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Abstract

It is well known from differential geometry that ann-dimensional Riemannian manifold can be iso-
metrically embedded in a Euclidean space of dimension2n+1 [Nas54]. Though the proof by Nash
is intuitive, it is not clear whether such a construction is achievable by an algorithm that only has
access to a finite-size sample from the manifold. In this paper, we study Nash’s construction and
develop two algorithms for embedding a fairly general classof n-dimensional Riemannian mani-
folds (initially residing inRD) into R

k (wherek only depends on some key manifold properties,
such as its intrinsic dimension, its volume, and its curvature) that approximately preserves geodesic
distances between all pairs of points. The first algorithm wepropose is computationally fast and
embeds the given manifold approximately isometrically into aboutO(2cn) dimensions (wherec is
an absolute constant). The second algorithm, although computationally more involved, attempts to
minimize the dimension of the target space and (approximately isometrically) embeds the manifold
in aboutO(n) dimensions.

1 Introduction

Finding low-dimensional representations of manifolds hasproven to be an important task in data analysis and
data visualization. Typically, one wants a low-dimensional embedding to reduce computational costs while
maintaining relevant information in the data. For many learning tasks, distances between data-points serve as
an important approximation to gauge similarity between theobservations. Thus, it comes as no surprise that
distance-preserving orisometricembeddings are popular.

The problem of isometrically embedding a differentiable manifold into a low dimensional Euclidean
space has received considerable attention from the differential geometry community and, more recently, from
the manifold learning community. The classic results by Nash [Nas54, Nas56] and Kuiper [Kui55] show that
any compact Riemannian manifold of dimensionn can be isometricallyC1-embedded1 in Euclidean space of
dimension2n+ 1, andC∞-embedded in dimensionO(n2) (see [HH06] for an excellent reference). Though
these results are theoretically appealing, they rely on delicate handling of metric tensors and solving a system
of PDEs, making their constructions difficult to compute by adiscrete algorithm.

On the algorithmic front, researchers in the manifold learning community have devised a number of
spectral algorithms for finding low-dimensional representations of manifold data [TdSL00, RS00, BN03,
DG03, WS04]. These algorithms are often successful in unravelling non-linear manifold structure from
samples, but lack rigorous guarantees that isometry will bepreserved for unseen data.

Recently, Baraniuk and Wakin [BW07] and Clarkson [Cla07] showed that one can achieve approximate
isometry via the technique of random projections. It turns out that projecting ann-dimensional manifold
(initially residing inRD) into a sufficiently high dimensional random subspace is enough to approximately
preserveall pairwise distances. Interestingly, this linear embeddingguarantees to preserve both the ambient
Euclidean distances as well as the geodesic distances between all pairs of points on the manifold without
even looking at the samples from the manifold. Such a strong result comes at the cost of the dimension
of the embedded space. To get(1 ± ǫ)-isometry2, for instance, Baraniuk and Wakin [BW07] show that
a target dimension of size aboutO

(
n
ǫ2 log

V D
τ

)
is sufficient, whereV is then-dimensional volume of the

manifold andτ is a global bound on the curvature. This result was sharpenedby Clarkson [Cla07] by

1A Ck-embedding of a smooth manifoldM is an embedding ofM that hask continuous derivatives.
2A (1± ǫ)-isometry means that all distances are within a multiplicative factor of(1± ǫ).



Figure 1: A simple example demonstrating Nash’s embedding technique on a1-manifold. Left: Original 1-manifold
in some high dimensional space. Middle: A contractive mapping of the original manifold via a linear projection onto
the vertical plane. Different parts of the manifold are contracted by different amounts – distances at the tail-ends are
contracted more than the distances in the middle. Right: Final embedding after applying a series of spiralling corrections.
Small spirals are applied to regions with small distortion (middle), large spirals are applied to regions with large distortions
(tail-ends). Resulting embedding is isometric (i.e., geodesic distance preserving) to the original manifold.

completely removing the dependence on ambient dimensionD and partially substitutingτ with more average-
case manifold properties. In either case, the1/ǫ2 dependence is troublesome: if we want an embedding with
all distances within99% of the original distances (i.e.,ǫ = 0.01), the bounds require the dimension of the
target space to be at least 10,000!

One may wonder whether the dependence onǫ is really necessary to achieve isometry. Nash’s theorem
suggests that anǫ-free bound on the target space should be possible.

1.1 Our Contributions

In this work, we elucidate Nash’sC1 construction, and take the first step in making Nash’s theorem algorith-
mic by providing two simple algorithms for approximately isometrically embeddingn-manifolds (manifolds
with intrinsic dimensionn), where the dimension of the target space isindependentof the ambient dimension
D and the isometry constantǫ. The first algorithm we propose is simple and fast in computing the target
embedding but embeds the givenn-manifold in about2cn dimensions (wherec is an absolute constant).
The second algorithm we propose focuses on minimizing the target dimension. It is computationally more
involved but embeds the givenn-manifold in aboutO(n) dimensions.

We would like to highlight that both our proposed algorithmswork for a fairly general class of manifolds.
There is no requirement that the originaln-manifold is connected, or is globally isometric (or even globally
diffeomorphic) to some subset ofRn as is frequently assumed by several manifold embedding algorithms.
In addition, unlike spectrum-based embedding algorithms available in the literature, our algorithms yield an
explicitC∞-embedding that cleanly embeds out-of-sample data points,and provide isometry guarantees over
the entire manifold (not just the input samples).

On the technical side, we emphasize that the techniques usedin our proof are different from what Nash
uses in his work; unlike traditional differential-geometric settings, we can only access the underlying mani-
fold through a finite size sample. This makes it difficult to compute quantities (such as the curvature tensor
and local functional form of the input manifold, etc.) that are important in Nash’s approach for constructing
an isometric embedding. Our techniques do, however, use various differential-geometric concepts and our
hope is to make such techniques mainstream in analyzing manifold learning algorithms.

2 Nash’s Construction forC1-Isometric Embedding

Given ann-dimensional manifoldM (initially residing inRD), Nash’s embedding can be summarized in two
steps (see also [Nas54]). (1) Find a contractive3 mapping ofM in the desired dimensional Euclidean space.
(2) Apply an infinite series of corrections to restore the distances to their original lengths.

In order to maintain the smoothness, the contraction and thetarget dimension in step one should be chosen
carefully. Nash notes that one can use Whitney’s construction [Whi36] to embedM in R

2n+1 without
introducing any kinks, tears, or discontinuities in the embedding. This initial embedding, which does not
necessarily preserve any distances, can be made into a contraction by adjusting the scale.

The corrections in step two should also be done with care. Each correction stretches out a small region of
the contracted manifold to restore local distances as much as possible. Nash shows that applying a successive
sequence of spirals4 in directions normal to the embeddedM is a simple way to stretch the distances while
maintaining differentiability. The aggregate effect of applying these “spiralling perturbations” is a globally-
isometric mapping ofM in R

2n+1. See Figure 1 for an illustration.

3A contractive mapping or a contraction is a mapping that doesn’t increase the distance between points.
4A spiral map is a mapping of the formt 7→ (t, sin(t), cos(t)).
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Remark 1 Adjusting the lengths by applying spirals is one of many waysto do local corrections. Kuiper
[Kui55], for instance, discusses an alternative way to stretch the contracted manifold by applying corruga-
tions and gets a similar isometry result.

2.1 Algorithm for Embedding n-Manifolds: Intuition

Taking inspiration from Nash’s construction, our proposedembedding will also be divided in two stages. The
first stage will attempt to find a contractionΦ : RD → R

d of our givenn-manifoldM ⊂ R
D in low dimen-

sions. The second will apply a series of local correctionsΨ1,Ψ2, . . . (collectively refered to as the mapping
Ψ : Rd → R

d+k) to restore the geodesic distances.

Contraction stage: A pleasantly surprising observation is that a random projection of M into d = O(n)
dimensions is a bona fide injective, differential-structure preserving contraction with high probability (details
in Section 5.1). Since we don’t require isometry in the first stage (only a contraction), we can use a random
projection as our contraction mappingΦ without having to pay the1/ǫ2 penalty.

Correction stage: We will apply several corrections to stretch-out our contracted manifoldΦ(M). To un-
derstand a single correctionΨi better, we can consider its effect on a small section ofΦ(M). Since, locally,
the section effectively looks like a contractedn dimensional affine space, our correction map needs to restore
distances over thisn-flat. LetU := [u1, . . . , un] be ad × n matrix whose columns form an orthonormal
basis for thisn-flat inR

d and lets1, . . . , sn be the corresponding shrinkages along then directions. Then one
can consider applying ann-dimensional analog of the spiral mapping:Ψi(t) := (t,Ψsin(t),Ψcos(t)), where
Ψsin(t) := (sin((Ct)1), . . . , sin((Ct)n)) andΨcos(t) := (cos((Ct)1), . . . , cos((Ct)n)). HereC serves as
ann × d “correction” matrix that controls how much of the surface needs to stretch. It turns out that if one
setsC to be the matrixSUT (whereS is a diagonal matrix with entrySii :=

√

(1/si)2 − 1, recall thatsi
was the shrinkage along directionui), then the correctionΨi precisely restores the shrinkages along then
orthonormal directions on the resultant surface (see our discussion in Section 5.2 for details).

Since different parts of the contracted manifold need to be stretched by different amounts, we localize
the effect ofΨi to a small enough neighborhood by applying a specific kind of kernel function known as a
“bump” function in the analysis literature (details in Section 5.2, cf. Figure 5 middle). Applying different
Ψi’s at different parts of the manifold should have an aggregate effect of creating an (approximate) isometric
embedding.

We now have a basic outline of our algorithm. LetM be ann-dimensional manifold inRD. We first
find a contraction ofM in d = O(n) dimensions via a random projection. This preserves the differential
structure but distorts the interpoint geodesic distances.We estimate the distortion at different regions of the
projected manifold by comparing a sample fromM with its projection. We then perform a series of spiral
corrections—each applied locally—to adjust the lengths in the local neighborhoods. We will conclude that
restoring the lengths in all neighborhoods yields a globally consistent (approximately) isometric embedding
of M . Figure 4 shows a quick schematic of our two stage embedding with various quantities of interest.

Based on exactlyhow these different localΨi’s are applied gives rise to our two algorithms. For the
first algorithm, we shall applyΨi maps simultaneously by making use of extra coordinates so that different
corrections don’t interfere with each other. This yields a simple and computationally fast embedding. We
shall require about2cn additional coordinates to apply the corrections, making the final embedding size of
2cn (herec is an absolute constant). For the second algorithm, we will follow Nash’s technique more closely
and applyΨi maps iteratively in the same embedding space without the useof extra coordinates. Since all
Ψi’s will share the same coordinate space, extra care needs to be taken in applying the corrections. This will
require additional computational effort in terms of computing normals to the embedded manifold (details
later), but will result in an embedding of sizeO(n).

3 Preliminaries

LetM be a smooth,n-dimensional compact Riemannian submanifold ofR
D. Since we will be working with

samples fromM , we need to ensure certain amount of regularity. Here we borrow the notation from Niyogi
et al. [NSW06] about the condition number ofM .

