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ABSTRACT

To what extent is it possible to visualize high-dimensional datasets in a two- or three-dimensional
space? We reframe this question in terms of embedding n-vertex graphs (representing the neighbor-
hood structure of the input points) into metric spaces of low doubling dimension d, in such a way
that maintains the separation between neighbors and non-neighbors. This seemingly lax embedding
requirement is surprisingly difficult to satisfy. Our investigation shows that an overwhelming fraction
of graphs require d = Ω(log n). Even when considering sparse regular graphs, the situation does
not improve, as an overwhelming fraction of such graphs requires d = Ω(log n/ log log n). The
landscape changes dramatically when embedding into normed spaces. In particular, all but a van-
ishing fraction of graphs demand d = Θ(n). Finally, we study the implications of these results for
visualizing data with intrinsic cluster structure. We find that graphs produced from a planted partition
model with k clusters on n points typically require d = Ω(log n), even when the cluster structure is
salient. These results challenge the aspiration that constant-dimensional visualizations can faithfully
preserve neighborhood structure.

1 Introduction

Visualizing a 10,000-point, 1,000-dimensional dataset in a two-dimensional plot is a bold pursuit. It is also a common
practice across natural and social scientific research literature, from biology to economics to physics, where colorful
UMAP and t-SNE plots have become a standard feature of data analysis [Kobak and Berens, 2019, Dimitriadis
et al., 2018, Han et al., 2021]. In light of the well-known impossibility of low-distortion metric embeddings in
constant dimensions (see e.g. Chapter 15 of Matoušek [2013]), the putative theoretical justification of these extreme
dimension reduction procedures is that they need not preserve all minutiae of the input data. Instead, the argument goes,
highlighting only the most basic structures, like local neighborhoods of points, is enough for most exploratory data
analysis purposes. We study the conditions under which such structure-preserving embeddings are possible.

We demonstrate that, in many scenarios of practical interest, it is impossible to embed a point cloud in any metric space
(let alone a Euclidean space) of constant dimension while preserving neighborhood structure.

Our analysis begins by re-framing low-dimensional data visualization in terms of embedding the neighbor graphs of
the input point cloud into metric spaces. Let V be a size-n set representing our data points of interest. Let Gn(V ) or
simply Gn for short denote the set of all n-vertex unweighted, undirected, simple graphs on V . Let (X , ρ) be a target
metric space of interest with doubling dimension d = dim(X ) (see Section 3 for a definition). We think of a map
f : Gn → Xn as a data-visualization algorithm and f(G) as an embedding of a specific graph G = (V,E) ∈ Gn into
X via the algorithm f . Out of convenience, we write fG(v) to denote the point in f(G) to which the vertex v of G is
being mapped. If there is an edge between u and v in G, we write u ∼G v, or simply u ∼ v when clear from context
(symmetrically, we write u ̸∼ v if there is no direct edge).

Within this framework, we study data visualization algorithms that are faithful to the neighborhood structure of input
graphs, in the sense of keeping neighbors close and non-neighbors far. We define this desideratum below, and then
study the minimum doubling dimension of the output metric space, X , necessary to accommodate it.
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Figure 1: An f -embedding of a vertex v ∈ V . Left: non-neighbor and neighbor relations of v are recoverable by
thresholding at r (α ≥ 1). Right: the more relaxed case of preservation where overlap is allowed (α < 1).

Definition 1. Fix α ≥ 0. A data visualization algorithm f : Gn → Xn is said to α-preserve G ∈ Gn if there exists
r = rG > 0 (the neighborhood threshold) such that for all distinct u, v ∈ V ,

(1) u ∼ v =⇒ ρ(fG(u), fG(v)) < r, (neighbor proximity)

(2) u ≁ v =⇒ ρ(fG(u), fG(v)) ≥ α · r. (non-neighbor separation)

Note that when α ≥ 1, one can recover the input graph G from the embedding f(G) by simply drawing an edge
between any two vertices embedded within a distance of r. We call this special case of preservability recoverability,
and we notice that, depending on the setting, this distinction can have a sharp impact on the difficulty of preservability.
Furthermore, preservability (including the special case of recoverability) stands out from other notions of structure
preserving embeddings, such as ordinal embeddings, low-distortion embeddings, etc., due to its strictly local nature;
it only requires the neighbor structure to be preserved, while non-neighbor structure can be distorted arbitrarily.
Interestingly, while it seems like the locality of α-preservation should make it easier to satisfy from a compressibility
perspective, we find that α-preserving a typical graph even in general metrics is as hard as near-isometric embedding of
points in ℓ2 (typically considered very rigid for embedding purposes) in that both require Ω(log n) dimensions [Larsen
and Nelson, 2017].

We are interested in characterizing the minimum dimension necessary to α-preserve a graph. This is formalized in what
we call the α-preservation dimension.

Definition 2 (α-preservation dimension). Fix α ≥ 0 and n ∈ N. Let X be a collection of metric spaces of interest. The
α-preservation dimension of G in X is given by1

dimα(G,X) := min{dim(X ) | X ∈ X and there exists f : Gn → Xn which α-preserves G}. (1)

In other words, it is the smallest d ∈ N such that there exists a metric space X ∈ X of doubling dimension d that
α-preserves G. If X is the collection of all possible metric spaces, we shorten the above to dimα(G).

Our notion of preservation dimension can be understood as a natural generalization of a well-studied graph invariant
known as sphericity [Maehara, 1984]. The sphericity of a graph G is the minimum dimension d such that the vertices
of G can be distinctly embedded into a d-dimensional Euclidean space such that the embedded vertices are distance
at most 1 if and only if they are edge-connected. Preservation dimension relaxes this notion by (1) parametrizing
the separation between neighbors versus non-neighbors via α (see Figure 1) and (2) allowing for embeddings into
general metric spaces. In developing this generalization of sphericity, we obtain a more fine-grained understanding of
structure-preserving metric embeddings of graphs.

1In the degenerate case when no such f exists, dimα(G,X) is undefined.
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Our main results are as follows.

• Preservation in General Metrics. Though certain kinds of graphs are easily α-preserved in constant
dimensions (e.g. cliques, cycles, paths, etc.), we show that these “easy” graphs comprise a vanishing fraction of
all graphs: an overwhelming fraction of G ∈ Gn require dimα(G) = Ω

(
log(n)/ log( 8

α )
)
, see Theorem 8(i).

Even if we consider only constant-degree regular graphs, a natural model for neighborhood connectivity, the
situation is similar: an overwhelming fraction of such graphs require Ω

(
log(n)/(log( log(n)α ))

)
dimensions,

see Theorem 8(ii). We conclude with a full characterization of α-preservation for all constant-diameter graphs,
see Corollary 16, which highlights a key difference between the cases of recoverability and non-recoverability.

• Preservation in Normed Spaces. When we insist on embedding graphs into normed spaces, the neigh-
borhood recoverability landscape changes dramatically: an overwhelming fraction of G ∈ Gn require
dim(α>1)(G) = Ω(n/ log( 8

α−1 )) in any normed space, see Theorem 17. For Euclidean spaces, we can
improve this to dim(α=1)(G, ℓ2) = Ω(n), and as α exceeds 1, a phase-change phenomenon occurs: below a
certain threshold α-preservation can be achieved in dimension depending on the graph’s spectral properties,
and beyond this threshold α-preservation may not be possible, see Proposition 20. Meanwhile, k-regular
graphs do not suffer from a Ω(n) recoverability barrier in normed spaces; O(k2 log n) dimensions suffice even
in ℓ2, see Proposition 21.

• Preservation of Clustered Data. We study the preservation dimension of graphs generated from a planted
partition model. We find that, with high probability, α-preservation requires Ω

(
(1−ξ) log(n)+ξ log(k)

log(8/α)

)
dimen-

sions in general metrics, where ξ is a suitable measure of the cluster salience, see Theorem 23. Furthermore, if
we insist on α > 1, we are hit with a lower bound of Ω(log(n)/ log( 1

α−1 )) regardless of cluster salience.

These results present a formidable barrier for existing data visualization algorithms, which typically embed input points
in two- or three-dimensional Euclidean space. Per the lower bounds presented in this paper, such visualizations are
doomed to misrepresent a portion of the neighborhood structure. This should be of great concern to practitioners who
use these algorithms for data analysis and hypothesis generation with the expectation that they reliably reveal the
neighborhood structure of high dimensional datasets.

2 Related Work

Our analysis of α-preservation brings insights and techniques from the graph embedding literature to bear on the
problem of data visualization.

2.1 Metric Embeddings of Graphs

Representing graphs faithfully in metric spaces is of intense interest in computer science. There are different techniques
and limitations for this endeavor depending on what metric one embeds into and what structure the embedding is
supposed to preserve. For instance, if one seeks to embed a graph into Euclidean space in such a way that reflects its
cluster structure, then spectral clustering is a standard choice [von Luxburg, 2007], and it provably preserves sufficiently
prominent clusters in the input [Ng et al., 2001]. If, on the other hand, one seeks a low-distortion embedding (see
Definition 31) of some metric induced by a graph (such as the shortest path metric), one can use the famous result by
Bourgain [1985] that guarantees an O(log n)-distortion embedding into O(log n)-dimensional Euclidean space. If one
insists on arbitrarily good average distortion-D embeddings into normed spaces, Naor [2021] showed that nΩ(1/D)

dimensions is necessary in general, with constant-degree expanders providing the hard instances. The situation improves
if one is willing to assume some intrinsic structure; indeed, if the input metric (derived from the graph) has doubling
dimension d, then an O(d)-dimensional Euclidean embedding exists with polylog(n)-distortion [Abraham et al., 2008]
and an O(d log log n)-dimensional Euclidean embedding exists with o(log n) distortion [Chan et al., 2010].

