Which Spatial Partition Trees Are Adaptive to Intrinsic Dimension?
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e Spatial trees are at the heart of many machine learning tasks (e.g. reg- A set § . 1s said t(.) have l{)cal covariance dimension (d, € ) if the Diameter decrease rate (k): Smallest & such that data diameter 1s halved
ression, near neighbor search, vector quantization). largest d eigenvalues of 1ts covariance matrix satlsfy every k levels.
e However, they tend to suffer from the curse of dimensionality: the rate 012 + + aj > (1 — g)(af + .+ alz)) We show that:
at which the diameter of the data decreases as we go down the tree RP tree: k<old)
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depends on the dimension of the space. In particular, we might require PD (ree: k< O(Z 52 /02)2 | Needed to halue
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® Fortunately, many real world data have low intrinsic dimension (e.g. S 2M tree: | < O(mm{d ,(Z o’/ 012) ] ) / \ }
mamfplds, sparse datasets), and we would like to benefit from such Empirical estimates of local covariance dimension dvadic tree / kd tree- k < O(Dlog D) |
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o s |, Axis parallel splitting rules (dyadic / kd tree) don’t always adapt to intrinsic
We show that £ 7°) dimension; the upper bounds have matching lower bounds.
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® Trees such as RPTree, PDTree and 2-MeansTree adapt to the intrinsic § 20 N | On the other hand, the irregular splitting rules (RP / PD / 2M trees) always
dimension of the data in terms of the rate at which they decrease diameter SR 2l e adapt to intrinsic dimension. They therefore tend to perform better on real
® down the tree. R e R— . T world tasks.
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. “ . . Handwrltten characters. The : Sp669h: Few anatonlllical 0111(31" Builds a hierarchy of nested partitions of the data Space by recursively Quantization error of test data at different levels for various partiti()n trees
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” o dyadic tree kd tree Ip tree
NN Nearest neighbor
n | . . * * * N ataset - digi ataset — word sign love ataset — phoneme aw
J 'h ¥ 5113: w J1 ﬂ Hand geStureS - Slgn Language. FeW Level 1 ) ) ) R\“\ gz-B*Dyadicc')l'i:d e g 1'4*Diljil;fre;[e | e % 10*DTe::/iqcn'-rr:et o
el -l - gestures can follow other gestures. : ' N O || = kDTree S 1.2l kD Tree S | - KbTree 1 459 }
o * ol . ™, Q 2r RP Tree @ RP Tree o 8 RP Tree
*q:‘)‘ ——PD Tree 1.2929 € 11 —<—PDTree 2 ||——PD Tree T
% 1 5_-—*—-2[\,1 Tree \__"_ g DB_-—*—QM Tree 4706 g ol 4 9M Tree
S 1t 506 yd g 4
Standard characterizations of intrinsic dimension Level 2 2 e | R I L
. . . . : . . . . 2 05 10999 \, ] 2 0.2 N | \Ll/ 5 2 2 1928, i ,/T—l
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dimension, etc.) originally emerged from fractal geometry. They, Tree deptr : Treedeptn Troodepth
however, have the following issues in the context of machine learning: The trees we consider: Quality of the found neighbor at various levels of the partition trees.
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® These notions are purely geometrical and don’t account for the underlying y Cg. P P Regresszan
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characterizes the underlying distribution, is robust to noise, and 1s M ) c oo - 1 snlit the d " Tree depth Tree depth Tree depth
: eans tree: Compute the 2Z-means solution, and Split the data as per the . . _r : :
easy to verifty for real world datasets. P . ’ P P [, regression error in predicting the rotation angle at different tree levels.
cluster assignment.
All experiments are done with 10-fold cross validation.
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