Definition 1 (condition number [NSW06]) LetM ⊂ R
D be a compact Riemannian manifold. The condi-

tion number ofM is 1
τ , if τ is the largest number such that the normals of lengthr < τ at any two distinct

pointsp, q ∈M don’t intersect.

The condition number1/τ is an intuitive notion that captures the “complexity” ofM in terms of its
curvature. We can, for instance, bound the directional curvature at anyp ∈ M by τ . Figure 2 depicts the
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Figure 2: Tubular neighborhood of a manifold. Note that the normals (dotted lines) of a particular length incident at
each point of the manifold (solid line) will intersect if the manifold is too curvy.

normals of a manifold. Notice that long non-intersecting normals are possible only if the manifold is relatively
flat. Hence, the condition number ofM gives us a handle on how curvy canM be. As a quick example, let’s
calculate the condition number of ann-dimensional sphere of radiusr (embedded inRD). Note that in this
case one can have non-intersecting normals of length less thanr (since otherwise they will start intersecting
at the center of the sphere). Thus the condition number of such a sphere is1/r. Throughout the text we will
assume thatM has condition number1/τ .

We will useDG(p, q) to indicate the geodesic distance between pointsp and q where the underlying
manifold is understood from the context, and‖p− q‖ to indicate the Euclidean distance between pointsp and
q where the ambient space is understood from the context.

To correctly estimate the distortion induced by the initialcontraction mapping, we will additionally re-
quire a high-resolution covering of our manifold.

Definition 2 (bounded manifold cover) LetM ⊂ R
D be a Riemanniann-manifold. We callX ⊂ M an

α-bounded(ρ, δ)-cover ofM if for all p ∈ M andρ-neighborhoodXp := {x ∈ X : ‖x − p‖ < ρ} around
p, we have

• exist pointsx0, . . . , xn ∈ Xp such that
∣
∣
∣

xi−x0

‖xi−x0‖
· xj−x0

‖xj−x0‖

∣
∣
∣ ≤ 1/2n, for i 6= j. (covering criterion)

• |Xp| ≤ α. (local boundedness criterion)

• exists pointx ∈ Xp such that‖x− p‖ ≤ ρ/2. (point representation criterion)

• for anyn+1 points inXp satisfying the covering criterion, let̂Tp denote then-dimensional affine space
passing through them (note thatT̂p does not necessarily pass throughp). Then, for any unit vector̂v in
T̂p, we have

∣
∣v̂ · v

‖v‖

∣
∣ ≥ 1− δ, wherev is the projection of̂v onto the tangent space ofM at p. (tangent

space approximation criterion)

The above is an intuitive notion of manifold sampling that can estimate the local tangent spaces. Curiously,
we haven’t found such “tangent-space approximating” notions of manifold sampling in the literature. We do
note in passing that our sampling criterion is similar in spirit to the (ǫ, δ)-sampling (also known as “tight”
ǫ-sampling) criterion popular in the Computational Geometry literature (see e.g. [DGGZ02, GW03]).

Remark 2 Given ann-manifoldM with condition number1/τ , and some0 < δ ≤ 1, if ρ ≤ τδ/3
√
2n, then

one can construct a210n+1-bounded(ρ, δ)-cover ofM – see Appendix A.2 for details.

We can now state our two algorithms.

4 The Algorithms

Inputs. We assume the following quantities are given

(i) n – the intrinsic dimension ofM .

(ii) 1/τ – the condition number ofM .

(iii) X – anα-bounded(ρ, δ)-cover ofM .

(iv) ρ – theρ parameter of the cover.
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Notation. Let φ be a random orthogonal projection map that maps points fromR
D into a random subspace

of dimensiond (n ≤ d ≤ D). We will haved to be aboutO(n). SetΦ := (2/3)(
√

D/d)φ as a scaled version
of φ. SinceΦ is linear,Φ can also be represented as ad×D matrix. In our discussion below we will use the
function notation and the matrix notation interchangeably, that is, for anyp ∈ R

D, we will use the notation
Φ(p) (applying functionΦ to p) and the notationΦp (matrix-vector multiplication) interchangeably.

For anyx ∈ X, let x0, . . . , xn be n + 1 points from the set{x′ ∈ X : ‖x − x′‖ < ρ} such that
∣
∣ xi−x0

‖xi−x0‖
· xj−x0

‖xj−x0‖

∣
∣ ≤ 1/2n, for i 6= j (cf. Definition 2). LetFx be theD × n matrix whose column vectors

form some orthonormal basis of then-dimensional subspace spanned by the vectors{xi − x0}i∈[n].

Estimating local contractions. We estimate the contraction caused byΦ at a small enough neighborhood
of M containing the pointx ∈ X, by computing the “thin” Singular Value Decomposition (SVD) UxΣxV

T

x
of thed × n matrixΦFx and representing the singular values in the conventional descending order. That is,
ΦFx = UxΣxV

T

x , and sinceΦFx is a tall matrix (n ≤ d), we know that the bottomd− n singular values are
zero. Thus, we only consider the topn (of d) left singular vectors in the SVD (so,Ux is d× n, Σx is n× n,
andVx is n× n) andσ1

x ≥ σ2
x ≥ . . . ≥ σn

x whereσi
x is theith largest singular value.

Observe that the singular valuesσ1
x, . . . , σ

n
x are precisely the distortion amounts in the directionsu1x, . . . , u

n
x

atΦ(x) ∈ R
d ([u1x, . . . , u

n
x ] = Ux) when we applyΦ. To see this, consider the directionwi := Fxv

i
x in the

column-span ofFx ([v1x, . . . , v
n
x ] = Vx). ThenΦwi = (ΦFx)v

i
x = σi

xu
i
x, which can be interpreted as:Φ

maps the vectorwi in the subspaceFx (in R
D) to the vectoruix (in R

d) with the scaling ofσi
x.

Note that if0 < σi
x ≤ 1 (for all x ∈ X and1 ≤ i ≤ n), we can define ann × d correction matrix

(corresponding to eachx ∈ X) Cx := SxU
T

x , whereSx is a diagonal matrix with(Sx)ii :=
√

(1/σi
x)

2 − 1.
We can also writeSx as(Σ−2

x −I)1/2. The correction matrixCx will have an effect of stretching the direction
uix by the amount(Sx)ii and killing any directionv that is orthogonal to (column-span of)Ux.

Algorithm 1 Compute CorrectionsCx’s
1: for x ∈ X (in any order)do
2: Let x0, . . . , xn ∈ {x′ ∈ X : ‖x′ − x‖ < ρ} be such that

∣
∣ xi−x0

‖xi−x0‖
· xj−x0

‖xj−x0‖

∣
∣ ≤ 1/2n (for i 6= j).

3: LetFx be aD×n matrix whose columns form an orthonormal basis of then-dimensional span of the
vectors{xi − x0}i∈[n].

4: LetUxΣxV
T

x be the “thin” SVD ofΦFx.
5: SetCx := (Σ−2

x − I)1/2UT

x .
6: end for

Algorithm 2 Embedding Technique I
Preprocessing Stage:We will first partition the given coveringX into disjoint subsets such that no subset
contains points that are too close to each other. Letx1, . . . , x|X| be the points inX in some arbitrary but
fixed order. We can do the partition as follows:

1: InitializeX(1), . . . , X(K) as empty sets.
2: for xi ∈ X (in any fixed order)do
3: Let j be the smallest positive integer such thatxi is not within distance2ρ of any element inX(j).

That is, the smallestj such that for allx ∈ X(j), ‖x− xi‖ ≥ 2ρ.
4: X(j) ← X(j) ∪ {xi}.
5: end for

The Embedding: Foranyp ∈M ⊂ R
D, we embed it inRd+2nK as follows:

1: Let t = Φ(p).
2: Define Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) where Ψj,sin(t) :=

(ψ1
j,sin(t), . . . , ψ

n
j,sin(t)) and Ψj,cos(t) := (ψ1

j,cos(t), . . . , ψ
n
j,cos(t)). The individual terms are given

by
ψi
j,sin(t) :=

∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) sin(ω(C
xt)i)

ψi
j,cos(t) :=

∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) cos(ω(C
xt)i)

i = 1, . . . , n; j = 1, . . . ,K

whereΛa(b) =
11{‖a−b‖<ρ} ·e−1/(1−(‖a−b‖/ρ)2)

∑
q∈X 11{‖q−b‖<ρ} ·e−1/(1−(‖q−b‖/ρ)2)

.

3: return Ψ(t) as the embedding ofp in R
d+2nK .
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Algorithm 3 Embedding Technique II
The Embedding: Let x1, . . . , x|X| be the points inX in some arbitrary but fixed order. Now, foranypoint
p ∈M ⊂ R

D, we embed it inR2d+3 as follows:
1: Let t = Φ(p).
2: DefineΨ0,n(t) := (t, 0, . . . , 0

︸ ︷︷ ︸

d+3

)

3: for i = 1, . . . , |X| do
4: DefineΨi,0 := Ψi−1,n.
5: for j = 1, . . . , n do
6: Let ηi,j(t) andνi,j(t) be two mutually orthogonal unit vectors normal toΨi,j−1(M) atΨi,j−1(t).
7: Define

Ψi,j(t) := Ψi,j−1(t) + ηi,j(t)
(
√

ΛΦ(xi)(t)

ωi,j

)

sin(ωi,j(C
xit)j) + νi,j(t)

(
√
ΛΦ(xi)(t)

ωi,j

)

cos(ωi,j(C
xit)j)

whereΛa(b) =
11{‖a−b‖<ρ} ·e−1/(1−(‖a−b‖/ρ)2)

∑
q∈X 11{‖q−b‖<ρ} ·e−1/(1−(‖q−b‖/ρ)2)

.

8: end for
9: end for

10: return Ψ|X|,n(t) as the embedding ofp intoR
2d+3.

A few remarks are in order.

Remark 3 The functionΛ in both embeddings acts as a localizing kernel that helps in localizing the effects
of the spiralling corrections (discussed in detail in Section 5.2), andω > 0 (for Embedding I) orωi,j > 0
(for Embedding II) are free parameters controlling the frequency of the sinusoidal terms.

Remark 4 If ρ ≤ τ/4, the number of subsets (i.e.K) produced by Embedding I is at mostα2cn for an
α-bounded(ρ, δ) coverX ofM (wherec ≤ 4). See Appendix A.3 for details.

Remark 5 The success of Embedding II crucially depends upon finding a pair of normal unit vectorsη and
ν in each iteration; we discuss how to approximate these in Appendix A.9.

We shall see that for appropriate choice ofd, ρ, δ andω (or ωi,j), our algorithm yields an approximate
isometric embedding ofM .

4.1 Main Result

Theorem 3 LetM ⊂ R
D be a compactn-manifold with volumeV and condition number1/τ (as above). Let

d = Ω(n+ ln(V/τn)) be the target dimension of the initial random projection mapping such thatd ≤ D.
For any 0 < ǫ ≤ 1, let ρ ≤ (τd/D)(ǫ/350)2, δ ≤ (d/D)(ǫ/250)2, and letX ⊂ M be anα-bounded
(ρ, δ)-cover ofM . Now, let

i. NI ⊂ R
d+2αn2cn be the embedding ofM returned by AlgorithmI (wherec ≤ 4),

ii. NII ⊂ R
2d+3 be the embedding ofM returned by AlgorithmII .