One could also seek out an embedding which preserves graph neighborhoods, in the sense that edge-connected vertices
are mapped as neighbors and non-edge-connected vertices are mapped as non-neighbors (for some suitable sense of
neighborhood). One of the first studies in the direction was by Erdős et al. [1965], who define the dimension of a graph
as the minimum d ∈ N such that there exists an injection f : V → Rd for which u ∼ v =⇒ ∥f(u) − f(v)∥2 = 1
for all u, v ∈ V . In this setting, the distances between non-edge connected vertices is irrelevant. Maehara [1984] later
introduced a threshold-based notion of graph dimension known as sphericity, where the condition on the embedding
becomes u ∼ v ⇐⇒ ∥f(u)− f(v)∥2 < 1. Reiterman et al. [1989] showed somewhat strikingly that for n ≥ 37, all
but (1− 1/n)-fraction of graphs have sphericity ≥ n/15. Further results have lower-bounded sphericity in terms of
spectral properties of the graph adjacency matrix [Bilu and Linial, 2005]. More recently, Bhattacharjee and Dasgupta
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[2020] developed multiple notions of dimension for directed graphs, motivated by the recent surge in the interest of
sequential data (e.g. natural language). They relate these notions of embeddability to fundamental graph properties like
cyclicity and eigenspectra.

Indyk and Naor [2007] study a notion of local structure-preserving embedding that is motivated by approximate nearest
neighbor search. They show that for input metrics with constant aspect ratio (i.e. the diameter over the smallest interpoint
distance) or constant doubling dimension, one can achieve efficient (1 + ϵ)-approximate nearest neighbor Euclidean
embedding in Ω(1/ϵ2) dimensions.2. In a similar vein, Bartal et al. [2011] develop a local Johnson-Lindenstrauss-type
result which embeds into Ω(log k/ϵ2)-dimensional Euclidean space and promise low distortion between any input point
and its k-nearest-neighbors.

2.2 Data Visualization and Other Applications

Data visualization is a type of extreme dimension reduction that is focused on producing two- or three-dimensional
outputs which emphasize cluster or local neighborhood structure. Standard (linear) dimension reduction methods like
classical multi-dimensional scaling (MDS) and random projections are generally not well-suited for this purpose: when
forced into ultra-low dimensions, these embeddings tend to destroy salient structures and display “artifacts” unrelated
to the intrinsic structure of the data [Dasgupta et al., 2006, Diaconis et al., 2008]. A similar phenomenon can be said of
many popular manifold learning methods like Locally Linear Embedding or Laplacian Eigenmaps [Perraul-Joncas and
Meilă, 2013, Goldberg et al., 2008, Venna et al., 2010].

t-SNE [van der Maaten and Hinton, 2008] and UMAP [McInnes et al., 2018], on the other hand, have gained widespread
popularity across the general scientific literature for their seemingly remarkable ability to visualize salient structure
in high-dimensional data. Shaham and Steinerberger [2017], Linderman and Steinerberger [2019], and Arora et al.
[2018] were the first works showing that, for sufficiently well-clustered inputs, t-SNE does indeed output the desired
cluster visualization. These results corroborate t-SNE’s apparent ability to tease out global cluster structure. What about
local neighborhood structure? Im et al. [2018] (building on the precision-recall framework of Venna et al. [2010]) and
Chari and Pachter [2023] provide some practical evidence that t-SNE and UMAP are less attuned to faithfully revealing
neighborhoods.

If one seeks to embed labelled data (for downstream prediction as well as visualization), large-margin nearest neighbors
is a canonical linear3 technique from the Mahalonobis metric learning literature [Weinberger and Saul, 2009]. This
method aims to alter the original representation of the data such that the nearest neighbor of any point have the same
label, while differently-labelled points are separated with a “margin”. This margin or gap is akin to our notion of
separability between neighbors and non-neighbors for (α > 1)-preservation (see Figure 1, left).

A fundamental question in the backdrop of these studies is: what is the minimum embedding dimension necessary
to preserve local neighborhoods? Our work addresses this unifying question in a very general setting, demonstrating
when and how the embedding dimension must scale with key properties of the input data (e.g. number of data points,
connectivity and neighborhood structure, etc.).

3 Preliminaries

For (X , ρ) a metric space, let Br(x) ⊆ X be an open ball of radius r centered at x ∈ X . The doubling dimension
of X , denoted dim(X ), is the smallest integer d such that any open ball of radius r > 0 in X can be covered by at
most 2d open balls of radius r/2. Let M(S, ϵ) (the packing number) denote the size of the smallest packing of points
into S such that the distance between any two points in the packing is at least ϵ. Likewise, let N (S, ϵ) (the covering
number) denote the size of the smallest covering of S by ϵ-radius balls centered in X . When the context is clear, we may
abbreviate N (BR(x), ϵ) as N (R, ϵ). Observe the following known results about covering and doubling dimension.

Observation 3. For all 0 < ϵ < R and x ∈ X : N (BR(x), ϵ) ≤ (2dim(X ))⌈log2(R/ϵ)⌉ ≤ (2R/ϵ)dim(X ).

Observation 4. For any S ⊆ X and ϵ > 0, we have M(S, 2ϵ) ≤ N (S, ϵ) ≤ M(S, ϵ).

Observation 5. Any n-point metric space has doubling dimension at most ⌈log2(n)⌉.

Let Gk-reg
n ⊆ Gn denote the set of k-regular graphs on n vertices.

2One should note that an analogous statement for (1± ϵ)-isometry for points with constant doubling dimension is known not to
hold [Alon, 2003].

3Similar nonlinear techniques often used in practice include contrastive learning [Hadsell et al., 2006] and Siamese networks
[Bromley et al., 1994].
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For G = (V,E) ∈ Gn, we use the following notation:

• A(G) = A ∈ {0, 1}n×n: the adjacency matrix, where Aij = 1 ⇐⇒ (i, j) ∈ E,

• ∆(G): graph diameter: the maximum shortest-path length between any two vertices; ∞ if G is disconnected,

• ι(G) ⊆ V : the largest independent set,

• κ(G) ⊆ V : the largest clique,

• G|V ′ = (V ′, E′): the subgraph of G induced by V ′ ⊆ V , where E′ = {(u, v) ∈ E : u, v ∈ V ′}.

For an embedding algorithm f (as defined in Introduction), we shall use diam(f(G)) := maxu,v ρ(fG(u), fG(v)) to
denote the diameter of the f -embedding of G in X .

All the omitted proofs can be found in the Appendix.

3.1 Elementary Observations about α-Preservation

Before presenting our main results, we show that α-preservation is only interesting for the α ∈ (0, 2) case. This is
because, aside from some very trivial cases, all graphs simply do not admit (α ≥ 2)-preservation. In particular:

Proposition 6. Let α ≥ 2. For all G ∈ Gn, either (i) dimα(G) is undefined (i.e. α-preservation is not possible), or (ii)
all connected components in G are cliques and G can be α-preserved in R.

Proof. Suppose G = (V,E) ∈ Gn contains a connected component that is not a clique. We will show G is not
(α ≥ 2)-preservable in any metric space. Let V ′ ⊆ V be the non-clique connected component of G. The diameter
of G|V ′ is at least 2. Thus there exist two vertices u, v ∈ V ′ such that the shortest path between them is of length
exactly 2. Let w be the “connecting” vertex such that u ∼ w ∼ v, and assume towards contradiction there exists an
algorithm f that α-preserves G in some metric space X (with neighborhood threshold of r > 0, see Definition 1). Then
the maximum distance between u and v in the embedding is:

ρ(fG(u), fG(v)) ≤ ρ(fG(u), fG(w)) + ρ(fG(w), fG(v)) < 2r,

which implies that u ∼ v since α ≥ 2 implies u ̸∼ v =⇒ ρ(fG(u), fG(v)) ≥ r · α ≥ 2r. This contradicts the fact
that the shortest path between u and v is of length 2. Thus, an f that α-preserves G cannot exist.

Suppose all connected components of G are cliques. Observe that any visualization algorithm f : Gn → R that maps
each clique to a unique point in R α-preserves these graphs for all α > 0, in particular α ≥ 2 (simply choose r > 0
small enough).

We also observe the following intuitive monotonicity properties of α-preservation.

Proposition 7. For G ∈ Gn and a collection of metric spaces X, assume dimα(G,X ) is well-defined. The visualization
dimension satisfies the following properties:

(i) If β ≤ α then dimβ(G,X) ≤ dimα(G,X).

(ii) If X ⊆ Y then dimα(G,Y) ≤ dimα(G,X).

Throughout the rest of the paper we shall assume α ∈ (0, 2).

4 Preservation in General Metric Spaces

Take any graph G ∈ Gn. Arguably the most natural realization of this graph in a metric space is induced by its shortest
path distances. This immediately provides an α-preservation of G for all α ∈ (0, 2) in an n-point metric space, yielding
a doubling dimension of O(log n) (see Observation 5). The key question is whether this log(n)-scaling is necessary. It
turns out that there exist graphs which do require this scaling. In fact, these hard instances comprise an overwhelming
fraction of Gn and persist even if we allow for a substantial overlap between neighbors and non-neighbors (α ≪ 1)
Interestingly, the situation does not improve even for graphs with low connectivity, e.g. k-regular graphs.
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4.1 Lower Bounds

Theorem 8. For any α ∈ (0, 2), we have the following.

(i) For all n ≥ 82, at least 1− 2−n/5 fraction of G ∈ Gn:

dimα(G) ≥ log (n)− 2 log(2)

2 log(8/α)
= Ω

(
log(n)

log(8/α)

)
.

(ii) For all even integers n ≥ 6 and k ≥ 4, at least 1−O(n−k+2) fraction of G ∈ Gk-reg
n :

dimα(G) ≥ log(n/(k + 1))

log

(
4
α

⌈
log(n−1)

log
(

k
2
√

k−1+1/2

)⌉) = Ω

(
log(n/k)

log logn
log k + log(4/α)

)
.

This incompressibility result is realized by the prevalence of graphs with high connectivity. Take for instance the star
graph on n nodes: it is a diameter-2 graph with n− 1 edges. Intuitively, a neighborhood preservation (neighbors close,
non-neighbors far) of a star graph requires packing Ω(n) points in a O(1)-diameter ball, yielding a log(n)-type lower
bound on the dimension of the target metric space. We can apply the same intuition for constant-degree expanders (e.g.
Ramanujan graphs [Hoory et al., 2006, Huang et al., 2024]), yielding a similar result for Gk-reg

n .

