dp
1

mhn

IN

Clh4 + Oy

where the last inequality is by applying previous two
lemmas, immediately giving the desired result. I

Note that as a consequence, setting the bandwidth
h &~ m~Y("+4) results in optimal rate of convergence
of O(m~*(+4) which is independent of the ambient
space dimension D.

4.3 Discussion

Density estimation is a central topic in statistics and
machine learning. In case of nonparameteric density
estimation, convergence rates to the true density are
known to be exponential in the dimension. In case



of manifolds, since the data is locally diffeomorphic
to a smaller subspace, one may expect that a weaker
dependence on the ambient space. The result pre-
sented here is noteworthy as the number of samples
needed to gain desired accuracy is independent of the
ambient dimension. Note that the exponential depen-
dence on the intrinsic manifold dimension, although
still unacceptable, is generally more manageable in a
typical machine learning scenario.

[14] argues that one should look at ¢; risk as it is in-
variant under monotone transformations. It would be
interesting to see if these rates can be sharpened in /1,
when the data is known to lie on a manifold. ¢5 and
l+ risks have been considered in [18] using Fourier
analysis, though their estimator is not a proper prob-
ability density.

5 Conclusion and future work

In this survey we examined how some of the known
mathematical techniques can be applied in a new con-
text, when data is assumed to be sampled from a
manifold. We observed that the manifold assumption
leads to results that are significantly less dependent
on the ambient dimension.

We looked at random projections as a linear di-
mensionality reduction procedure on manifolds, and
concluded that a projection onto a space of dimension
just Q(nlog D) can preserve all pairwise distances on
a manifold remarkably well. We then focused on an-
alyzing the spectrum of the Laplace-Beltrami oper-
ator on functions on a manifold and concluded that
the resulting eigenmap has the surprising property of
simplifying the manifold structure, making it into a
more manageable object. Lastly, we looked at kernel
density estimation to estimate high density regions
on a manifold and found that sample size needed to
get desired accuracy can be made completely inde-
pendent of the ambient dimension. As we can see,
significant progress has been in the area of Manifold
Learning in the last few years, though much still re-
mains largely unexplored.

In terms of low dimensional mappings, [23], [24]
proved that any Reimannian Manifold can be iso-
metrically embedded in 2n 4+ 1 dimensional Euclid-
ian space. However finding such an embedding by a
discrete algorithm still remains a hard open problem.

Note that all techniques mentioned in this survey
and elsewhere in the literature crucially dependent on
the knowledge of the intrinsic dimension of the man-
ifold. However in a typical machine learning problem
this quantity is unknown. Note that a poor estimate
of n can render manifold learning methods useless;
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an underestimate will result in low accuracies and an
overestimate will require impractically large sample
sizes. Researchers have started looking into estimat-
ing the intrinsic dimension using likelihood and bin-
packing methods ([21], [20]), though further progress
is needed for a more unified approach.

Researchers often find the “manifold assumption”
(data lying exactly on a smooth manifold) too re-
strictive. In an attempt to relax this assumption, [11]
recently proposed a new viewpoint of analyzing algo-
rithms in terms of local covariance dimension. This
framework effectively incorporates data that is not
necessarily coming from an underlying manifold, but
locally has low dimensional structure in an average
sense. Both practical and theoretical analysis of ma-
chine learning problems in this promising framework
is open.
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