Then, with probability at least1−1/poly(n) over the choice of the initial random projection, for allp, q ∈M
and their corresponding mappingspI, qI ∈ NI andpII, qII ∈ NII, we have

i. (1− ǫ)DG(p, q) ≤ DG(pI, qI) ≤ (1 + ǫ)DG(p, q),

ii. (1− ǫ)DG(p, q) ≤ DG(pII, qII) ≤ (1 + ǫ)DG(p, q).

5 Proof

Our goal is to show that the two proposed embeddings approximately preserve the length of all geodesic
curves. Now, since the length of any given curveγ : [a, b]→M is given by

∫ b

a
‖γ′(s)‖ds, it is vital to study

how our embeddings modify the length of the tangent vectors at any pointp ∈M .
In order to discuss tangent vectors, we need to introduce thenotion of a tangent spaceTpM at a particular

pointp ∈M . Consider any smooth curvec : (−ǫ, ǫ)→M such thatc(0) = p, then we know thatc′(0) is the
vector tangent toc at p. The collection of all such vectors formed by all such curvesis a well defined vector
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p

v

M

TpM

TF (p)F (M)

F (M)
F (p) (DF )p(v)

Figure 3:Effects of applying a smooth mapF on various quantities of interest. Left: A manifoldM containing point
p. v is a vector tangent toM at p. Right: Mapping ofM underF . Pointp maps toF (p), tangent vectorv maps to
(DF )p(v).

space (with origin atp), called the tangent spaceTpM . In what follows, we will fix an arbitrary pointp ∈M
and a tangent vectorv ∈ TpM and analyze how the various steps of the algorithm modify thelength ofv.

Let Φ be the initial (scaled) random projection map (fromRD to R
d) that may contract distances onM

by various amounts, and letΨ be the subsequent correction map that attempts to restore these distances (as
defined in Step 2 for Embedding I or as a sequence of maps in Step7 for Embedding II). To get a firm footing
for our analysis, we need to study howΦ andΨ modify the tangent vectorv. It is well known from differential
geometry that for any smooth mapF : M → N that maps a manifoldM ⊂ R

k to a manifoldN ⊂ R
k′

,
there exists a linear map(DF )p : TpM → TF (p)N , known as the derivative map or the pushforward (atp),
that maps tangent vectors incident atp in M to tangent vectors incident atF (p) in N . To see this, consider
a vectoru tangent toM at some pointp. Then, there is some smooth curvec : (−ǫ, ǫ) → M such that
c(0) = p andc′(0) = u. By mapping the curvec intoN , i.e.F (c(t)), we see thatF (c(t)) includes the point

F (p) at t = 0. Now, by calculus, we know that the derivative at this point,dF (c(t))
dt

∣
∣
∣
t=0

is the directional

derivative(∇F )p(u), where(∇F )p is a k′ × k matrix called the gradient (atp). The quantity(∇F )p is
precisely the matrix representation of this linear “pushforward” map that sends tangent vectors ofM (at p)
to the corresponding tangent vectors ofN (at F (p)). Figure 3 depicts how these quantities are affected by
applyingF . Also note that ifF is linear thenDF = F .

Observe that since pushforward maps are linear, without loss of generality we can assume thatv has unit
length.

A quick roadmap for the proof. In the next three sections, we take a brief detour to study theeffects of
applyingΦ, applyingΨ for Algorithm I, and applyingΨ for Algorithm II separately. This will give us the
necessary tools to analyze the combined effect of applyingΨ ◦ Φ on v (Section 5.4). We will conclude by
relating tangent vectors to lengths of curves, showing approximate isometry (Section 5.5). Figure 4 provides a
quick sketch of our two stage mapping with the quantities of interest. We defer the proofs of all the supporting
lemmas to the Appendix.

5.1 Effects of ApplyingΦ

It is well known as an application of Sard’s theorem from differential topology (see e.g. [Mil72]) that almost
every smooth mapping of ann-dimensional manifold intoR2n+1 is a differential structure preserving em-
bedding ofM . In particular, a projection onto a random subspace (of dimension2n+ 1) constitutes such an
embedding with probability1.

This translates to stating that a random projection intoR
2n+1 is enough to guarantee thatΦ doesn’t

collapse the lengths of non-zero tangent vectors. However,due to computational issues, we additionally
require that the lengths are bounded away from zero (that is,a statement of the form‖(DΦ)p(v)‖ ≥ Ω(1)‖v‖
for all v tangent toM at all pointsp).

We can thus appeal to the random projections result by Clarkson [Cla07] (with the isometry parameter
set to a constant, say1/4) to ensure this condition. In particular, it follows

Lemma 4 LetM ⊂ R
D be a smoothn-manifold (as defined above) with volumeV and condition number

1/τ . LetR be a random projection matrix that maps points fromRD into a random subspace of dimensiond
(d ≤ D). DefineΦ := (2/3)(

√

D/d)R as a scaled projection mapping. Ifd = Ω(n+ ln(V/τn)), then with
probability at least1− 1/poly(n) over the choice of the random projection matrix, we have

(a) For all p ∈M and all tangent vectorsv ∈ TpM , (1/2)‖v‖ ≤ ‖(DΦ)p(v)‖ ≤ (5/6)‖v‖.
(b) For all p, q ∈M , (1/2)‖p− q‖ ≤ ‖Φp− Φq‖ ≤ (5/6)‖p− q‖.
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Φ

R
d+k

t = Φp

Ψ

M ΦM

R
D

R
d

ΨΦM

p Ψ(t)

v

‖v‖ = 1

u = Φv (DΨ)t(u)

‖(DΨ)t(u)‖ ≈ ‖v‖‖u‖ ≤ 1

Figure 4:Two stage mapping of our embedding technique. Left: Underlying manifold M ⊂ R
D with the quantities of

interest – a fixed pointp and a fixed unit-vectorv tangent toM at p. Center: A (scaled) linear projection ofM into a
random subspace ofd dimensions. The pointp maps toΦp and the tangent vectorv maps tou := (DΦ)p(v) = Φv. The
length ofv contracts to‖u‖. Right: Correction ofΦM via a non-linear mappingΨ into R

d+k. We havek = O(α2cn)
for correction technique I, andk = d + 3 for correction technique II (see also Section 4). Our goal is to show thatΨ
stretches length of contractedv (i.e.u) back to approximately its original length.

(c) For all x ∈ R
D, ‖Φx‖ ≤ (2/3)(

√

D/d)‖x‖.

In what follows, we assume thatΦ is such a scaled random projection map. Then, a bound on the length of
tangent vectors also gives us a bound on the spectrum ofΦFx (recall the definition ofFx from Section 4).

Corollary 5 LetΦ, Fx andn be as described above (recall thatx ∈ X that forms a bounded(ρ, δ)-cover
of M ). Let σi

x represent theith largest singular value of the matrixΦFx. Then, forδ ≤ d/32D, we have
1/4 ≤ σn

x ≤ σ1
x ≤ 1 (for all x ∈ X).

We will be using these facts in our discussion below in Section 5.4.

5.2 Effects of ApplyingΨ (Algorithm I)

As discussed in Section 2.1, the goal ofΨ is to restore the contraction induced byΦ onM . To understand the
action ofΨ on a tangent vector better, we will first consider a simple case of flat manifolds (Section 5.2.1),
and then develop the general case (Section 5.2.2).

5.2.1 Warm-up: flat M
Let’s first consider applying a simple one-dimensional spiral mapΨ̄ : R→ R

3 given byt 7→ (t, sin(Ct), cos(Ct)),
wheret ∈ I = (−ǫ, ǫ). Let v̄ be a unit vector tangent toI (at, say,0). Then note that

(DΨ̄)t=0(v̄) =
dΨ̄

dt

∣
∣
∣
t=0

= (1, C cos(Ct),−C sin(Ct))
∣
∣
t=0

.

Thus, applyingΨ̄ stretches the length of̄v from 1 to
∥
∥(1, C cos(Ct),−C sin(Ct))|t=0

∥
∥ =

√
1 + C2. No-

tice the advantage of applying the spiral map in computing the lengths: the sine and cosine terms combine
together to yield a simple expression for the size of the stretch. In particular, if we want to stretch the length
of v̄ from 1 to, say,L ≥ 1, then we simply needC =

√
L2 − 1 (notice the similarity between this expression

and our expression for the diagonal componentSx of the correction matrixCx in Section 4).

We can generalize this to the case ofn-dimensional flat manifold (a section of ann-flat) by considering a
map similar toΨ̄. For concreteness, letF be aD × n matrix whose column vectors form some orthonormal
basis of then-flat manifold (in the original spaceRD). Let UΣV T be the “thin” SVD ofΦF . ThenFV
forms an orthonormal basis of then-flat manifold (inR

D) that maps to an orthogonal basisUΣ of the
projectedn-flat manifold (inRd) via the contraction mappingΦ. Define the spiral map̄Ψ : Rd → R

d+2n

in this case as follows.̄Ψ(t) := (t, Ψ̄sin(t), Ψ̄cos(t)), with Ψ̄sin(t) := (ψ̄1
sin(t), . . . , ψ̄

n
sin(t)) andΨ̄cos(t) :=

(ψ̄1
cos(t), . . . , ψ̄

n
cos(t)). The individual terms are given as

ψ̄i
sin(t) := sin((Ct)i)

ψ̄i
cos(t) := cos((Ct)i)

i = 1, . . . , n,

whereC is now ann× d correction matrix. It turns out that settingC = (Σ−2 − I)1/2UT precisely restores
the contraction caused byΦ to the tangent vectors (notice the similarity between this expression with the
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correction matrix in the general caseCx in Section 4 and our motivating intuition in Section 2.1). Tosee this,
let v be a vector tangent to then-flat at some pointp (in R

D). We will representv in theFV basis (that is,
v =

∑

i αi(Fv
i) where[Fv1, . . . , Fvn] = FV ). Note that‖Φv‖2 = ‖∑i αiΦFv

i‖2 = ‖∑i αiσ
iui‖2 =

∑

i(αiσ
i)2 (whereσi are the individual singular values ofΣ andui are the left singular vectors forming

the columns ofU ). Now, let w be the pushforward ofv (that is,w = (DΦ)p(v) = Φv =
∑

i wie
i,

where{ei}i forms the standard basis ofRd). Now, sinceDΨ̄ is linear, we have‖(DΨ̄)Φ(p)(w)‖2 =

‖∑i wi(DΨ̄)Φ(p)(e
i)‖2, where(DΨ̄)Φ(p)(e

i) = dΨ̄
dti

∣
∣
t=Φ(p)

=
(

dt
dti ,

dΨ̄sin(t)
dti , dΨ̄cos(t)

dti

) ∣
∣
∣
t=Φ(p)

. The in-

dividual components are given by

dψ̄k
sin(t)/dt

i = +cos((Ct)k)Ck,i

dψ̄k
cos(t)/dt

i = − sin((Ct)k)Ck,i
k = 1, . . . , n; i = 1, . . . , d.