We now make this intuition precise. A key quantity in our analysis will be the notion of a clique partition of a graph
(also known as the minimum clique cover in the literature), which is a natural measure of neighborhood connectivity.
Definition 9 (clique partition). For G ∈ Gn, define the clique partition of G, denoted P (G), as the smallest-sized
partition4 of V such that for all S ∈ P (G), G|S is a clique.

One can relate the clique partition to fundamental graph quantities which will be helpful in our discussion later.

Observation 10. For all G = (V,E), we have χ(Gc) = |P (G)| ≥ max
(
|ι(G)|, |V |

|κ(G)|

)
, where χ(Gc) is the

chromatic number of the complement graph of G.

We can quantify the difficulty of α-preservation dimension in terms of clique partitions of the input graph G.
Lemma 11. For all G = (V,E) ∈ Gn, and all α ∈ (0, 2),5

dimα(G) ≥ max
U⊆V
|U |≥2

log |P (G|U )|
log(4∆(G|U )/α)

.

Before proving this, it is instructive to understand the significance of the ratio: it captures our intuition of large packing
(numerator) in a small space (denominator). Consider the aforementioned star graph, which has a Ω(n)-sized clique
partition and O(1) diameter, recovering the expected log(n)-lower bound. In contrast, the cycle graph–––which can
clearly be (α < 2)-preserved in constant-dimensional ℓ1 space–––has both Ω(n)-sized clique partition and diameter,
relaxing our lower bound to accommodate this case.

Proof. Let fG : V → Xn be an α-preservation of G into some target metric (X , ρ) with neighbor threshold r > 0
(see Definition 1). Note that such a map always exists (see Observation 14). Now for any U ⊆ V , let G′ := G|U be a
vertex-induced subgraph. Without loss of generality, assume G′ has finite diameter (otherwise the bound is trivially
true). We proceed via a covering argument.

First, we show that diam(fG(U)) < r ·∆(G′). Of course, every pair of vertices u, v ∈ U have a path length of at
most ∆(G′). A trivial application of triangle inequality shows ρ(fG(u), fG(v)) is bounded by r ·∆(G′) since every
successive vertex pair in the path from u to v needs to be within distance r.

Next, we show that N (fG(U), α · r/2) ≥ |P (G′)|. Consider any (α · r/2)-covering C = {c1, . . . , cm} of fG(U). For
each i ∈ [m], iteratively define

Pi :=
{
u ∈ U

∣∣∣ fG(u) ∈ Bα·r/2(ci)
}
\
⋃
k<i

Pk.

4We break ties in an arbitrary but fixed manner.
5We use the convention that the maximum of an empty set in R is −∞.
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Observe that G′|Pi is a clique, since for all distinct u, v ∈ Pi, ρ(fG(u), fG(v)) < α · r, which by definition of
α-preservation implies u ∼ v. Note that P ′ := {Pi}i∈[m] constitutes a clique partition of U , therefore |P (G′)| ≤
|P ′| ≤ m.

Therefore, by Observation 3,

|P (G′)| ≤ N
(
r ·∆(G′),

α · r
2

)
≤
(
4∆(G′)

α

)dim(X )

.

Equivalently, for any α-preserving fG : V → Xn on a metric space X and subgraph G′ := G|U induced from any

U ⊆ V , we have dim(X ) ≥
(
log |P (G′)|

)/(
log(4∆(G′)/α)

)
which yields the lemma statement.

The proof of Theorem 8 proceeds by analyzing the key quantities |P (G)| and ∆(G) for typical graphs in Gn. We think
of a typical graph as being drawn uniformly at random from Gn (equivalently, produced by the Erdős–Rényi model with
parameter 1/2). With high probability, such a graph has constant diameter and a large clique partition. The latter follows
from Observation 10 and a refined analysis of established bounds on clique numbers of Erdős–Rényi graphs [Frieze
and Karoński, 2016]. For the Gk-reg

n lower bound, a similar analysis yields ∆(G) = O(log n) and |P (G)| = Ω(n). The
diameter upper bound follows from well-known expander properties of k-regular graphs [Bollobás and de la Vega,
1982, Huang et al., 2024]. The clique partition lower bound follows from analyzing ι(G) [Wormald, 1995]. Formal
details are provided in Appendix B.1.

The clique partition P (G) is a powerful concept, which helps us establish the near-worst-case difficulty of α-preserving
typical graphs for all α ∈ (0, 2). In light of Corollary 16 and Lemma 25, it tightly characterizes the α-preservation
dimension of such graphs, which constitute (1− 2−Ω(n))-fraction of Gn.

For the remaining (atypical) fraction of graphs, the situation can be different. Consider the following graph: let G ∈ Gn

(with n even) consist of two disjoint cliques of size n/2 and exactly n/2 edges connecting vertices of the two cliques
1-to-1. A straightforward packing argument gives dimα(G) = Ω(log(n)) for all α = 1 + Ω(1), yet our key Lemma 11
is rendered ineffective since |P (G)| = 2 and ∆(G) = 2.

This example highlights how, as α grows past unity, the problem of α-preservation can become significantly harder for
certain graphs. The key difficulty of (α > 1)-preserving this graph stems from the fact that there exist a large number
of vertices in close proximity that have distinct, yet overlapping neighborhoods. To formalize this, we introduce the
concept of a “neighborhood partition,” which we leverage in Lemma 13, strengthening Lemma 11 when α = 1 + Ω(1).
Definition 12 (neighborhood partition). For G = (V,E) ∈ Gn and U ⊆ V , define the neighborhood partition of G|U ,
denoted C(G|U ), as the smallest-sized partition6 of U such that all u and u′ are in the same part if and only if they
have identical neighborhoods with respect to G. That is, for all u, u′ ∈ S ∈ C(G|U ), we have N(u) = N(u′), where
N(u) := {v ∈ V : v ∼G u or v = u}.
Lemma 13. For all G = (V,E) ∈ Gn and α ∈ (1, 2),

dimα(G) ≥ max
U⊆V
|U |≥2

log
∣∣C(G|U )

∣∣
log( 4∆(G|U )

α−1 )
.

Proof. It suffices to exhibit the lower bound for all U ⊆ V with G|U connected and |C(G|U )| ≥ 2 otherwise the bound
is vacuously true. Fix any α ∈ (1, 2) and consider an α-preservation fG of G in (X , ρ). Note that for all u′, u′′ ∈ V
which are not in the same part of C(G|U ), there exists v ∈ V that is in either N(u′) or N(u′′) but not both since
N(u′) ̸= N(u′′). WLOG assume v ∈ N(u′) \N(u′′). By definition of α-preservation, this tells us:

αr ≤ ρ(fG(u
′′), fG(v)) ≤ ρ(fG(u

′), fG(v)) + ρ(fG(u
′), fG(u

′′)) < ρ(fG(u
′), fG(u

′′)) + r

=⇒ ∀u′, u′′ in distinct parts of C(G|U ) ρ(fG(u
′), fG(u

′′)) > r(α− 1),

where r is the neighborhood threshold of fG (cf. Definition 1). Since fG(U) has diameter at most r · ∆(G|U ),
constitutes an r(α− 1)-packing of a ball of diameter r ·∆(G|U ) of size |C(G|U )|. Due to maximal packing estimates
(cf. Observation 4), we have:

|C(G|U )| ≤ M (r ·∆(G|U ), r(α− 1)) ≤ N
(
r ·∆(G|U ),

r(α− 1)

2

)
≤
(
4r ·∆(G|U )
r · (α− 1)

)dim(X )

.

Rearranging the terms yields the lower bound.
6We break ties in an arbitrary but fixed manner.
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4.2 Upper Bounds

As discussed at the beginning of the section, one trivially has an upper bound on the α-preservation dimension of a
graph G in terms of the doubling dimension of the graph shortest path metric ρG.

Observation 14. For all G ∈ Gn and α ∈ (0, 2), dimα(G) ≤ dim(XρG
) ≤ ⌈log2 n⌉, where XρG

is the n-point
shortest path metric derived from G.

Observe that this upper bound in terms of the shortest path metric is clearly not tight. Consider for instance the complete
graph on n vertices. The doubling dimension (with respect to the shortest path metric) of this graph is Θ(log n), yet it
can be α-preserved in constant dimensions, by simply sending all points to a one-point metric space. It is natural to ask
whether an α-dependent bound is possible.

Proposition 15. For all G ∈ Gn,

dimα(G) ≤


⌈
log2(3)

⌈
log |P (G)|
log⌈1/α⌉

⌉⌉
α ∈ (0, 1)⌈

log2 |P (G)|+ log2(3)
⌉

α = 1⌈
log2 |P (G)|+ log2(3)

⌈
maxS∈P (G)

log |C(G|S)|
log⌈ 1

α−1 ⌉

⌉⌉
α ∈ (1, 2)

.

The proof follows an intuitive construction which hinges on the clique partition. For α < 1, each part of the clique
partition can be collapsed to a point yielding a |P (G)|-sized metric space of doubling dimension O(log |P (G)|). For
α ≥ 1, each part S is embedded as a sub-metric which necessarily contains some α − 1 packing depending on its
neighborhood partition C(G|S). Compare this with our lower bounds: Lemma 11 for the α ≤ 1 case and Lemma 13
for the α > 1 case.

This enables us to give a full characterization of α-preservation dimension for constant-diameter graphs, which by
Lemma 25 constitute an overwhelming fraction of Gn.

Corollary 16. For α ∈ (0, 2) and G ∈ Gn such that ∆(G) = O(1),

dimα(G) = Θ
( log |P (G)|

log(8/α)
+ 11[α > 1] · log |C(G)|

log( 4
α−1 )

)
.

