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Some real world data with low intrinsic dimension

Spatial partition trees

Experiments

Diameter decrease rate (k):  Smallest k such that data diameter is halved 
every k levels. 

We show that:
    RP tree:  

    PD tree:

    2M tree:

    dyadic tree / kd tree:  

The trees we consider:
  dyadic tree: Pick a coordinate direction and split the data at the mid point

 along this direction.

  kd tree: Pick a coordinate direction and split the data at the median along
  this direction.

  RP tree: Pick a random direction and split the data at the median along 
   this direction. 

  PCA/PD tree: Split the data at the median along the principal direction.

  2Means tree: Compute the 2-means solution, and split the data as per the
    cluster assignment.

 Vector quantization

 Nearest neighbor

Regression

Local covariance dimension

Standard characterizations of intrinsic dimension
Common notions of intrinsic dimension (e.g. Box dimension, Doubling 
dimension, etc.) originally emerged from fractal geometry. They, 
however, have the following issues in the context of machine learning:

Why is this important?
Spatial trees are at the heart of many machine learning tasks (e.g. reg-
ression, near neighbor search, vector quantization). 
However, they tend to suffer from the curse of dimensionality: the rate 
at which the diameter of the data decreases as we go down the tree 
depends on the dimension of the space. In particular, we might require 
partitions of size O(2D) to attain small data diameters.
Fortunately, many real world data have low intrinsic dimension (e.g. 
manifolds, sparse datasets), and we would like to benefit from such 
situations.

These notions are purely geometrical and don’t account for the underlying 
distribution. 
They are not robust to distributional noise: e.g. for a noisy manifold, these 
dimensions can be very high.
They are difficult to verify empirically. 

Rotating teapot. One degree 
of freedom (rotation angle).

Movement of a robotic arm. 
Two degrees of freedom. – 
one for each joint.

Handwritten characters. The 
tilt angle, thickness, etc. 
govern the final written form.

Speech. Few anatomical char-
acteristics govern the spoken 
phonemes. 

Hand  gestures in Sign Language. Few 
gestures can follow other  gestures.  

Need a more statistical notion of intrinsic dimension that 
characterizes the underlying distribution, is robust to noise, and is 

easy to verify for real world datasets.

d=3

d=2

dyadic tree kd tree rp tree

Quantization error of test data at different levels for various partition trees 
(built using separate training data). 2-means and PD trees perform the best.

Quality of the found neighbor at various levels of the partition trees.

l2 regression error in predicting the rotation angle at different tree levels.

All experiments are done with 10-fold cross validation.

Theoretical guarantees

Loc. cov. dim. estimate at different scales for some real-world datasets.
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Level 1

Builds a hierarchy of nested partitions of the data space by recursively 
bisecting the space. 

Level 2
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number of levels 
needed to halve 

the diameter 
(≤ k)

Trees such as RPTree, PDTree and 2-MeansTree adapt to the intrinsic 
dimension of the data in terms of the rate at which they decrease diameter 
down the tree. 
This has strong implications on the performance of these trees on the 
various learning tasks they are used for.

A set  S ⊂  ℜD  is said to have local covariance dimension  (d, ε )  if the 
largest d eigenvalues of its covariance matrix satisfy: 

 Empirical estimates of local covariance dimension

We show that
Axis parallel splitting rules (dyadic / kd tree) don’t always adapt to intrinsic 
dimension; the upper bounds have matching lower bounds. 
On the other hand, the irregular splitting rules (RP / PD / 2M  trees) always 
adapt to intrinsic dimension. They therefore tend to perform better on real 
world tasks.
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