By algebra, we see that

‖(D(Ψ̄ ◦ Φ))p(v)‖2 = ‖(DΨ̄)Φ(p)((DΦ)p(v))‖2 = ‖(DΨ̄)Φ(p)(w)‖2

=

d∑

k=1

w2
k +

n∑

k=1

cos2((CΦ(p))k)((CΦv)k)
2 +

n∑

k=1

sin2((CΦ(p))k)((CΦv)k)
2

=

d∑

k=1

w2
k +

n∑

k=1

((CΦv)k)
2 = ‖Φv‖2 + ‖CΦv‖2 = ‖Φv‖2 + (Φv)TCTC(Φv)

= ‖Φv‖2 + (
∑

i

αiσ
iui)TU(Σ−2 − I)UT(

∑

i

αiσ
iui)

= ‖Φv‖2 + [α1σ
1, . . . , αnσ

n](Σ−2 − I)[α1σ
1, . . . , αnσ

n]T

= ‖Φv‖2 + (
∑

i

α2
i −

∑

i

(αiσ
i)2) = ‖Φv‖2 + ‖v‖2 − ‖Φv‖2 = ‖v‖2.

In other words, our non-linear correction mapΨ̄ canexactlyrestore the contraction caused byΦ for any
vector tangent to ann-flat manifold.

In the fully general case, the situation gets slightly more complicated since we need to apply different
spiral maps, each corresponding to a different size correction at different locations on the contracted manifold.
Recall that we localize the effect of a correction by applying the so-called “bump” function (details below).
These bump functions, although important for localization, have an undesirable effect on the stretched length
of the tangent vector. Thus, to ameliorate their effect on the length of the resulting tangent vector, we control
their contribution via a free parameterω.

5.2.2 The General Case
More specifically, Embedding Technique I restores the contraction induced byΦ by applying a non-linear
mapΨ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) (recall thatK is the number of subsets we
decomposeX into – cf. description in Embedding I in Section 4), withΨj,sin(t) := (ψ1

j,sin(t), . . . , ψ
n
j,sin(t))

andΨj,cos(t) := (ψ1
j,cos(t), . . . , ψ

n
j,cos(t)). The individual terms are given as

ψi
j,sin(t) :=

∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) sin(ω(C
xt)i)

ψi
j,cos(t) :=

∑

x∈X(j) (
√

ΛΦ(x)(t)/ω) cos(ω(C
xt)i)

i = 1, . . . , n; j = 1, . . . ,K,

whereCx’s are the correction amounts for different locationsx on the manifold,ω > 0 controls the frequency
(cf. Section 4), andΛΦ(x)(t) is defined to beλΦ(x)(t)/

∑

q∈X λΦ(q)(t), with

λΦ(x)(t) :=

{

exp(−1/(1− ‖t− Φ(x)‖2/ρ2)) if ‖t− Φ(x)‖ < ρ.
0 otherwise.

λ is a classic example of abump function(see Figure 5 middle). It is a smooth function with compact
support. Its applicability arises from the fact that it can be made “to specifications”. That is, it can be
made to vanish outside any interval of our choice. Here we exploit this property to localize the effect of our
corrections. The normalization ofλ (the functionΛ) creates the so-called smooth partition of unity that helps
to vary smoothly between the spirals applied at different regions ofM .

Since any tangent vector inRd can be expressed in terms of the basis vectors, it suffices to study howDΨ

acts on the standard basis{ei}. Note that(DΨ)t(e
i) =

(
dt
dti ,

dΨ1,sin(t)
dti ,

dΨ1,cos(t)
dti , . . . ,

dΨK,sin(t)
dti ,

dΨK,cos(t)
dti

)∣
∣
t
,
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Figure 5: Effects of applying a bump function on a spiral mapping. Left: Spiral mapping t 7→ (t, sin(t), cos(t)).
Middle: Bump functionλx: a smooth function with compact support. The parameterx controls the location whileρ
controls the width. Right: The combined effect:t 7→ (t, λx(t) sin(t), λx(t) cos(t)). Note that the effect of the spiral is
localized while keeping the mapping smooth.

where

dψk
j,sin(t)/dt

i =
∑

x∈X(j)
1
ω

(

sin(ω(Cxt)k)
dΛ

1/2

Φ(x)
(t)

dti

)

+
√
ΛΦ(x)(t) cos(ω(C

xt)k)C
x
k,i

dψk
j,cos(t)/dt

i =
∑

x∈X(j)
1
ω

(

cos(ω(Cxt)k)
dΛ

1/2

Φ(x)
(t)

dti

)

−
√

ΛΦ(x)(t) sin(ω(C
xt)k)C

x
k,i

k = 1, . . . , n; i = 1, . . . , d
j = 1, . . . ,K

.

One can now observe the advantage of having the termω. By pickingω sufficiently large, we can make the
first part of the expression sufficiently small. Now, for any tangent vectoru =

∑

i uie
i such that‖u‖ ≤ 1,

we have (by algebra)

‖(DΨ)t(u)‖2 =
∥
∥
∥

∑

ui(DΨ)t(e
i)
∥
∥
∥

2

=
d∑

k=1

u2k +
n∑

k=1

K∑

j=1

[ ∑

x∈X(j)

(Ak,x
sin (t)

ω

)

+
√

ΛΦ(x)(t) cos(ω(C
xt)k)(C

xu)k

]2

+
[ ∑

x∈X(j)

(Ak,x
cos(t)

ω

)

−
√

ΛΦ(x)(t) sin(ω(C
xt)k)(C

xu)k

]2

(1)

whereAk,x
sin (t) :=

∑

i ui sin(ω(C
xt)k)(dΛ

1/2
Φ(x)(t)/dt

i) andAk,x
cos(t) :=

∑

i ui cos(ω(C
xt)k)(dΛ

1/2
Φ(x)(t)/dt

i).
We can further simplify Eq. (1) and get

Lemma 6 Let t be any point inΦ(M) andu be any vector tagent toΦ(M) at t such that‖u‖ ≤ 1. Letǫ be
the isometry parameter chosen in Theorem 3. Pickω ≥ Ω(nα29n

√
d/ρǫ), then

‖(DΨ)t(u)‖2 = ‖u‖2 +
∑

x∈X

ΛΦ(x)(t)

n∑

k=1

(Cxu)2k + ζ, (2)

where|ζ| ≤ ǫ/2.

We will use this derivation of‖(DΨ)t(u)‖2 to study the combined effect ofΨ ◦ Φ onM in Section 5.4.

5.3 Effects of ApplyingΨ (Algorithm II)

The goal of the second algorithm is to apply the spiralling corrections while using the coordinates more
economically. We achieve this goal by applying them sequentially in the same embedding space (rather than
simultaneously by making use of extra2nK coordinates as done in the first algorithm), see also [Nas54].
Since all the corrections will be sharing the same coordinate space, one needs to keep track of a pair of
normal vectors in order to prevent interference among the different local corrections.

More specifically,Ψ : Rd → R
2d+3 (in Algorithm II) is defined recursively asΨ := Ψ|X|,n such that

(see also Embedding II in Section 4)

Ψi,j(t) := Ψi,j−1(t) + ηi,j(t)

√
ΛΦ(xi)(t)

ωi,j
sin(ωi,j(C

xit)j) + νi,j(t)

√
ΛΦ(xi)(t)

ωi,j
cos(ωi,j(C

xit)j),

whereΨi,0(t) := Ψi−1,n(t), and the base functionΨ0,n(t) is given ast 7→ (t,

d+3
︷ ︸︸ ︷

0, . . . , 0). ηi,j(t) andνi,j(t)
are mutually orthogonal unit vectors that are approximately normal toΨi,j−1(ΦM) at Ψi,j−1(t). In this
section we assume that the normalsη andν have the following properties:
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- |ηi,j(t) · v| ≤ ǫ0 and|νi,j(t) · v| ≤ ǫ0 for all unit-lengthv tangent toΨi,j−1(ΦM) atΨi,j−1(t). (quality of
normal approximation)

- For all 1 ≤ l ≤ d, we have‖dηi,j(t)/dtl‖ ≤ Ki,j and‖dνi,j(t)/dtl‖ ≤ Ki,j . (bounded directional
derivatives)

We refer the reader to Section A.9 for details on how to estimate such normals.

Now, as before, representing a tangent vectoru =
∑

l ule
l (such that‖u‖2 ≤ 1) in terms of its basis

vectors, it suffices to study howDΨ acts on basis vectors. Observe that(DΨi,j)t(e
l) =

(
dΨi,j(t)

dtl

)2d+3

k=1

∣
∣
∣
t
,

with thekth component given as
(
dΨi,j−1(t)

dtl

)

k

+ (ηi,j(t))k

√

ΛΦ(xi)(t)C
xi

j,lB
i,j
cos(t)− (νi,j(t))k

√

ΛΦ(xi)(t)C
xi

j,lB
i,j
sin(t)

+
1

ωi,j

[(dηi,j(t)

dtl

)

k

√

ΛΦ(xi)(t)B
i,j
sin(t) +

(dνi,j(t)

dtl

)

k

√

ΛΦ(xi)(t)B
i,j
cos(t)

+ (ηi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

sin(t) + (νi,j(t))k
dΛ

1/2
Φ(xi)

(t)

dtl
Bi,j

cos(t)
]

,

whereBi,j
cos(t) := cos(ωi,j(C

xit)j) andBi,j
sin(t) := sin(ωi,j(C

xit)j). For ease of notation, letRk,l
i,j be the

terms in the bracket (being multiplied to1/ωi,j) in the above expression. Then, we have (for anyi, j)

‖(DΨi,j)t(u)‖2 =
∥
∥
∑

l

ul(DΨi,j)t(e
l)
∥
∥
2

=

2d+3∑

k=1

[∑

l

ul

(
dΨi,j−1(t)

dtl

)

k
︸ ︷︷ ︸

ζk,1
i,j

+(ηi,j(t))k

√

ΛΦ(xi)(t) cos(ωi,j(C
xit)j)

∑

l

Cxi

j,lul

︸ ︷︷ ︸

ζk,2
i,j

−(νi,j(t))k
√

ΛΦ(xi)(t) sin(ωi,j(C
xit)j)

∑

l

Cxi

j,lul

︸ ︷︷ ︸

ζk,3
i,j

+(1/ωi,j)
∑

l

ulR
k,l
i,j

︸ ︷︷ ︸

ζk,4
i,j

]2

= ‖(DΨi,j−1)t(u)‖2
︸ ︷︷ ︸

=
∑

k

(
ζk,1
i,j

)2

+ ΛΦ(xi)(t)(C
xiu)2j

︸ ︷︷ ︸

=
∑

k

(
ζk,2
i,j

)2
+
(
ζk,3
i,j

)2

+
∑

k

[(
ζk,4i,j /ωi,j

)2
+
(
2ζk,4i,j /ωi,j

)(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)
+ 2
(
ζk,1i,j ζ

k,2
i,j + ζk,1i,j ζ

k,3
i,j

)]

︸ ︷︷ ︸

Zi,j

, (3)

where the last equality is by expanding the square and by noting that
∑

k ζ
k,2
i,j ζ

k,3
i,j = 0 sinceη andν are

orthogonal to each other. The base case‖(DΨ0,n)t(u)‖2 equals‖u‖2.