5 Preservation in Normed Spaces

The designation of metric space is incredibly general. Practitioners are usually interested in producing faithful data
visualizations into more structured spaces. For instance, it is often desirable to work with data in a normed space due
to the ability to add and scale the points as vectors. The significance of the norm structure is not just mathematical
convenience but also its direct interpretability for data visualization: we tend to think in terms of normed (especially
Euclidean) space because it obeys similar principles as physical space. This motivates us to study α-preservation into
such spaces. We find that this restriction comes at a steep cost in terms of the embedding dimension.

5.1 Lower Bounds

It turns out that (α ≥ 1)-preservation (that is neighborhood recoverability) in normed spaces is exponentially harder
than it is for general metrics: an overwhelming fraction of graphs in Gn require dimension that scales linearly in n, in
contrast to the logarithmic scaling in the case of general metrics (cf. Theorem 8).

Theorem 17. We have the following.

(i) (General normed spaces) Let L be the collection of all normed spaces. For all α ∈ (1, 2) and n ≥ 82, we
have that for at least 1− 2−n/6 fraction of G ∈ Gn:

dimα(G,L) ≥ n

3 log2(
16

α−1 )
= Ω

(
n

log( 16
α−1 )

)
.

(ii) (Euclidean spaces) For α = 1 and n ≥ 0, we have that for at least 1− 2−n fraction of G ∈ Gn,

dim(α=1)(G, ℓ2) ≥
n

15
− 1

4
.
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Before proceeding to the discussion of our key theorem, a few remarks are in order.

• It is straightforward to extend Theorem 17(ii) to α > 1 for ℓ2 (see Proposition 7), so long as dimα(G, ℓ2)
exists (see Proposition 20).

• Unlike in the case of embeddings into general metric spaces, an analogous Ω(n) lower bound for Gk-reg
n is

impossible. In particular, one can show that an O(k2 log n)-dimensional ℓ2 embedding exists for all such
graphs (see Proposition 21) which nearly matches the lower bounds of Theorem 8(ii).

• Similarly one cannot hope for an Ω(n) bound for the case when α < 1. It turns out that all graphs G ∈ Gn can
be (α < 1)-preserved in ℓd∞ for d = O(log |P (G)|) = O(log n) (see Proposition 19).

The proof of incompressibility for general normed spaces proceeds via an elegant application of the volume argument.
Specifically, the vector space structure of normed spaces enables us to superimpose the sheer plenitude of low-diameter
graphs in a small enough region. Noting that disparate graphs (with disparate neighborhood structures) require
disparate neighborhood-preserving embeddings in the space, one must require the target dimension to scale with n to
accommodate these embeddings. Formal details are provided in Appendix B.2.

The highly regular structure of the Euclidean space enables us to extend our lower bound to the α = 1 case in ℓ2.
This requires an alternate analysis. In particular, we leverage the fact that since the (squared) 2-norm distances can be
represented by a (quadratic) polynomial, any graph can be distinctly recognized from an (α = 1)-preserving embedding
in ℓ2 by a series of polynomial threshold tests. By a theorem due to Warren [1968], we know that the polynomial
threshold tests are expressive enough to distinguish the graphs only if the embedding dimension is Ω(n), yielding the
desired extension.7 Formal details are provided in Appendix B.2.

5.2 Upper Bounds for Preservation in Normed Spaces

A straightforward application of Fréchet’s embedding [Fréchet, 1910, Matoušek, 2013] yields dimα(Gn,L) = O(n) by
considering an isometric embedding of the shortest path metric (and hence an (α ≤ 2)-preservation) of the input graph
into ℓn−1

∞ . Specifically:

Observation 18. For all α ∈ (0, 2) and G ∈ Gn, we have dimα(G, ℓ∞) ≤ ⌈log2(3) · (n− 1)⌉ = O(n).

This trivial result can be refined as follows.

Proposition 19. For all G ∈ Gn,

dimα(G, ℓ∞) ≤

{
⌈log2(3)

⌈
log |P (G)|
log⌈1/α⌉

⌉⌉
= O

(
log |P (G)|
log⌈1/α⌉

)
α ∈ (0, 1)

⌈log2(3) · |C(G)|⌉ = O(|C(G)|) α ∈ [1, 2)
.

Proof. For any G = (V,E) ∈ Gn, let P (G) = {P1, . . . , Pm} be the m parts of the clique partition.

Case α ∈ (0, 1). By Observation 29(i) (take n = m, r = 1 and ϵ = α), m points can be embedded in (open) unit ball
with interpoint distances at least α in ℓd∞ with d =

⌈
logm

log⌈1/α⌉
⌉
. Thus, the mapping where vertices belonging to each

partition Pi of the input graph G is mapped to the i-th point yields an α-preserving embedding in ℓ∞, with (doubling)
dimension at most

⌈
log2(3)

⌈
log |P (G)|
log⌈1/α⌉

⌉⌉
= O

(
log |P (G)|
log⌈1/α⌉

)
.

Case α ∈ [1, 2). Let G/C(G) be the (simple) graph produced by contracting all nodes that are in the same part of C(G)
and preserving the edge connectivity. Since any u, v ∈ V with N(v) = N(u) (see Definition 12) can be embedded
identically with no effect on α-preservation, an α-preservation of G/C(G) is an α-preservation of G. Hence we
re-apply Observation 18 to G/C(G) to get the bound8 ⌈log2(3) · |C(G)|⌉.

For the α < 1 case, this upper bound improves considerably on Fréchet-style embedding (Observation 18) and nearly
matches the general metric space lower bound given by Lemma 11. On the other hand, in the recoverable case, one
cannot hope for more than a constant-factor improvement on this straightforward upper bound due to a result by Roberts
[1969] who proved that there exist G ∈ Gn with dimα≥1(G, ℓ∞) ≥

⌊
2
3 |C(G)|

⌋
.

7This method of proof extends to other p-norms (for p even), and may be of independent interest.
8Note that this embedding works for α ∈ (0, 2), but since |P (G)| ≤ |C(G)| it offers no improvement.

9



Compressibility Barriers to Neighborhood-Preserving Data Visualizations

5.2.1 Preservation in Euclidean Space (ℓ2)

Theorem 17(ii) establishes a formidable Ω(n) lower bound on ℓ2 recoverability for most G ∈ Gn. A matching O(n)
upper bound is trivial: if an α-preservation of n points exists, it is necessarily an α-preservation on the (n − 1)-
dimensional subspace spanned by the points. Here we investigate more refined upper bounds depending on α as well as
the structure of the input graph.

We find that (α < 1)-preservation dimension in ℓ2 follows a familiar log |P (G)| scaling. In contrast, the recoverability
case exhibits an interesting phase shift. For α up to a graph-dependent threshold, the graph is recoverable in dimension
depending on its spectrum. However, past this threshold, α-preservation is not always possible. In particular:

Proposition 20. For all G ∈ Gn, we have

dimα(G, ℓ2) ≤



⌈
log2(5)

⌈
4 log(|P (G)|+1)

2−4α2

⌉⌉
α ∈ (0, 1√

2
)⌈

log2(5)
⌈
12
(
1+α2

1−α2

)2
log |P (G)

⌉⌉
α ∈

(
1√
3
, 1
)⌈

log2(5) ·min
(
⌈192λ2

G log |C(G)|⌉, |C(G)| − 1
)⌉

α ∈
[
1, 1√

1− 1
4λG

) ,

where λG denotes the maximum eigenvalue of A(G/C(G)).

Moreover, for all n ≥ 4 there exists G ∈ Gn which cannot be α-preserved in ℓ2 for α > (1− 1
λG

)−1/2.

In light of Theorem 17(ii) it is worth noting that only a negligible fraction of G ∈ Gn have λG = o(n). Since λG is
upper-bounded by the maximum vertex degree, Proposition 20 immediately provides us a recoverability upper bound
k-regular graphs.

Corollary 21. Fix any 0 < k < n. For all G ∈ Gk-reg
n and α ∈ (0,

√
1 + 1

4k ), we have, dimα(G, ℓ2) ≤ ⌈192k2 log n⌉.

6 Preservation of Clustered Data

Most data visualization algorithms seek to visualize clusters in a dataset. Ideally, such algorithms will be able to detect
and represent the latent cluster structure in a constant-dimensional metric space. We show, for a general model of
clustering, this is impossible, even when the clusters are well-separated. The standard graph-based model for clusters is
the planted partition model:

Definition 22. Fix integers n ≥ k ≥ 1. For a partition {S1, . . . , Sk} of V (of size n) and 0 ≤ q ≤ p ≤ 1, define the
planted partition distribution, PPp,q(S1, . . . , Sk), as the distribution over Gn(V ) such that for all i, j ∈ [k] distinct,
edges within Si occur independently with probability p and edges between Si and Sj occur independently with
probability q.

The key parameters p and q capture intra- and inter-cluster connectivity. Naturally, the higher the gap between these
two parameters, the more salient the cluster structure of the model. We provide a lower bound on the α-preservation
dimension with respect to these parameters.

Theorem 23. Fix n ≥ k ≥ 1 and let {S1, . . . , Sk} be a partition of V (of size n). Let c ≥ 1 be such that
maxi∈[k] |Si| ≤ cn

k , and 0 < q ≤ p ≤ 1 with q < 1. Then for all α ∈ (0, 2) with probability at least
1− exp(−Ω(nmin(2(p+q−pq),1))) over G ∼ PPp,q(S1, . . . , Sk):

dimα(G) ≥ 1

log (8/α)

(
(1− ξp,q) log n+ ξp,q log(k/2c)

)
,

where ξp,q := p− q + pq encodes the cluster saliency of the planted partition model.

The proof proceeds by estimating clique number and the diameter of typical graphs generated from a planted partition
model and applying our key Lemma 11. Formal details are provided in Appendix B.3.
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We can think about this result as interpolating between two extremes:

• Clustered data. When 0 < q < p = 1 (with q constant), we have ξp,q = 1, so the lower bound becomes
Ω( log(k/3c))log(8/α) ). This essentially matches our upper bound in Proposition 15 for α ≤ 1, since |P (G)| = k.

• Unclustered data. When p = q = 1
2 , the lower bound becomes Ω( (3/4) logn+(1/4) log(k/3c)

log(8/α) ) = Ω( log(n)
log(8/α) ),

which matches the upper bound in Proposition 15.

