Distance Preserving Embeddings for General *n***-Dimensional Manifolds**

Nakul Verma UC San Diego naverma@cs.ucsd.edu

Want to study

Manifold embeddings with *provable* guarantees.

Formally

Let X be a sample from an underlying *n*-dimensional manifold $M \subset \mathbb{R}^D$, and let \mathcal{A} be an embedding of M from \mathbf{R}^{D} to \mathbf{R}^{d} .

Define quality of embedding of as $(1 \pm \epsilon)$ -isometric, if $(1 - \epsilon) \le \frac{\operatorname{dist}(\mathcal{A}(p), \mathcal{A}(q))}{\operatorname{dist}(p, q)} \le (1 + \epsilon)$

(we are interested in geodesic distances)

Embedding Technique

Inspired by Nash's Theorem, we divide the embedding in two stages:

Embedding Stage

Map the given manifold *M* in a lower dimensional space, *without* having to worry about preserving distances.

This initial embedding distorts interpoint distances, but should not introduce any kinks, tears or discontinuities.

A good way is to apply a *random projection*

Proof (sketch)

Length along any path γ on a manifold is given by: $\int \|\gamma'(s)\| ds$

Length of a curve is infinitesimal sum of

the length of tangent vectors along its path

To argue that our embedding preserves distances up to a factor of $(1 \pm \epsilon)$, it suffices to argue that the *lengths of* tangent vectors across the manifold are distorted no more than by the same factor.

How to analyze the effects of stages Φ and Ψ on tangent vectors?

Questions:

- > Can one come up with an embedding algorithm \mathcal{A} That $\operatorname{achieves}(1 \pm \epsilon)$ -isometry for all points in M (not just X)?
- > How much can one reduce the target dimension d and still have $(1 \pm \epsilon)$ -isometry?
- > What kinds of restrictions (if any) does one need on M and X?

Previous work

Algorithms

- **Theorem (IsoMap):** Let X be a sample from an ndimensional manifold M that is isometric to some convex subset of \mathbb{R}^n .
- As $|X| \to \infty$, IsoMap can recover the *n*-dimensional parameterization of *M* (upto rigid transformations).

Correction Stage

Fix the distorted distances (from the first stage) by applying *local corrections* to the embedded *M*.

Care needs to be taken so that the corrections don't interfere with each other.

A good way is to apply *spirals*

Example:

A low-dimensional

dimensional space

Embedding of *M* by a random projection: tail-ends are manifold in some high distorted more than center.

Algorithm

Input: Sample X from M, local neighborhood size ρ .

Need to study the **derivative** or the **pushforward** map.

For any smooth function F that maps M to F(M), there exists a derivative map DF that maps vectors tangent to M to vectors tangent to F(M).

Effects of Φ

Fix distances by

applying spirals

First argue that a random linear projection can shrink the lengths of tangent vectors by at most a constant amount (with high probability).

Effects of Ψ JJ

Theorem (random projections): For any $\epsilon > 0$. A random projection of *n*-dimensional manifold into a random subspace of dimension $d \geq \tilde{O}(\frac{n}{\epsilon^2})$ is an $(1 \pm \epsilon)$ isometric embedding (with high probability).

works large class of smooth (well-conditioned) manifolds!

severe dependence on ϵ . If want all distances to be within 1%, d > 10,000!

Differential Geometry

Theorem (Nash'54): An *n*-dimensional manifold can be *isometrically* embedded in \mathbb{R}^{2n+1} .

Let Φ denote the initial random projection in O(n) dim.

Preprocess:

- For each $x \in X$, let F_x be the local tangent space approximation using neighborhood size ρ .
- Let $U_x \Sigma_x V_x^{\mathsf{T}}$ be the SVD of ΦF_x .
- Estimate local correction around *x* as:

 $C_x := (\Sigma_r^{-2} - I)^{1/2} U_r^{\mathsf{T}}$

Embedding: For any $p \in M$

- $t = \Phi p$.
- for every $x \in X$:
 - let $\Psi_{i-1}(t)$ be the embedding from previous iteration.
 - let η and ν be vectors normal to $\Psi_{i-1}(t)$.
 - let Λ_{y} be a localizing kernel.
 - apply correction
 - $\Psi_i = \Psi_{i-1} + \eta \sqrt{\Lambda_x} \sin(C_x t) + \nu \sqrt{\Lambda_x} \cos(C_x t)$
- return $\Psi_{|X|}(t)$

Guarantee

For a fixed tangent vector, suppose its length was shrunk by a factor of *L*, how can we restore back its length?

Consider applying a spiral map: $\Psi: t \mapsto (t, \sin(Ct), \cos(Ct))$

C is the correction size.

Tangent vector lengths change by the factor: $||D\Psi|| = ||d\Psi/dt|| = \sqrt{1 + C^2}$

: setting $C = (L^{-2} - 1)^{1/2}$ restores the lengths!

We localize the effect of a single (local) correction by applying a localizing kernel Λ

a spiral correction

localizing kernel localized correction

×

uses manifold curvature tensor information, which is not accessible from samples.

Theorem: Fix an *n*-dimensional manifold $M \subset \mathbb{R}^D$. For

any $\epsilon > 0$, let X be a $O(D/\epsilon)^n$ -dense sample of M.

The above embedding procedure yields $(1 \pm \epsilon)$ -isometric embedding of M in O(n) dimensions.

We argue that the combined effect of different local corrections restores the lengths of all tangent vectors

uniformly over the entire manifold.