Again, by pickingωi,j sufficiently large, and by noting that the cross terms
∑

k(ζ
k,1
i,j ζ

k,2
i,j ) and

∑

k(ζ
k,1
i,j ζ

k,3
i,j )

are very close to zero sinceη andν are approximately normal to the tangent vector, we have

Lemma 7 Let t be any point inΦ(M) andu be any vector tagent toΦ(M) at t such that‖u‖ ≤ 1. Letǫ be
the isometry parameter chosen in Theorem 3. Pickωi,j ≥ Ω

(
(Ki,j +(α9n/ρ))(nd|X|)2/ǫ

)
(recall thatKi,j

is the bound on the directional derivate ofη andν). If ǫ0 ≤ O
(
ǫ/d(n|X|)2

)
(recall thatǫ0 is the quality of

approximation of the normalsη andν), then we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2 = ‖u‖2 +
|X|
∑

i=1

ΛΦ(xi)(t)
n∑

j=1

(Cxiu)2j + ζ, (4)

where|ζ| ≤ ǫ/2.
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5.4 Combined Effect ofΨ(Φ(M))

We can now analyze the aggregate effect of both our embeddings on the length of an arbitrary unit vectorv
tangent toM at p. Let u := (DΦ)p(v) = Φv be the pushforward ofv. Then‖u‖ ≤ 1 (cf. Lemma 4). See
also Figure 4.

Now, recalling thatD(Ψ ◦ Φ) = DΨ ◦ DΦ, and noting that pushforward maps are linear, we have

‖(D(Ψ ◦ Φ))p(v)‖2 =
∥
∥(DΨ)Φ(p)(u)

∥
∥
2
. Thus, representingu as

∑

i uie
i in ambient coordinates ofRd, and

using Eq. (2) (for Algorithm I) or Eq. (4) (for Algorithm II),we get

∥
∥(D(Ψ ◦ Φ))p(v)

∥
∥
2

=
∥
∥(DΨ)Φ(p)(u)

∥
∥
2
= ‖u‖2 +

∑

x∈X

ΛΦ(x)(Φ(p))‖Cxu‖2 + ζ,

where |ζ| ≤ ǫ/2. We can give simple lower and upper bounds for the above expression by noting that
ΛΦ(x) is a localization function. DefineNp := {x ∈ X : ‖Φ(x) − Φ(p)‖ < ρ} as the neighborhood
aroundp (ρ as per the theorem statement). Then only the points inNp contribute to above equation, since
ΛΦ(x)(Φ(p)) = dΛΦ(x)(Φ(p))/dt

i = 0 for ‖Φ(x)−Φ(p)‖ ≥ ρ. Also note that for allx ∈ Np, ‖x−p‖ < 2ρ
(cf. Lemma 4).

Let xM := argmaxx∈Np
‖Cxu‖2 andxm := argminx∈Np

‖Cxu‖2 are quantities that attain the maxi-
mum and the minimum respectively, then:

‖u‖2 + ‖Cxmu‖2 − ǫ/2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ ‖u‖2 + ‖CxMu‖2 + ǫ/2. (5)

Notice that ideally we would like to have the correction factor “Cpu” in Eq. (5) since that would give the
perfect stretch around the pointp. But what about correctionCxu for closebyx’s? The following lemma
helps us continue in this situation.

Lemma 8 Let p, v, u be as above. For anyx ∈ Np ⊂ X, letCx andFx also be as discussed above (recall
that ‖p − x‖ < 2ρ, andX ⊂ M forms a bounded(ρ, δ)-cover of the fixed underlying manifoldM with
condition number1/τ ). Defineξ := (4ρ/τ) + δ + 4

√

ρδ/τ . If ρ ≤ τ/4 andδ ≤ d/32D, then

1− ‖u‖2 − 40 ·max
{√

ξD/d, ξD/d
}
≤ ‖Cxu‖2 ≤ 1− ‖u‖2 + 51 ·max

{√

ξD/d, ξD/d
}
.

Note that we choseρ ≤ (τd/D)(ǫ/350)2 and δ ≤ (d/D)(ǫ/250)2 (cf. theorem statement). Thus,
combining Eq. (5) and Lemma 8, we get (recall‖v‖ = 1)

(1− ǫ)‖v‖2 ≤ ‖(D(Ψ ◦ Φ))p(v)‖2 ≤ (1 + ǫ)‖v‖2.

So far we have shown that our embedding approximately preserves the length of a fixed tangent vector
at a fixed point. Since the choice of the vector and the point was arbitrary, it follows that our embedding
approximately preserves the tangent vector lengths throughout the embedded manifold uniformly. We will
now show that preserving the tangent vector lengths impliespreserving the geodesic curve lengths.

5.5 Preservation of the Geodesics

Pick any two (path-connected) pointsp andq in M , and letα be the geodesic5 path betweenp andq. Further
let p̄, q̄ andᾱ be the images ofp, q andα under our embedding. Note thatᾱ is not necessarily the geodesic
path between̄p and q̄, thus we need an extra piece of notation: letβ̄ be the geodesic path betweenp̄ and q̄
(under the embedded manifold) andβ be its inverse image inM . We need to show(1 − ǫ)L(α) ≤ L(β̄) ≤
(1 + ǫ)L(α), whereL(·) denotes the length of the path· (end points are understood).

First recall that for any differentiable mapF and curveγ, γ̄ = F (γ) ⇒ γ̄′ = (DF )(γ′). By (1 ± ǫ)-
isometry of tangent vectors, this immediately gives us(1− ǫ)L(γ) ≤ L(γ̄) ≤ (1 + ǫ)L(γ) for any pathγ in
M and its imagēγ in embedding ofM . So,

(1− ǫ)DG(p, q) = (1− ǫ)L(α) ≤ (1− ǫ)L(β) ≤ L(β̄) = DG(p̄, q̄).

Similarly,

DG(p̄, q̄) = L(β̄) ≤ L(ᾱ) ≤ (1 + ǫ)L(α) = (1 + ǫ)DG(p, q).

5Globally, geodesic paths between points are not necessarily unique; we are interested in a path that yields the shortest
distance between the points.
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6 Conclusion

This work provides two simple algorithms for approximate isometric embedding of manifolds. Our algo-
rithms are similar in spirit to Nash’sC1 construction [Nas54], and manage to remove the dependence on the
isometry constantǫ from the target dimension. One should observe that this dependency does however show
up in the sampling density required to make the necessary corrections.

The correction procedure discussed here can also be readilyadapted to create isometric embeddings from
any manifold embedding procedure (under some mild conditions). Take any off-the-shelf manifold embed-
ding algorithmA (such as LLE, Laplacian Eigenmaps, etc.) that maps ann-manifold in, say,d dimensions,
but does not necessarily guarantee an approximate isometric embedding. Then as long as one can ensure that
the embedding produced byA is a one-to-one contraction6 (basically ensuring conditions similar to Lemma
4), we can apply corrections similar to those discussed in Algorithms I or II to produce an approximate iso-
metric embedding of the given manifold in slightly higher dimensions. In this sense, the correction procedure
presented here serves as auniversal procedurefor approximate isometric manifold embeddings.
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A Appendix

A.1 Properties of a Well-conditioned Manifold

Throughout this section we will assume thatM is a compact submanifold ofRD of dimensionn, and condi-
tion number1/τ . The following are some properties of such a manifold that would be useful throughout the
text.

Lemma 9 (relating closeby tangent vectors – implicit in the proof of Proposition 6.2 [NSW06]) Pick
any two (path-connected) pointsp, q ∈ M . Let u ∈ TpM be a unit length tangent vector andv ∈ TqM
be its parallel transport along the (shortest) geodesic path to q. Then7, i) u · v ≥ 1 − DG(p, q)/τ , ii)
‖u− v‖ ≤

√

2DG(p, q)/τ .

Lemma 10 (relating geodesic distances to ambient distances– Proposition 6.3 of [NSW06])If p, q ∈M
such that‖p− q‖ ≤ τ/2, thenDG(p, q) ≤ τ(1−

√

1− 2‖p− q‖/τ) ≤ 2‖p− q‖.

Lemma 11 (projection of a section of a manifold onto the tangent space)Pick anyp ∈ M and define
Mp,r := {q ∈ M : ‖q − p‖ ≤ r}. Let f denote the orthogonal linear projection ofMp,r onto the tangent
spaceTpM . Then, for anyr ≤ τ/2

(i) the mapf :Mp,r → TpM is 1− 1. (see Lemma 5.4 of [NSW06])

(ii) for any x, y ∈ Mp,r, ‖f(x) − f(y)‖2 ≥ (1 − (r/τ)2) · ‖x − y‖2. (implicit in the proof of Lemma 5.3
of [NSW06])

Lemma 12 (coverings of a section of a manifold)Pick anyp ∈M and defineMp,r := {q ∈M : ‖q−p‖ ≤
r}. If r ≤ τ/2, then there existsC ⊂ Mp,r of size at most9n with the property: for anyp′ ∈ Mp,r, exists
c ∈ C such that‖p′ − c‖ ≤ r/2.

Proof: The proof closely follows the arguments presented in the proof of Theorem 22 of [DF08].
For r ≤ τ/2, note thatMp,r ⊂ R

D is (path-)connected. Letf denote the projection ofMp,r onto
TpM ∼= R

n. Quickly note thatf is 1 − 1 (see Lemma 11(i)). Then,f(Mp,r) ⊂ R
n is contained in an

n-dimensional ball of radiusr. By standard volume arguments,f(Mp,r) can be covered by at most9n balls
of radiusr/4. WLOG we can assume that the centers of these covering balls are in f(Mp,r). Now, noting
that the inverse image of each of these covering balls (inR

n) is contained in aD-dimensional ball of radius
r/2 (see Lemma 11(ii)) finishes the proof.

Lemma 13 (relating closeby manifold points to tangent vectors) Pick any pointp ∈ M and letq ∈ M
(distinct fromp) be such thatDG(p, q) ≤ τ . Letv ∈ TpM be the projection of the vectorq − p ontoTpM .

Then, i)
∣
∣
∣

v
‖v‖ ·

q−p
‖q−p‖

∣
∣
∣ ≥ 1− (DG(p, q)/2τ)

2, ii)
∥
∥
∥

v
‖v‖ −

q−p
‖q−p‖

∥
∥
∥ ≤ DG(p, q)/τ

√
2.

Proof: If vectorsv andq − p are in the same direction, we are done. Otherwise, consider the plane spanned
by vectorsv andq − p. Then sinceM has condition number1/τ , we know that the pointq cannot lie within
anyτ -ball tangent toM atp (see Figure 6). Consider such aτ -ball (with centerc) whose center is closest to
q and letq′ be the point on the surface of the ball which subtends the sameangle (∠pcq′) as the angle formed
by q (∠pcq). Let this angle be calledθ. Then using cosine rule, we havecos θ = 1− ‖q′ − p‖2/2τ2.