For α > 1, we have a stronger lower bound: even when p = 1 (the fully connected clusters case), the α-preservation
dimension is Ω(log n) with overwhelming probability.

Proposition 24. Fix any α > 1. Pick p = 1 and 0 < q < 1. Then if maxi∈[k] |Si| ≤ cn/k, G ∼ PPp,q(S1, ..., Sk) with

probability at least 1− n2
(
max(q, 1− q)2n(1−c/k) + e−q2(n−1)

)
, we have dimα(G) ≥ log(n)

log( 8
α−1 )

.

7 Discussion

Given the pervasive use of data visualization techniques like t-SNE and UMAP which “just seem to work” in practice,
it is tempting to believe that data visualization is essentially a solved problem. Our analysis of α-preservation reveals
some evidence to the contrary: in many situations of practical interest, including when data has extremely pronounced
cluster structure, visualizing neighbor and non-neighbor relationships fundamentally requires high dimensions.

One may wonder how the incompressibility results presented in this work square with more “positive” findings
regarding the possibility of constant-dimensional data visualizations. Arora et al. [2018], for instance, established that
two-dimensional t-SNE plots successfully visualize well-clustered data. In effect, their result speaks to the fact that
α-preservation of extremely clustered neighborhood graphs (i.e. q = 0 and p = 1, in the context of Definition 22) can
be done in constant dimensions. Our results show that any introduction of noise, between or within clusters, requires
strictly greater than constant dimension (specifically Ω(log k) for q > 0 and Ω(log n) for p < 1) for neighborhood
preservability. Similarly, Sarkar [2011] gave a construction on how to embed trees arbitrarily well in two-dimensional
hyperbolic spaces, again implying good neighbor preservation in constant dimensions. At first glance, this seems to
contradict the findings of Lemma 11, which would imply that Ω(log n) doubling dimensions are necessary to α-preserve
balanced, constant-degree trees. Note, however, that a constant-dimensional hyperbolic space does not have a constant
doubling dimension.

One can think of (α ≤ 1)-preservation as a relaxation of (1/α)-distortion embedding (indeed, a bounded distortion
embedding has correspondingly bounded preservation, see Observation 32). Since neighborhood preservation is
fundamentally a local concept, it is particularly well-suited to embedding geometric objects such as manifolds that are
characterized by their local structure (indeed, our results can be extended and sharpened for such data). In the grand
scheme of metric embedding desiderata, preservation is refreshingly lenient compared to low-distortion. For instance,
1-preservation (the hardest form of α ≤ 1 preservation) is possible for any graph in ℓ2, whereas 1-distortion (the hardest
form of low-distortion embedding, of course) is very much not possible: even some graph metrics of constant doubling
dimension require

√
log n-distortion in ℓ2 [Gupta et al., 2003]!

There are many avenues of further investigation. For instance, it is natural to consider approximate α-preservation:
given some neighborhood graph and a fixed target dimension d, what fraction of neighborhoods can be α-preserved in
d? Does this relaxation dramatically change the stringent lower bounds of this work? If so, then answering this question
for real-world datasets would allow us calibrate our expectations for data visualization on a case-by-case basis.

More generally, it is tempting to pursue an algorithmic realization of α-preservation. One can think of the construction
of an optimal α-preservation as the minimization of a very difficult objective––the doubling dimension––with respect
to basic linear constraints––dictating the metric structure and the α-preservation thresholds. For preservation in ℓ2
this optimization (as well as its approximate counterpart) can be approximated by a semidefinite program. Are there
alternative, less obvious algorithms? Our study of α-preservation suggests that certain graph statistics, including C(G),
P (G), and the graph spectrum, can help to quantify α-preservation.

Pursuing algorithms for α-preservation brings us full circle. Our study was motivated by the idea that popular data
visualization methods boil down to extracting a useful neighborhood graph and optimizing some sort of relaxed
α-preservation-esque objective in a fixed dimension. The jury is still out: does this practice constitute a provably
effective approximation algorithm for a well-defined problem? Or is the problem, even with all the standard relaxations,
simply too hard?
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A Useful Supporting Results

Lemma 25. Fix any q ∈ (0, 1]. Let DG denote a distribution over Gn(V ) where the each edge appears independently

with probability at least q. Then PG∼DG

[
∆(G) ≤ 2

]
≥ 1− n2e−q2(n−1) ≥ 1− 2−Ω(n).

Proof. The probability that any distinct u, v ∈ V have distance strictly greater than 2 is the probability that they do not
share an edge and have no common neighbor, which (by independence of edges) is ≤ (1− q) · (1− q2)n−2. By union
bounding over all pairs of vertices, P[∆(G) > 2] ≤

(
n
2

)
(1− q) · (1− q2)n−2 ≤ n2e−q2(n−1).

Corollary 26. Let S ⊂ Gn be the subset of all graphs with diameter at most 2, then |S| ≥ (1− n2e−(n−1)/4)|Gn|. In
particular, if n ≥ 82, |S| ≥ (1− 2−n/5)|Gn| = (1− 2−Ω(n))|Gn|.

Proof. Recall that the uniform draw over Gn is equal in distribution to an Erdős–Rényi model over n nodes, G(n, 1
2 ),

where each edge appears independently with probability 1
2 .

Invoking Lemma 25 (with q = 1/2) gives us that with probability at least 1 − n2e−(n−1)/4 over a graph G drawn
uniformly from Gn, we have that ∆(G) ≤ 2.

Lemma 27. For k ≥ 4 and n ≥ 6 even integers, there exists a universal constant c > 0 such that

PG∼unif(Gk-reg
n )

∆(G) ≤

 log(n− 1)

log
(

k
2
√
k−1+1/2

)

 ≥ 1− cn−k+2.

Proof. Let λ2(G) be the second largest eigenvalue of G’s adjacency matrix. By Chung [1989] we have
∆(G) ≤ ⌈ log(n−1)

log(k/λ2(G))⌉. By Friedman [2008], for k ≥ 4 and n ≥ 6 even integers, there exists a constant c > 0

such that with probability 1 − cn−⌈
√
k−1⌉+1 ≥ 1 − cn−k+2, a random regular graph has λ2(G) ≤ 2

√
k − 1 + 1/2.

Combining these results, we have with high probability that ∆(G) ≤
⌈

log(n−1)

log
(

k
2
√

k−1+1/2

)⌉ .
Lemma 28 (Johnson-Lindenstrauss; implied by Theorem 1 of Dasgupta and Gupta [2003]). For any 0 < ϵ ≤ 1

2 and
any integer n, let k be a positive integer such that k ≥ 12 logn

ϵ2 . Then for any set V of n points in Rd, there is a map
f : Rd → Rk such that for all u, v ∈ V ,

(1− ϵ)∥u− v∥22 ≤ ∥f(u)− f(v)∥22 ≤ (1 + ϵ)∥u− v∥22.

Observation 29. For any 0 < ϵ < r, we have the following.

(i) One can always ϵ-pack n points in a diameter r (open) ball in ℓd∞ with d =
⌈

logn
log⌈r/ϵ⌉

⌉
.

(ii) One can always ϵ-pack n points in a diameter r (open) ball in ℓd2 with d =
⌈
4 log(n+1)
2−(2ϵ/r)2

⌉
.

Proof of Observation 29(i). Consider an ϵ-resolution grid of an r diameter open ball in ℓd∞ for d = ⌈ logn
log⌈r/ϵ⌉⌉.

Specifically, consider the grid points
{
ϵ · j : j ∈ Z, 0 ≤ j < r/ϵ

}d
. Note that by construction, diameter is strictly less

than r and the number of grid points is at least n. Any subset of n points from this grid is an ϵ-packing (that is, for any
p, p′ distinct from the grid, ∥p− p′∥∞ ≥ ϵ).

Proof of Observation 29(ii). We’ll show that n points can be γ-packed in a radius 1 (i.e. diameter 2) open ball of in ℓd2
for d at most ⌈ 4 log(n+1)

2−γ2 ⌉, this immediately yields the desired result.

Fix any δ > 0 and consider the open ball of radius 1 + δ in ℓd2. It suffices to show that there ex-
ists a γ-packing of at least n points on the unit sphere Sd−1 for d sufficiently large. Let σ be the uni-
form probability measure over Sd−1 and {p1, . . . , pm} be a maximally sized γ-packing of Sd−1. For any

14
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p ∈ Sd−1, define Cγ(p) := {q ∈ Sd−1 : ∥p− q∥2 < γ} as the γ-spherical cap of Sd−1 at p. Observe that

Cγ(p) =
{
q ∈ Sd−1 : p · q > 1− γ2

2

}
and that

⋃
i∈[m] Cγ(pi) = Sd−1. Hence:

m · σ(Cγ(p1)) ≥ σ

 ⋃
i∈[m]

Cγ(pi)

 = σ(Sd−1) = 1.

Noting that the volume of a γ-spherical cap σ(Cγ(p1)) ≤ exp
(
−d

4 (2− γ2)
)

[Tkocz, 2012], and by letting δ → 0, we

have that having d =
⌈
4 log(n+1)

2−γ2

⌉
is sufficient to γ-pack n points in an open unit ball in ℓd2.

Low-Distortion Implies Good Preservation

In order to directly compare α-preservation and 1
α -distortion embeddings, we broaden the definition of α-preservation

to apply to metric spaces:
Definition 30. For a metric space (Z, σ), let GR(Z) = (Z, E) denote the graph where (z, w) ∈ E ⇐⇒ σ(z, w) < R.
We say a map f : (Z, σ) → (X , ρ) is an (α,R)-preservation of (Z, ρ) for α ∈ (0, 2) and R > 0 if its output is an
α-preservation of GR(Z).

Note that (α, 2)-preserving G ∈ Gn with respect to the shortest path metric coincides precisely with the regular
definition of α-preserving G. Consider the classical notion of structure retaining embedding:
Definition 31 (Matoušek [2013]). Fix any α ≤ 1. A mapping f : (Z, σ) → (X , ρ) is called a 1

α -distortion, if there
exist c > 0 such that for all u, v ∈ Z:

αc · σ(u, v) ≤ ρ(f(u), f(v)) ≤ c · σ(u, v).

It is not hard to see that α-preservation is strictly weaker than 1
α -distortion.

Observation 32. For any α ≤ 1. If f constitutes an 1
α -distortion9 of Z , then for all R > 0, f is an (α,R)-preservation

of Z . In particular, if Z = G ∈ Gn is equipped with the shortest path metric, then f constitutes an α-preservation of G.

Proof. Let f be a (1/α)-distortion embedding. Then there exists c > 0 s.t. for all x, y ∈ Z: c · σ(x, y) ≤
ρ(f(x), f(y)) ≤ c

α · σ(x, y). Thus setting r := cR/α:

σ(u, v) < R =⇒ ρ(fG(v), fG(w)) < cR/α = r

σ(u, v) ≥ R =⇒ ρ(fG(v), fG(w)) ≥ cR = α · r.

To see that this weakness is strict, consider 1
α -distortion an n-point unit simplex in Rn. The doubling dimension of the

embedding will be Ω
( log(n)
log(α)

)
, whereas α-preservation takes 0 dimensions for R > 1 and 1 dimension for R ≤ 1.

B Omitted Proofs

B.1 Proofs from Preservation in General Metrics

Theorem 8. For any α ∈ (0, 2), we have the following.

(i) For all n ≥ 82, at least 1− 2−n/5 fraction of G ∈ Gn:

dimα(G) ≥ log (n)− 2 log(2)

2 log(8/α)
= Ω

(
log(n)

log(8/α)

)
.

(ii) For all even integers n ≥ 6 and k ≥ 4, at least 1−O(n−k+2) fraction of G ∈ Gk-reg
n :

dimα(G) ≥ log(n/(k + 1))

log

(
4
α

⌈
log(n−1)

log
(

k
2
√

k−1+1/2

)⌉) = Ω

(
log(n/k)

log logn
log k + log(4/α)

)
.

9Note that ( 1
α
< 1)-distortion is impossible by definition.
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Proof of Theorem 8(i). The proof proceeds by showing that 1− 2−Ω(n) fraction of graphs in Gn have diameter at most
2 and clique number at most 2

√
n. Then, applying Observation 10 and Lemma 11 yields the result.

Bounding ∆(G). Corollary 26 gives us that with probability at least 1− n2e−(n−1)/4 over a graph G drawn uniformly
from Gn, we have that ∆(G) ≤ 2.

Bounding |κ(G)|. For any fixed m ∈ [n] and S ⊆ V , define the random variables: (i) Xm as the number of (not
necessarily maximal) cliques of size m in a graph G drawn uniformly from Gn, and (ii) YS = 1

[
G|S is a clique

]
. Then

by Markov’s inequality:

PG∼unif(Gn)

[
|κ(G)| ≥ m

]
= PG∼G(n, 12 )

[
|κ(G)| ≥ m

]
= PG∼G(n, 12 )

[
Xm ≥ 1

]
≤ E[Xm]

=
∑

S⊆V :|S|=m

E[YS ] =
∑

S⊆V :|S|=m

(
1

2

)(m2 )
=

(
n

m

)(
1

2

)(m2 )
≤ nm2−(

m
2 ).

Thus by picking m =
⌈
2
√
n
⌉

gives that with probability at least 1− n(2
√
n) · 2−(

2
√

n
2 ), we have that |κ(G)| ≤ 2

√
n.

By combining these observations we have that (when n ≥ 82) for at least 1− 2−n/5 fraction of graphs in G ∈ Gn,

dimα(G) ≥ log(|P (G)|)
log(4∆(G)/α)

≥ log(n/|κ(G)|)
log(8/α)

≥ log (
√
n/2)

log(8/α)
=

log (n)− 2 log(2)

2 log(8/α)
.

Proof of Theorem 8(ii). We will upper bound the diameter and the size of the largest clique of most graphs in Gk-reg
n .

Then, again applying Observation 10 and Lemma 11 yields the result.

Bounding ∆(G). Invoking Lemma 27 gives us that with probability at least 1 − O(n−k+2) over a graph G drawn

uniformly from Gk-reg
n , we have that ∆(G) ≤

⌈
log(n−1)

log
(

k
2
√

k−1+1/2

)⌉.

Bounding |κ(G)|. Since no vertex has degree larger than k, all G ∈ Gk-reg
n has |κ(G)| ≤ k + 1.

By combining these observations, for any n ≥ 6 and k ≥ 4 even integers, we have that for at least 1 − O(n−k+2)

fraction of graphs in G ∈ Gk-reg
n ,

dimα(G) ≥ log(n/|κ(G)|)
log(4∆(G)/α)

≥ log(n/(k + 1))

log

(
4
α

⌈
log(n−1)

log
(

k
2
√

k−1+1/2

)⌉) = Ω

(
log(n/k)

log logk(n) + log(4/α)

)
.

Proof of Proposition 15. For any G = (V,E) ∈ Gn, let P (G) = {P1, . . . , Pm} be the m parts of the clique partition.

Case α < 1. Proposition 19 realizes (α < 1)-preservation in ℓ∞ in at most
⌈
log2(3)

⌈
log |P (G)|
log⌈1/α⌉

⌉⌉
(doubling)

dimensions.

Case α > 1. Fix any ϵ > 0 small enough such that ⌈ 1−ϵ
α−1+ϵ⌉ = ⌈ 1

α−1⌉. Consider an n-point space X (each point
corresponding to a node in V ), with distance ρ defined as (for any v, v′ ∈ V )

ρ(v, v′) :=


0 v = v′

α v ̸∼G v′

1− ϵ v ∼G v′, {v, v′} ̸⊆ Pi

σi(v, v
′) {v, v′} ⊆ Pi

,

where σi(v, v
′) is defined as follows. Let C(G|Pi

) = {Si1 , . . . , Sik} be the ik parts of the neighborhood partition
of G|Pi

. Recall that (see e.g. Observation 29) ik points can be (α − 1 + ϵ)-packed in a (1 − ϵ)-diameter open ball
ℓd∞ (for d = ⌈log(ik)/ log⌈ 1−ϵ

α−1+ϵ⌉⌉). Thus mapping all vertices in Pi to ik points such that all elements in the same
neighborhood part Sij are mapped to a single point and of different parts distance at least (α − 1 + ϵ) apart (but
contained within a (1− ϵ) diameter open ball), we can define σi(v, v

′) as per the distances induced by this mapping (in
ℓ∞). It is instructive to note that either σi(v, v

′) = 0 or α− 1 + ϵ ≤ σi(v, v
′) < 1− ϵ.
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It is not hard to see that ρ is a valid pseudo-metric on X . By standard metric identification one can make this into a
bona fide metric that constitutes an α-preservation of G. We will now determine this metric’s doubling dimension. Let
K := maxi ik be the maximum number of neighborhood parts for any Pi with i ∈ [m], then:

• Any ball of radius R < 1− ϵ contains points only from one part Pi for some i ∈ [m]. By construction it can
be covered by 2log2(3)⌈log(K)/ log⌈ 1−ϵ

α−1+ϵ ⌉⌉ balls of radius R/2.

• Any ball of radius R ≥ 1− ϵ can be covered by |P (G)| (open) balls of radius 1− ϵ, each containing points
from exactly one part. Again by construction, each such ball can be covered by 2log2(3)⌈log(K)/ log⌈ 1−ϵ

α−1+ϵ ⌉⌉

balls of radius (1− ϵ)/2. Hence we can cover the R radius ball by |P (G)| · 2log2(3)⌈log(K)/ log⌈ 1−ϵ
α−1+ϵ ⌉⌉ balls

of radius R/2.

Since ϵ > 0 is chosen small enough such that ⌈ 1−ϵ
α−1+ϵ⌉ = ⌈ 1

α−1⌉, any ball in our constructed metric space can always

be covered by at most |P (G)| · 2log2(3)⌈log(K)/ log⌈ 1
α−1 ⌉⌉ balls of half the radius. Thus, our construction has doubling

dimension
⌈
log2 |P (G)|+ log2(3)⌈log(K)/ log⌈ 1

α−1⌉⌉
⌉
.

Case α = 1. For any integer m > 0, by the construction for α > 1 case above, we know that for α = 1 + 1
m we can

α-preserve in a metric space Xm such that any ball is covered by at most |P (G)| · 2log2(3)⌈log(K)/ logm⌉ balls of half
the radius. Taking m → ∞ we have dim(α=1)(X∞) ≤ ⌈log2(3|P (G)|)⌉.

Proof of Corollary 16. Let ∆(G) < C for some constant C. Combining Lemmas 11 and 13 tells us

dimα(G) ≥ (1/2)
(
max
U

log |P (G|U )|
log(4∆(G|U )/α)

+ 11[α > 1] ·max
U

log
∣∣C(G|U )

∣∣
log( 4∆(G|U )

α−1 )

)
≥ (1/2)

(
max
U

log |P (G|U )|
log(4C/α)

+ 11[α > 1] ·max
U

log
∣∣C(G|U )

∣∣
log( 4C

α−1 )

)
= (1/2)

( log |P (G)|
log(4C/α)

+ 11[α > 1] ·
log
∣∣C(G)

∣∣
log( 4C

α−1 )

)
,

where the last line follows from monotonicity of clique and neighborhood partitions; for U ⊆ W ,
|P (G|U )| ≤ |P (G|W )| and |C(G|U )| ≤ |C(G|W )|. Meanwhile, Proposition 15 tells us

dimα(G) = O
( log |P (G)|

log(4/α)
+ 11[α > 1] ·

maxS∈P (G) log |C(G|S)|
log( 8

α−1 )

)
.

Monotonicity tells us maxS∈P (G) log |C(G|S)| ≤ log |C(G)|, completing the proof.

B.2 Proofs from Preservation in Normed Spaces

Theorem 17. We have the following.