Defineα as the angle subtended by vectorsv andq − p, andα′ the angle subtended by vectorsv and
q′ − p. WLOG we can assume that the anglesα andα′ are less thanπ. Then,cosα ≥ cosα′ = cos θ/2.
Using the trig identitycos θ = 2 cos2

(
θ
2

)
− 1, and noting‖q − p‖2 ≥ ‖q′ − p‖2, we have

∣
∣
∣
∣

v

‖v‖ ·
q − p
‖q − p‖

∣
∣
∣
∣
= cosα ≥ cos

θ

2
≥
√

1− ‖q − p‖2/4τ2 ≥ 1− (DG(p, q)/2τ)
2.

Now, by applying the cosine rule, we have
∥
∥ v
‖v‖ −

q−p
‖q−p‖

∥
∥
2
= 2(1− cosα). The lemma follows.

7Technically, it is not possible to directly compare two vectors that reside in different tangent spaces. However, since
we only deal with manifolds that are immersed in some ambient space, we can treat the tangent spaces asn-dimensional
affine subspaces. We can thus parallel translate the vectors to the origin of the ambient space, and do the necessary
comparison (such as take the dot product, etc.). We will make a similar abuse of notation for any calculation that uses
vectors from different affine subspaces to mean to first translate the vectors and then perform the necessary calculation.
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q

TpM

q′
θ

τ

p

c

v

Figure 6:Plane spanned by vectorsq − p andv ∈ TpM (wherev is the projection ofq − p ontoTpM ), with τ -balls
tangent top. Note thatq′ is the point on the ball such that∠pcq = ∠pcq′ = θ.

Lemma 14 (approximating tangent space by closeby samples)Let 0 < δ ≤ 1. Pick any pointp0 ∈ M
and letp1, . . . , pn ∈M ben points distinct fromp0 such that (for all1 ≤ i ≤ n)

(i) DG(p0, pi) ≤ τδ/
√
n,

(ii)
∣
∣ pi−p0

‖pi−p0‖
· pj−p0

‖pj−p0‖

∣
∣ ≤ 1/2n (for i 6= j).

Let T̂ be then dimensional subspace spanned by vectors{pi − p0}i∈[n]. For any unit vector̂u ∈ T̂ , letu be
the projection of̂u ontoTp0

M . Then,
∣
∣û · u

‖u‖

∣
∣ ≥ 1− δ.

Proof: Define the vectorŝvi := pi−p0

‖pi−p0‖
(for 1 ≤ i ≤ n). Observe that{v̂i}i∈[n] forms a basis of̂T . For

1 ≤ i ≤ n, definevi as the projection of vector̂vi ontoTp0
M . Also note that by applying Lemma 13, we

have that for all1 ≤ i ≤ n, ‖v̂i − vi‖2 ≤ δ2/2n.
Let V = [v̂1, . . . , v̂n] be theD× n matrix. We represent the unit vectorû asV α =

∑

i αiv̂i. Also, since
u is the projection of̂u, we haveu =

∑

i αivi. Then,‖α‖2 ≤ 2. To see this, we first identifŷT with R
n

via an isometryS (a linear map that preserves the lengths and angles of all vectors inT̂ ). Note thatS can be
represented as ann × D matrix, and sinceV forms a basis for̂T , SV is ann × n invertible matrix. Then,
sinceSû = SV α, we haveα = (SV )

−1
Sû. Thus, (recall‖Sû‖ = 1)

‖α‖2 ≤ max
x∈Sn−1

‖(SV )−1x‖2 = λmax((SV )−T(SV )−1)

= λmax((SV )−1(SV )−T) = λmax((V
TV )−1) = 1/λmin(V

TV )

≤ 1/1− ((n− 1)/2n) ≤ 2,

where i)λmax(A) andλmin(A) denote the largest and smallest eigenvalues of a square symmetric matrixA
respectively, and ii) the second inequality is by noting that V TV is ann× n matrix with1’s on the diagonal
and at most1/2n on the off-diagonal elements, and applying the Gershgorin circle theorem.

Now we can bound the quantity of interest. Note that
∣
∣
∣û · u

‖u‖
∣
∣
∣ ≥ |ûT(û− (û− u))| ≥ 1− ‖û− u‖ = 1−

∥
∥
∑

i

αi(v̂i − vi)
∥
∥

≥ 1−
∑

i

|αi|‖v̂i − vi‖ ≥ 1− (δ/
√
2n)

∑

i

|αi| ≥ 1− δ,

where the last inequality is by noting‖α‖1 ≤
√
2n.

A.2 On Constructing a Bounded Manifold Cover

Given a compactn-manifoldM ⊂ R
D with condition number1/τ , and some0 < δ ≤ 1. We can construct

anα-bounded(ρ, δ) coverX of M (with α ≤ 210n+1 andρ ≤ τδ/3
√
2n) as follows.

Setρ ≤ τδ/3
√
2n and pick a(ρ/2)-netC of M (that isC ⊂ M such that, i. forc, c′ ∈ C such that

c 6= c′, ‖c−c′‖ ≥ ρ/2, ii. for all p ∈M , existsc ∈ C such that‖c−p‖ < ρ/2). WLOG we shall assume that
all points ofC are in the interior ofM . Then, for eachc ∈ C, defineMc,ρ/2 := {p ∈ M : ‖p− c‖ ≤ ρ/2},
and the orthogonal projection mapfc :Mc,ρ/2 → TcM that projectsMc,ρ/2 ontoTcM (note that, cf. Lemma
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11(i),fc is 1−1). Note thatTcM can be identified withRn with thec as the origin. We will denote the origin
asx(c)0 , that is,x(c)0 = fc(c).

Now, letBc be anyn-dimensional closed ball centered at the originx(c)0 ∈ TcM of radiusr > 0 that is

completely contained infc(Mc,ρ/2) (that is,Bc ⊂ fc(Mc,ρ/2)). Pick a set ofn pointsx(c)1 , . . . , x
(c)
n on the

surface of the ballBc such that(x(c)i − x
(c)
0 ) · (x(c)j − x

(c)
0 ) = 0 for i 6= j.

Define the bounded manifold cover as

X :=
⋃

c∈C,i=0,...,n

f−1
c (x

(c)
i ). (6)

Lemma 15 Let0 < δ ≤ 1 andρ ≤ τδ/3
√
2n. LetC be a(ρ/2)-net ofM as described above, andX be as

in Eq. (6). ThenX forms a210n+1-bounded(ρ, δ) cover ofM .

Proof: Pick any pointp ∈ M and defineXp := {x ∈ X : ‖x − p‖ < ρ}. Let c ∈ C be such that
‖p− c‖ < ρ/2. ThenXp has the following properties.

Covering criterion:For 0 ≤ i ≤ n, since‖f−1
c (x

(c)
i ) − c‖ ≤ ρ/2 (by construction), we have‖f−1

c (x
(c)
i ) −

p‖ < ρ. Thus,f−1
c (x

(c)
i ) ∈ Xp (for 0 ≤ i ≤ n). Now, for1 ≤ i ≤ n, noting thatDG(f

−1
c (x

(c)
i ), f−1

c (x
(c)
0 )) ≤

2‖f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )‖ ≤ ρ (cf. Lemma 10), we have that for the vectorv̂(c)i :=

f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )

‖f−1
c (x

(c)
i )−f−1

c (x
(c)
0 )‖

and

its (normalized) projectionv(c)i :=
x
(c)
i −x

(c)
0

‖x
(c)
i −x

(c)
0 ‖

ontoTcM ,
∥
∥v̂

(c)
i − v

(c)
i

∥
∥ ≤ ρ/

√
2τ (cf. Lemma 13). Thus,

for i 6= j, we have (recall, by construction, we havev(c)i · v
(c)
j = 0)

|v̂(c)i · v̂
(c)
j | = |(v̂(c)i − v

(c)
i + v

(c)
i ) · (v̂(c)j − v

(c)
j + v

(c)
j )|

= |(v̂(c)i − v
(c)
i ) · (v̂(c)j − v

(c)
j ) + v

(c)
i · (v̂

(c)
j − v

(c)
j ) + (v̂

(c)
i − v

(c)
i ) · v(c)j |

≤ ‖(v̂(c)i − v
(c)
i )‖‖(v̂(c)j − v

(c)
j )‖+ ‖v̂(c)i − v

(c)
i ‖+ ‖v̂

(c)
j − v

(c)
j ‖

≤ 3ρ/
√
2τ ≤ 1/2n.

Point representation criterion:There existsx ∈ Xp, namelyf−1
c (x

(c)
0 ) (= c), such that‖p− x‖ ≤ ρ/2.

Local boundedness criterion:DefineMp,3ρ/2 := {q ∈M : ‖q − p‖ < 3ρ/2}. Note thatXp ⊂ {f−1
c (x

(c)
i ) :

c ∈ C ∩Mp,3ρ/2, 0 ≤ i ≤ n}. Now, using Lemma 12 we have that exists a coverN ⊂ Mp,3ρ/2 of size
at most93n such that for any pointq ∈ Mp,3ρ/2, there existsn ∈ N such that‖q − n‖ < ρ/4. Note that,
by construction ofC, there cannot be ann ∈ N such that it is within distanceρ/4 of two (or more) distinct
c, c′ ∈ C (since otherwise the distance‖c− c′‖ will be less thanρ/2, contradicting the packing ofC). Thus,
|C ∩Mp,3ρ/2| ≤ 93n. It follows that|Xp| ≤ (n+ 1)93n ≤ 210n+1.

Tangent space approximation criterion:Let T̂p be then-dimensional span of{v̂(c)i }i∈[n] (note thatT̂p may

not necessarily pass throughp). Then, for any unit vector̂u ∈ T̂p, we need to show that its projectionup
ontoTpM has the property|û · up

‖up‖
| ≥ 1 − δ. Let θ be the angle between vectorsû andup. Let uc be the

projection ofû ontoTcM , andθ1 be the angle between vectorsû anduc, and letθ2 be the angle between
vectorsuc (at c) and its parallel transport along the geodesic path top. WLOG we can assume thatθ1 andθ2
are at mostπ/2. Then,θ ≤ θ1 + θ2 ≤ π. We get the bound on the individual angles as follows. By applying
Lemma 14,cos(θ1) ≥ 1− δ/4, and by applying Lemma 9,cos(θ2) ≥ 1− δ/4. Finally, by using Lemma 16,
we have

∣
∣û · up

‖up‖

∣
∣ = cos(θ) ≥ cos(θ1 + θ2) ≥ 1− δ.

Lemma 16 Let0 ≤ ǫ1, ǫ2 ≤ 1. If cosα ≥ 1−ǫ1 andcosβ ≥ 1−ǫ2, thencos(α+β) ≥ 1−ǫ1−ǫ2−2
√
ǫ1ǫ2.

Proof: Applying the identitysin θ =
√
1− cos2 θ immediately yieldssinα ≤

√
2ǫ1 andsinβ ≤

√
2ǫ2.

Now, cos(α+ β) = cosα cosβ − sinα sinβ ≥ (1− ǫ1)(1− ǫ2)− 2
√
ǫ1ǫ2 ≥ 1− ǫ1 − ǫ2 − 2

√
ǫ1ǫ2.

Remark 6 A dense enough sample fromM constitutes as a bounded cover. One can selectively prune the
dense sampling to control the total number of points in each neighborhood, while still maintaining the cover
properties.
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A.3 Bounding the number of subsetsK in Embedding I

By construction (see the preprocessing stage of Embedding I),K = maxx∈X |X ∩B(x, 2ρ)| (whereB(x, r)
denotes a Euclidean ball centered atx of radiusr). That is,K is the largest number ofx’s (∈ X) that are
within a2ρ ball of somex ∈ X.