(i) (General normed spaces) Let L be the collection of all normed spaces. For all α ∈ (1, 2) and n ≥ 82, we
have that for at least 1− 2−n/6 fraction of G ∈ Gn:

dimα(G,L) ≥ n

3 log2(
16

α−1 )
= Ω

(
n

log( 16
α−1 )

)
.

(ii) (Euclidean spaces) For α = 1 and n ≥ 0, we have that for at least 1− 2−n fraction of G ∈ Gn,

dim(α=1)(G, ℓ2) ≥
n

15
− 1

4
.
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Proof of Theorem 17(i). Consider the set S ⊂ Gn of all graphs with diameter at most 2. If n ≥ 82, we have (see
Corollary 26) |S| ≥ (1−n2e−(n−1)/4)|Gn| ≥ (1− 2−n/5)|Gn| ≥ 2(

n
2)/2. A straightforward application of Lemma 34

on S yields that there exists at least one graph that must require at least
((n2)−1) log(2)

n log(16/(α−1)) = Ω(n/ log( 16
α−1 )) (doubling)

dimensions to (α > 1)-preserve any normed space. But we can do better.

Define the set of “low-embedding” graphs:

T :=
{
G ∈ Gn

∣∣dimα(G,L) ≤ (n/3) log(2)

log(16/(α− 1))
=: d

}
.

Assume towards contradiction that |T | ≥ 2−n/6|Gn|. Then observe that |T ∩ S| = |T \ Sc| ≥ |T | − |Sc| ≥
(2−n/6 − 2−n/5)|Gn| ≥ 2−n/5|Gn| = 2(

n
2)−(n/5) (when n ≥ 82). Thus dimα(T ∩ S,L) ≤ dimα(T,L) ≤ d (see

Proposition 7), but by Lemma 34 dimα(T ∩ S,L) ≥ ((n2)−
n
5 ) log(2)

n log(16/(α−1)) > d (for n ≥ 5). This implies there exists a graph
G ∈ T ∩ S ⊆ T where dimα(G) > d, arriving at a contradiction.

Therefore10 (when n ≥ 82), at least (1− 2−n/6) fraction of graphs in Gn require at least d = (n/3) log(2)
log(16/(α−1)) (doubling)

dimensions to be (α > 1)-preserved in any normed space.

Observation 33. Let S ⊆ Gn. Suppose f : S → Xn α-preserves S in a normed space X . Then there exists
f ′ : S → Xn which α-preserves S such that for all G ∈ S

• (equal scaling) The neighborhood threshold for f ′(G) is exactly 1 (c.f. Definition 1).

• (centeredness) (1/n)
∑

v∈V f ′
G(v) = 0⃗.

Lemma 34. Let L be the collection of all normed spaces. For any set S ⊆ Gn of graphs on n vertices with diameter at
most R, and any α ∈ (1, 2),

dimα(S,L) ≥
log |S|

n log(8R/(α− 1))
.

Proof. WLOG assume R < ∞, and f : S → Xn be an (α > 1)-preserving map into a normed space (X , ∥ · ∥) such
that for all G ∈ S, f(G) produces an embedded centered at the origin and has the neighborhood threshold of 1 (c.f.
Observation 33). Let BR(⃗0) ⊂ X be the open ball of radius R about the origin. Observe that {fG(v) : G ∈ S, v ∈
V } ⊂ BR(⃗0), since for all G ∈ S and v ∈ V ,

∥fG(v)∥ =

∥∥∥∥fG(v)− 1

n

∑
u∈V

fG(u)

∥∥∥∥ ≤ (1/n)
∑
u∈V

∥fG(v)− fG(u)∥ ≤ diam(f(G)) < 1 ·∆(G) ≤ R.

Fix an ((α − 1)/4)-cover N of BR(⃗0). Per Observation 3, we may assume |N | ≤ (8R/(α − 1))dim(X ). Define the
projection map Φ : Xn → Nn by Φ((xi)i∈[n]) = (argminp∈N ∥p − xi∥)i∈[n], where ties are broken in an arbitrary
but consistent way.

Consider the map from graphs to their projections onto the net, Φ◦f : S → Nn. We claim this map is injective. Suppose,
for sake of contradiction, it was not injective. Then there exists distinct G,G′ ∈ S such that Φ(f(G)) = Φ(f(G′)).
Let (u, v) be a pair on which G and G′ disagree on an edge. Without loss of generality, we may assume u ≁G v and
u ∼G′ v, thus

∥fG(u)− fG(v)∥ ≥ α and ∥fG′(u)− fG′(v)∥ < 1.

For convenience, let Φ(p) ∈ N denote the projection of a point p onto the net. Then by assumption we have
Φ(fG(u)) = Φ(fG′(u)) =: Nu and Φ(fG(v)) = Φ(fG′(v)) =: Nv . Then we have

∥fG(u)− fG(v)∥ ≤ ∥fG(u)−Nu∥+ ∥Nu − fG′(u)∥+ ∥fG′(u)− fG′(v)∥+ ∥fG′(v)−Nv∥+ ∥Nv − fG(v)∥

<
α− 1

4
+

α− 1

4
+ 1 +

α− 1

4
+

α− 1

4
= α.

This contradicts the fact that ∥fG(u)− fG(v)∥ ≥ α and thereby establishes injectivity. Therefore we have

|S| ≤ |Nn| = |N |n =
( 8R

α− 1

)n dim(X )

.

10The constants in the proof can be improved.
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Rearranging the expression, we have that, for any f which (α > 1)-preserves S in a normed space X , the doubling
dimension of X is at least log |S|

n log(8R/(α−1)) .

Proof of Theorem 17(ii). A theorem in Section 3.1 of [Reiterman et al., 1989] says that for n ≥ 38, (1− 1
n )-fraction

of G ∈ Gn have sphericity at least n/15− 1. This lower bound carries over for for (α = 1)-preservation in ℓ2, since
dim(ℓd2) ≤ d. We strengthen this result by showing the lower bound applies to (1 − 1

2n )-fraction of Gn. We use a
similar argument which relies on upper bounds for consistent sign assignments of bounded-degree polynomials.

We specialize Lemma 35 to the p = 2 case. Fix any S ⊆ Gn with S ≥ 2−n|Gn| such that some f : Gn → ℓd2
(α = 1)-preserves S. Then by Lemma 35:

|S| ≤
(
4e(n− 1)

d

)nd

=⇒ 2(
n
2)−n = 2−n|Gn| ≤

(
4e(n− 1)

d

)nd

⇐⇒
(
n− 3

2

)
log 2 ≤ d log

(
4e(n− 1)

d

)
= d

(
log

(
e(n− 1) log 2

10d

)
+ log

(
40

log 2

))
=⇒

(
n− 3

2

)
log 2 ≤

(
n− 1

10

)
log 2 + d log

(
40

log 2

)
⇐⇒ d ≥ 2n− 7

5 log2

(
40

log 2

) ≥ n

15
− 1

4
.

Thus no more than 2−n fraction of Gn can be (α = 1)-preserved in ℓd2 for d < n
15 − 1

4 . To finish the proof, it is noted
that the doubling dimension of ℓd2 is at least d.

Lemma 35. For p ≥ 2 even integer and S ⊆ Gn, if there exists f : Gn → ℓdp that (α = 1)-preserves S, then:

|S| ≤
(
2ep(n− 1)

d

)nd

.

Proof. For any G = (V,E) ∈ S. Since f (α = 1)-preserves G, there exists r > 0 and fG : V → Rd such that:

(u, v) ∈ E =⇒ ∥fG(u)− fG(v)∥p < r

(u, v) ̸∈ E =⇒ ∥fG(u)− fG(v)∥p ≥ r.

Pick ϵn > 0 such that for all G = (V,E) ∈ S and (u, v) ∈ E, ∥fG(u)− fG(v)∥q < r − ϵn which exists since |S| and
n < ∞ are finite. Then,

{Puv(x, x
′) = ∥x− x′∥pp − r + ϵn | x, x′ ∈ Rd, u, v ∈ V, u ̸= v}

is a set of
(
n
2

)
polynomials (since p is even) over nd variables with the property that for all u, v ∈ V, u ̸= v:

(i) If (u, v) ∈ E, then Puv(fG(u), fG(v)) < 0.

(ii) If (u, v) ̸∈ E, then Puv(fG(u), fG(v)) > 0.

Therefore, each G ∈ S will produce a unique non-zero sign assignment of {Puv|u, v ∈ V, u ̸= v}, so by Lemma 36:

|S| ≤

(
4ep
(
n
2

)
nd

)nd

=

(
2ep(n− 1)

d

)nd

.
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Lemma 36 (Warren [1968]). If {p1, . . . , pm} is a set of polynomials of degree at most D ≥ 1 in N variables
with m ≥ N , then the number of consistent non-zero sign assignments to the pi is at most (4eDm/N)N , that is,∣∣∣{(sign(p1(x)), . . . , sign(pm(x))

)
: x ∈ RN s.t. pi(x) ̸= 0 for i ∈ [m]

}∣∣∣ ≤ (4eDm/N
)N

.

Proof of Proposition 20. Fix any G ∈ Gn, and let P (G) = {P1, . . . , Pm} be the m parts of its clique partition.
WLOG, assume each vertex in G has degree at least 1 (since isolated vertices can be embedded separately).

Case α ∈ (0, 1√
2
). A simple α-packing of m points in a unit ℓ2 ball achieves the desired α-preserving embedding.

Specifically, by Observation 29(ii) (take n = m, r = 1 and ϵ = α) we know that m points can be α-packed in an (open)
unit ball in ℓd2 with d = ⌈ 4 log(m+1)

2−4α2 ⌉. Thus, the mapping where all vertices of the partition Pi of the input graph G is
mapped to the i-th point of the packing in unit ball yields an α-preserving embedding in ℓ2, with (doubling) dimension
at most

⌈
log2(5)

⌈
4 log(|P (G)|+1)

2−4α2

⌉⌉
.

Case α ∈ ( 1√
3
, 1). A low-distortion embedding of a regular simplex of m points in ℓ2 can be used to get a good

(α < 1)-preservation. In particular, consider a regular unit simplex of m points in ℓ2. By Lemma 28 we know that for

any 0 < ϵ ≤ 1
2 , a

√
1+ϵ
1−ϵ -distortion embedding of these m points exists in ℓd2 with d = ⌈ 12

ϵ2 logm⌉. Hence by picking

ϵ = 1−α2

1+α2 , we get an α-distortion and therefore an α-preservation in ℓd2 for α ∈ ( 1√
3
, 1), cf. Observation 32.

Case α ∈
[
1, 1√

1−min(1,(1/4λG))

)
. Fix an arbitrary G ∈ Gn. Let A = A(G) be the adjacency matrix of G with

maximum eigenvalue λG, and let Ac be the adjacency matrix of the complement graph. Define D := Ac + (1− 1
λG

)A
as a squared interpoint distance matrix over the n vertices. Using a theorem of Schoenberg [Bavaud, 2011], we can
verify that the (non-squared) distances of D are ℓn2 isometrically embeddable: for u ∈ Rn with ∥u∥2 = 1 and 1Tu = 0,
we have

uTDu = uT
(

11T − In − 1

λG
A
)
u = −∥u∥22 −

1

λG
uTAu ≤ −1 +

1

λG
|uTAu| ≤ 0.

Hence the same ℓn2 embedding is also an
(
α′ = (1− 1/λG)

−1/2
)
-preservation of G: if i ̸∼ j, then Dij = 1, whereas

if i ∼ j, then Dij = (1 − 1/λG)
−1/2. Given this realization of points in Rn, we can apply Lemma 28 (with

ϵ = 1
4λG

≤ 1
4 ; note that λG is at least the average vertex degree, which is at least 1 in this graph by assumption) to

conclude neighborhood preservation of G is possible in Rd with d = ⌈12 · 16λ2
G log n⌉ with a slight degradation in

the α-parameter. In particular, α-preservation is possible in Rd for α ∈
(
1,
(
1 − 1

4λG

)−1/2
)
⊆
(
1, α′

√
1−ϵ
1+ϵ

)
, cf.

Observation 32. The extra factor of log2(5) is an artifact of switching from ℓ2 dimension to doubling dimension. The
proposition statement follows by replacing G with G/C(G) (see proof of Proposition 19 for the definition), therefore n
with |C(G)|, in the argument.

Case α > (1− 1
⌊n/2⌋ )

−1/2. For simplicity of our discussion assume n is even, and consider a complete bipartite graph
G ∈ Gn with parts S0 and S1 each containing n/2 vertices. For convenience label the vertices 1, . . . , n (in any order).

We shall show that if an α-preservation of G exists in ℓ2 then necessarily α ≤ (1 − 1
⌊n/2⌋ )

−1/2. Let {x1, . . . , xn}
be an α-preservation of this graph in ℓ2 with neighborhood threshold r (see Definition 1). WLOG we can assume
the embedding resides in Rn. Let u ∈ Rn be such that ui = 1[i ∈ S0] − 1[i ∈ S1]. Clearly uT 1 = 0. Then by
a theorem of Schoenberg [Bavaud, 2011], uTDu ≤ 0, where D ∈ Rn×n is the squared interpoint distance matrix:
Dij = ∥xi − xj∥22. By definition of u, this implies

∑
i̸∼j Dij ≤

∑
i∼j Dij . Applying the definition of α-preservation

(i.e. embedded pairwise distance of any edge-connected pair of vertices is at most r, otherwise is at least αr), and
counting the number of edges and non-edges we have

α2r2(n2/2− n) ≤
∑
i ̸∼j

Dij ≤
∑
i∼j

Dij ≤ r2n2/2.

The requirement on α for ℓ2 preservation follows. When n ≥ 4 is odd, a similar analysis holds: let G be a complete
bipartite graph on n− 1 (even) vertices and let the remaining n-th vertex have no edges. Define u the same as before
with un = 0. The same analysis yields the stated restriction on α.
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B.3 Proofs from Preservation of Clustered Data

Theorem 23. Fix n ≥ k ≥ 1 and let {S1, . . . , Sk} be a partition of V (of size n). Let c ≥ 1 be such that
maxi∈[k] |Si| ≤ cn

k , and 0 < q ≤ p ≤ 1 with q < 1. Then for all α ∈ (0, 2) with probability at least
1− exp(−Ω(nmin(2(p+q−pq),1))) over G ∼ PPp,q(S1, . . . , Sk):

dimα(G) ≥ 1

log (8/α)

(
(1− ξp,q) log n+ ξp,q log(k/2c)

)
,

where ξp,q := p− q + pq encodes the cluster saliency of the planted partition model.

Proof of Theorem 23. The proof of the theorem follows from showing (for any G = (V,E) ∼ PPp,q(S1, . . . , Sk)):
(i) ∆(G) ≤ 2 with probability at least 1 − exp(−Ω(n)), and (ii) |κ(G)| ≤

(
2cn
k

)ξp,q with probability at least
1− exp(−Ω(n2p+2q−2pq)). Thus by applying Lemma 11 and Proposition 10 we get that for G ∼ PPp,q(S1, . . . , Sk):

P
[
dimα(G) <

1

log (8/α)
log

(
n

(2cn/k)ξp,q

)]
≤ P

[
G has |κ(G)| >

(
2cn

k

)ξp,q

or ∆(G) > 2

]
≤ exp(−Ω(n2p+2q−2pq)) + exp(−Ω(n)) ≤ exp(−Ω(nmin(2p+2q−2pq,1))).

Bounding the diameter. The diameter bound follows directly from Lemma 25: (since 0 ≤ q ≤ p) with probability at
least 1− n2e−q2(n−1), the diameter of G is at most 2.

Bounding the clique number. We bound the probability that G ∼ PPp,q(S1, . . . , Sk) contains a clique of size greater
than m := ⌈

(
2cn
k

)p+q−pq⌉. For any S ⊆ V and G = (V,E) ∼ PPp,q(S1, . . . , Sk), define the random variables
YS := 1[G|S is a clique]. Then Cm :=

∑
S⊆V :|S|=m YS is the number of m-sized cliques in G. Therefore:

PG∼PPp,q(S1,...,Sk)

[
G contains an m sized clique

]
= P[Cm ≥ 1] ≤ E[Cm] =

∑
S⊆V :|S|=m

E[YS ]

=
∑

S⊆V :|S|=m

P(G|S is a clique)

=
∑

S⊆V :|S|=m

p(
|S∩S1|

2 )+···+(|S∩Sk|
2 )q

∑
1≤i<j≤k |S∩Si|·|S∩Sj |

= q(
m
2 )

∑
S⊆V :|S|=m

(p/q)(
|S∩S1|

2 )+···+(|S∩Sk|
2 ),

where
(∑

i xi

2

)
=
∑

i

(
xi

2

)
+
∑

i<j xixj holds for all x1, . . . , xn non-negative integers. Define:

A := {S ⊆ V : |S| = m,∃i ∈ [k] s.t. |S ∩ Si| > m/2},
B := {S ⊆ V : |S| = m,∀i ∈ [k] s.t. |S ∩ Si| ≤ m/2}.

Note that A ⊔B = {S ⊆ V : |S| = m}. Continuing onwards, we have

= q(
m
2 )

(∑
S∈A

(p/q)(
|S∩S1|

2 )+···+(|S∩Sk|
2 ) +

∑
S∈B

(p/q)(
|S∩S1|

2 )+···+(|S∩Sk|
2 )

)
≤ q(

m
2 )
(
|A|(p/q)(

m
2 ) + |B|(p/q)(m2

4 −m
2 )
)
,

where for the first exponent, we use
∑

i

(
xi

2

)
≤
(∑

i xi

2

)
, and for the second exponent, we use Hölder’s inequality:

⟨x, y⟩ ≤ ∥x∥∞∥y∥1, therefore
∑

i

(|S∩Si|
2

)
= 1

2

∑
i(|S ∩ Si| − 1)|S ∩ Si| ≤ 1

2

(
m
2 − 1

)
m. We can upper bound |B|

by
(
n
m

)
and |A| by

(
n
m

)
· 1[m2 < cn

k ] because maxi |S ∩ Si| ≤ maxi |Si| ≤ cn/k. Thus,

≤ q(
m
2 )
((n

m

)
(p/q)(

m
2 ) · 11

[
m <

2cn

k

]
+

(
n

m

)
(p/q)(

m2

4 −m
2 )
)

=

(
n

m

)
p(

m
2 )
(
11
[
m <

2cn

k

]
+ (q/p)m

2/4
)
.
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From here we can evaluate two cases:

• If m = ⌈
(
2cn
k

)p+q−pq⌉ ≥ 2cn/k, then our bound is
(
n
m

)
qm

2/4pm
2/4−m/2 = exp(−Ω(n2p+2q−2pq)).

• If m = ⌈
(
2cn
k

)p+q−pq⌉ < 2cn/k, then it must be the case that p < 1, so our upper bound becomes(
n
m

)(
p(

m
2 ) + p(

m2

4 −m
2 )qm

2/4
)
= exp(−Ω(n2p+2q−2pq)).

Therefore, PG∼PPp,q(S1,...,Sk)

[
|κ(G)| ≥ m

]
≤ exp(−Ω(n2p+2q−2pq)).

Proof of Proposition 24. For any i ∈ [k] and u, v ∈ Si, the probability that N(u) = N(v) (see Definition 12) is at
most

(p2 + (1− p)2)|Si| · (q2 + (1− q)2)n−|Si| ≤ (q2 + (1− q)2)n(1−c/k) ≤ max(q, 1− q)2n(1−c/k).

For any u ∈ Si and v ∈ Sj with i ̸= j, the probability that N(u) = N(v) is at most

(pq + (1− p)(1− q))|Si|+|Sj | · (q2 + (1− q)2)n−|Si|−|Sj | ≤ max(q, 1− q)2n.

Applying Lemma 25, with probability at least 1 − n2
(
max(q, 1− q)2n(1−c/k) + e−q2(n−1)

)
, we have |C(G)| = n

and ∆(G) ≤ 2. The lower bound follows from applying Lemma 13.
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