Now, pick anyx ∈ X and consider the setMx := M ∩ B(x, 2ρ). Then, ifρ ≤ τ/4, Mx can be covered
by 2cn balls of radiusρ (see Lemma 12). By recalling thatX forms anα-bounded(ρ, δ)-cover, we have
|X ∩B(x, 2ρ)| = |X ∩Mx| ≤ α2cn (wherec ≤ 4).

A.4 Proof of Lemma 4

SinceR is a random orthoprojector fromRD toR
d, it follows that

Lemma 17 (random projection ofn-manifolds – adapted from Theorem 1.5 of [Cla07])LetM be a smooth
compactn-manifold with volumeV and condition number1/τ . Let R̄ :=

√

D/dR be a scaling ofR. Pick
any0 < ǫ ≤ 1 and0 < δ ≤ 1. If d = Ω

(
ǫ−2 log(V/τn) + ǫ−2n log(1/ǫ) + ln(1/δ)

)
, then with probability

at least1− δ, for all p, q ∈M

(1− ǫ)‖p− q‖ ≤ ‖R̄p− R̄q‖ ≤ (1 + ǫ)‖p− q‖.

We apply this result withǫ = 1/4. Then, ford = Ω(log(V/τn)+n), with probability at least1− 1/poly(n),
(3/4)‖p − q‖ ≤ ‖R̄p − R̄q‖ ≤ (5/4)‖p − q‖. Now letΦ : RD → R

d be defined asΦx := (2/3)R̄x =

(2/3)(
√

D/d)x (as per the lemma statement). Then we immediately get(1/2)‖p − q‖ ≤ ‖Φp − Φq‖ ≤
(5/6)‖p− q‖.

Also note that for anyx ∈ R
D, we have‖Φx‖ = (2/3)(

√

D/d)‖Rx‖ ≤ (2/3)(
√

D/d)‖x‖ (sinceR is
an orthoprojector).

Finally, for any pointp ∈ M , a unit vectoru tangent toM at p can be approximated arbitrarily well by
considering a sequence{pi}i of points (inM ) converging top (in M ) such that(pi− p)/‖pi − p‖ converges
to u. Since for all pointspi, (1/2) ≤ ‖Φpi − Φp‖/‖pi − p‖ ≤ (5/6) (with high probability), it follows that
(1/2) ≤ ‖(DΦ)p(u)‖ ≤ (5/6).

A.5 Proof of Corollary 5

Let v1x andvnx (∈ R
n) be the right singular vectors corresponding to singular valuesσ1

x andσn
x respectively

of the matrixΦFx. Then, quickly note thatσ1
x = ‖ΦFxv

1‖, andσn
x = ‖ΦFxv

n‖. Note that sinceFx is
orthonormal, we have that‖Fxv

1‖ = ‖Fxv
n‖ = 1. Now, sinceFxv

n is in the span of column vectors of
Fx, by the sampling condition (cf. Definition 2), there exists aunit length vector̄vnx tangent toM (at x)
such that|Fxv

n
x · v̄nx | ≥ 1 − δ. Thus, decomposingFxv

n
x into two vectorsanx andbnx such thatanx⊥bnx and

anx := (Fxv
n
x · v̄nx )v̄nx , we have

σn
x = ‖Φ(Fxv

n)‖ = ‖Φ((Fxv
n
x · v̄nx )v̄nx ) + Φbnx‖

≥ (1− δ) ‖Φv̄nx‖ − ‖Φbnx‖
≥ (1− δ)(1/2)− (2/3)

√

2δD/d,

since‖bnx‖2 = ‖Fxv
n
x‖2−‖anx‖2 ≤ 1− (1− δ)2 ≤ 2δ and‖Φbnx‖ ≤ (2/3)(

√

D/d)‖bnx‖ ≤ (2/3)
√

2δD/d.
Similarly decomposingFxv

1
x into two vectorsa1x andb1x such thata1x⊥b1x anda1x := (Fxv

1
x · v̄1x)v̄1x, we have

σ1
x = ‖Φ(Fxv

1
x)‖ = ‖Φ((Fxv

1
x · v̄1x)v̄1x) + Φb1x‖

≤
∥
∥Φv̄1x

∥
∥+ ‖Φb1x‖

≤ (5/6) + (2/3)
√

2δD/d,

where the last inequality is by noting‖Φb1x‖ ≤ (2/3)
√

2δD/d. Now, by our choice ofδ (≤ d/32D), and by
noting thatd ≤ D, the corollary follows.
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A.6 Proof of Lemma 6

We can simplify Eq. (1) by recalling how the subsetsX(j) were constructed (see preprocessing stage of
Embedding I). Note that for any fixedt, at most one term in the set{ΛΦ(x)(t)}x∈X(j) is non-zero. Thus,

‖(DΨ)t(u)‖2 =

d∑

k=1

u2k +

n∑

k=1

∑

x∈X

ΛΦ(x)(t) cos
2(ω(Cxt)k)(C

xu)2k + ΛΦ(x)(t) sin
2(ω(Cxt)k)(C

xu)2k

+
1

ω

[ ((
Ak,x

sin (t)
)2

+
(
Ak,x

cos(t)
)2)

/ω
︸ ︷︷ ︸

ζ1

+2Ak,x
sin (t)

√

ΛΦ(x)(t) cos(ω(C
xt)k)(C

xu)k
︸ ︷︷ ︸

ζ2

−2Ak,x
cos(t)

√

ΛΦ(x)(t) sin(ω(C
xt)k)(C

xu)k
︸ ︷︷ ︸

ζ3

]

= ‖u‖2 +
∑

x∈X

ΛΦ(x)(t)
n∑

k=1

(Cxu)2k + ζ,

whereζ := (ζ1 + ζ2 + ζ3)/ω. Noting that i) the terms|Ak,x
sin (t)| and |Ak,x

cos(t)| are at mostO(α9n
√
d/ρ)

(see Lemma 18), ii)|(Cxu)k| ≤ 4, and iii)
√
ΛΦ(x)(t) ≤ 1, we can pickω sufficiently large (say,ω ≥

Ω(nα29n
√
d/ρǫ) such that|ζ| ≤ ǫ/2 (whereǫ is the isometry constant from our main theorem).

Lemma 18 For all k, x andt, the terms|Ak,x
sin (t)| and|Ak,x

cos(t)| are at mostO(α9n
√
d/ρ).

Proof: We shall focus on bounding|Ak,x
sin (t)| (the steps for bounding|Ak,x

cos(t)| are similar). Note that

|Ak,x
sin (t)| =

∣
∣
∣

d∑

i=1

uisin(ω(C
xt)k)

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣ ≤

d∑

i=1

|ui| ·
∣
∣
∣

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣ ≤

√
√
√
√

d∑

i=1

∣
∣
∣

dΛ
1/2
Φ(x)(t)

dti

∣
∣
∣

2

,

since‖u‖ ≤ 1. Thus, we can bound|Ak,x
sin (t)| byO(α9n

√
d/ρ) by noting the following lemma.

Lemma 19 For all i, x andt, |dΛ1/2
Φ(x)(t)/dt

i| ≤ O(α9n/ρ).

Proof: Pick anyt ∈ Φ(M), and letp0 ∈ M be (the unique element) such thatΦ(p0) = t. DefineNp0
:=

{x ∈ X : ‖Φ(x) − Φ(p0)‖ < ρ} as the neighborhood aroundp0. Fix an arbitraryx0 ∈ Np0
⊂ X (since if

x0 /∈ Np0
thendΛ1/2

Φ(x0)
(t)/dti = 0), and consider the function

Λ
1/2
Φ(x0)

(t) =

(

λΦ(x0)(t)
∑

x∈Np0
λΦ(x)(t)

)1/2

=

(

e−1/(1−(‖t−Φ(x0)‖
2/ρ2))

∑

x∈Np0
e−1/(1−(‖t−Φ(x)‖2/ρ2))

)1/2

.
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Pick an arbitrary coordinatei0 ∈ {1, . . . , d} and consider the (directional) derivative of this function

dΛ
1/2
Φ(x0)

(t)

dti0
=

1

2

(
Λ
−1/2
Φ(x0)

(t)
)(dΛΦ(x0)(t)

dti0

)

=

( ∑

x∈Np0

e−At(x)
)1/2

2
(

e−At(x0)
)1/2









( ∑

x∈Np0

e−At(x)
)(−2(ti0 − Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)

( ∑

x∈Np0

e−At(x)
)2

−

(

e−At(x0)
)( ∑

x∈Np0

−2(ti0 − Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

( ∑

x∈Np0

e−At(x)
)2









=

( ∑

x∈Np0

e−At(x)
)(−2(ti0 − Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)1/2

2
( ∑

x∈Np0

e−At(x)
)1.5

−

(

e−At(x0)
)1/2( ∑

x∈Np0

−2(ti0 − Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

2
( ∑

x∈Np0

e−At(x)
)1.5 ,

whereAt(x) := 1/(1 − (‖t − Φ(x)‖2/ρ2)). Observe that the domain ofAt is {x ∈ X : ‖t − Φ(x)‖ < ρ}
and the range is[1,∞). Recalling that for anyβ ≥ 1, |β2e−β | ≤ 1 and |β2e−β/2| ≤ 3, we have that
|At(·)2e−At(·)| ≤ 1 and|At(·)2e−At(·)/2| ≤ 3. Thus,

∣
∣
∣

dΛ
1/2
Φ(x0)

(t)

dti0

∣
∣
∣ ≤

3 ·
∣
∣
∣

∑

x∈Np0

e−At(x)
∣
∣
∣ ·
∣
∣
∣
2(ti0 − Φ(x0)i0)

ρ2

∣
∣
∣+
∣
∣
∣e−At(x0)/2

∣
∣
∣ ·
∣
∣
∣

∑

x∈Np0

2(ti0 − Φ(x)i0)

ρ2

∣
∣
∣

2
( ∑

x∈Np0

e−At(x)
)1.5

≤

(3)(2/ρ)
∣
∣
∣

∑

x∈Np0

e−At(x)
∣
∣
∣+
∣
∣
∣e−At(x0)/2

∣
∣
∣

∑

x∈Np0

(2/ρ)

2
( ∑

x∈Np0

e−At(x)
)1.5

≤ O(α9n/ρ),

where the last inequality is by noting: i)|Np0
| ≤ α9n (since for allx ∈ Np0

, ‖x − p0‖ ≤ 2ρ – cf. Lemma
4,X is anα-bounded cover, and by noting that forρ ≤ τ/4, a ball of radius2ρ can be covered by9n balls
of radiusρ on the givenn-manifold – cf. Lemma 12), ii)|e−At(x)| ≤ |e−At(x)/2| ≤ 1 (for all x), and iii)
∑

x∈Np0
e−At(x) ≥ Ω(1) (since our coverX ensures that for anyp0, there existsx ∈ Np0

⊂ X such that

‖p0 − x‖ ≤ ρ/2 – see also Remark 2, and hencee−At(x) is non-negligible for somex ∈ Np0
).
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A.7 Proof of Lemma 7

Note that by definition,‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2. Thus, using Eq. (3) and expanding the recur-
sion, we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X|,n)t(u)‖2

= ‖(DΨ|X|,n−1)t(u)‖2 + ΛΦ(x|X|)(t)(C
x|X|u)2n + Z|X|,n

...

= ‖(DΨ0,n)t(u)‖2 +
[ |X|
∑

i=1

ΛΦ(xi)(t)

n∑

j=1

(Cxiu)2j

]

+
∑

i,j

Zi,j .

Note that(DΨi,0)t(u) := (DΨi−1,n)t(u). Now recalling that‖(DΨ0,n)t(u)‖2 = ‖u‖2 (the base case of the
recursion), all we need to show is that|

∑

i,j Zi,j | ≤ ǫ/2. This follows directly from the lemma below.

Lemma 20 Let ǫ0 ≤ O
(
ǫ/d(n|X|)2

)
, and for anyi, j, letωi,j ≥ Ω

(
(Ki,j + (α9n/ρ))(nd|X|)2/ǫ

)
(as per

the statement of Lemma 7). Then, for anyi, j, |Zi,j | ≤ ǫ/2n|X|.
Proof: Recall that (cf. Eq. (3))

Zi,j =
1

ω2
i,j

∑

k

(
ζk,4i,j

)2

︸ ︷︷ ︸

(a)

+2
∑

k

ζk,4i,j

ωi,j

(
ζk,1i,j + ζk,2i,j + ζk,3i,j

)

︸ ︷︷ ︸

(b)

+2
∑

k

ζk,1i,j ζ
k,2
i,j

︸ ︷︷ ︸

(c)

+2
∑

k

ζk,1i,j ζ
k,3
i,j

︸ ︷︷ ︸

(d)

.

Term (a): Note that|
∑

k(ζ
k,4
i,j )

2| ≤ O
(
d3(Ki,j + (α9n/ρ))2

)
(cf. Lemma 21 (iv)). By our choice ofωi,j ,

we have term (a) at mostO(ǫ/n|X|).

Term (b): Note that
∣
∣ζk,1i,j + ζk,2i,j + ζk,3i,j

∣
∣ ≤ O(n|X| + (ǫ/dn|X|)) (by noting Lemma 21 (i)-(iii), recall-

ing the choice ofωi,j , and summing over alli′, j′). Thus,
∣
∣
∑

k ζ
k,4
i,j (ζ

k,1
i,j + ζk,2i,j + ζk,3i,j )

∣
∣ ≤ O

((
d2(Ki,j +

(α9n/ρ))
)(
n|X|+ (ǫ/dn|X|)

))
. Again, by our choice ofωi,j , term (b) is at mostO(ǫ/n|X|).

Terms (c) and (d):We focus on bounding term (c) (the steps for bounding term (d)are same). Note that
|
∑

k ζ
k,1
i,j ζ

k,2
i,j | ≤ 4|

∑

k ζ
k,1
i,j (ηi,j(t))k|. Now, observe that

(
ζk,1i,j

)

k=1,...,2d+3
is a tangent vector with length

at mostO(dn|X| + (ǫ/dn|X|)) (cf. Lemma 21 (i)). Thus, by noting thatηi,j is almost normal (with quality
of approximationǫ0), we have term (c) at mostO(ǫ/n|X|).

By choosing the constants in the order terms appropriately,we can get the lemma.

Lemma 21 Let ζk,1i,j , ζk,2i,j , ζk,3i,j , andζk,4i,j be as defined in Eq.(3). Then for all1 ≤ i ≤ |X| and1 ≤ j ≤ n,
we have

(i) |ζk,1i,j | ≤ 1 + 8n|X|+
∑i

i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α9n/ρ))/ωi′,j′),

(ii) |ζk,2i,j | ≤ 4,

(iii) |ζk,3i,j | ≤ 4,

(iv) |ζk,4i,j | ≤ O(d(Ki,j + (α9n/ρ))).

Proof: First note for any‖u‖ ≤ 1 and for anyxi ∈ X, 1 ≤ j ≤ n and1 ≤ l ≤ d, we have|∑l C
xi

j,lul| =
|(Cxiu)j | ≤ 4 (cf. Lemma 23 (b) and Corollary 5).

Noting that for alli andj, ‖ηi,j‖ = ‖νi,j‖ = 1, we have|ζ2,ki,j | ≤ 4 and|ζ3,ki,j | ≤ 4.

Observe thatζk,4i,j =
∑

l ulR
k,l
i,j . For all i, j, k andl, note that i)‖dηi,j(t)/dtl‖ ≤ Ki,j and‖dνi,j(t)/dtl‖ ≤

Ki,j and ii) |dλ1/2Φ(xi)
(t)/dtl| ≤ O(α9n/ρ) (cf. Lemma 19). Thus we have|ζk,4i,j | ≤ O(d(Ki,j + (α9n/ρ))).

Now for any i, j, note thatζk,1i,j =
∑

l uldΨi,j−1(t)/dt
l. Thus by recursively expanding,|ζk,1i,j | ≤ 1 +

8n|X|+∑i
i′=1

∑j−1
j′=1O(d(Ki′,j′ + (α9n/ρ))/ωi′,j′).
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A.8 Proof of Lemma 8

We start by stating the following useful observations:

Lemma 22 LetA be a linear operator such thatmax‖x‖=1 ‖Ax‖ ≤ δmax. Letu be a unit-length vector. If
‖Au‖ ≥ δmin > 0, then for any unit-length vectorv such that|u · v| ≥ 1− ǫ, we have

1− δmax

√
2ǫ

δmin
≤ ‖Av‖‖Au‖ ≤ 1 +

δmax

√
2ǫ

δmin
.

Proof: Let v′ = v if u ·v > 0, otherwise letv′ = −v. Quickly note that‖u−v′‖2 = ‖u‖2+‖v′‖2−2u ·v′ =
2(1− u · v′) ≤ 2ǫ. Thus, we have,

i. ‖Av‖ = ‖Av′‖ ≤ ‖Au‖+ ‖A(u− v′)‖ ≤ ‖Au‖+ δmax

√
2ǫ,

ii. ‖Av‖ = ‖Av′‖ ≥ ‖Au‖ − ‖A(u− v′)‖ ≥ ‖Au‖ − δmax

√
2ǫ.

Noting that‖Au‖ ≥ δmin yields the result.

Lemma 23 Let x1, . . . , xn ∈ R
D be a set of orthonormal vectors,F := [x1, . . . , xn] be aD × n matrix

and letΦ be a linear map fromRD to R
d (n ≤ d ≤ D) such that for all non-zeroa ∈ span(F ) we have

0 < ‖Φa‖ ≤ ‖a‖. LetUΣV T be the thin SVD ofΦF . DefineC = (Σ−2 − I)1/2UT. Then,

(a) ‖C(Φa)‖2 = ‖a‖2 − ‖Φa‖2, for anya ∈ span(F ),

(b) ‖C‖2 ≤ (1/σn)2, where‖ · ‖ denotes the spectral norm of a matrix andσn is thenth largest singular
value ofΦF .

Proof: Note thatFV forms an orthonormal basis for the subspace spanned by columns ofF that maps to
UΣ via the mappingΦ. Thus, sincea ∈ span(F ), let y be such thata = FV y. Note that i)‖a‖2 = ‖y‖2, ii)
‖Φa‖2 = ‖UΣy‖2 = yTΣ2y. Now,

‖CΦa‖2 = ‖((Σ−2 − I)1/2UT)ΦFV y‖2

= ‖(Σ−2 − I)1/2UTUΣV TV y‖2

= ‖(Σ−2 − I)1/2Σy‖2

= yTy − yTΣ2y

= ‖a‖2 − ‖Φa‖2.
Now, consider‖C‖2.

‖C‖2 ≤ ‖(Σ−2 − I)1/2‖2‖UT‖2

≤ max
‖x‖=1

‖(Σ−2 − I)1/2x‖2

≤ max
‖x‖=1

xTΣ−2x

= max
‖x‖=1

∑

i

x2i /(σ
i)2

≤ (1/σn)2,

whereσi are the (topn) singular values forming the diagonal matrixΣ.

Lemma 24 Let M ⊂ R
D be a compact Riemanniann-manifold with condition number1/τ . Pick any

x ∈ M and letFx be anyn-dimensional affine space with the property: for any unit vector vx tangent toM
atx, and its projectionvxF ontoFx,

∣
∣vx · vxF

‖vxF ‖

∣
∣ ≥ 1−δ. Then for anyp ∈M such that‖x−p‖ ≤ ρ ≤ τ/2,

and any unit vectorv tangent toM at p, (ξ := (2ρ/τ) + δ + 2
√

2ρδ/τ )

i.
∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ ≥ 1− ξ,

ii. ‖vF ‖2 ≥ 1− 2ξ,

21



iii. ‖vr‖2 ≤ 2ξ,

wherevF is the projection ofv ontoFx andvr is the residual (i.e.v = vF + vr andvF⊥vr).

Proof: Let γ be the angle betweenvF andv. We will bound this angle.
Let vx (atx) be the parallel transport ofv (atp) via the (shortest) geodesic path via the manifold connec-

tion. Let the angle between vectorsv andvx beα. Let vxF be the projection ofvx onto the subspaceFx,
and let the angle betweenvx andvxF beβ. WLOG, we can assume that the anglesα andβ are acute. Then,

sinceγ ≤ α + β ≤ π, we have that
∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ = cos γ ≥ cos(α + β). We bound the individual termscosα

andcosβ as follows.
Now, since‖p − x‖ ≤ ρ, using Lemmas 9 and 10, we havecos(α) = |v · vx| ≥ 1 − 2ρ/τ . We also

havecos(β) =
∣
∣
∣vx · vxF

‖vxF ‖

∣
∣
∣ ≥ 1 − δ. Then, using Lemma 16, we finally get

∣
∣
∣v · vF

‖vF ‖

∣
∣
∣ = | cos(γ)| ≥

1− 2ρ/τ − δ − 2
√

2ρδ/τ = 1− ξ.
Also note since1 = ‖v‖2 = (v · vF

‖vF ‖ )
2
∥
∥
∥

vF

‖vF ‖

∥
∥
∥

2

+ ‖vr‖2, we have‖vr‖2 = 1−
(

v · vF

‖vF ‖

)2

≤ 2ξ, and

‖vF ‖2 = 1− ‖vr‖2 ≥ 1− 2ξ.

Now we are in a position to prove Lemma 8. LetvF be the projection of the unit vectorv (atp) onto the
subspace spanned by (the columns of)Fx andvr be the residual (i.e.v = vF + vr andvF⊥vr). Then, noting
thatp, x, v andFx satisfy the conditions of Lemma 24 (withρ in the Lemma 24 replaced with2ρ from the
statement of Lemma 8), we have (ξ := (4ρ/τ) + δ + 4

√

ρδ/τ )

a)
∣
∣v · vF

‖vF ‖

∣
∣ ≥ 1− ξ,

b) ‖vF ‖2 ≥ 1− 2ξ,

c) ‖vr‖2 ≤ 2ξ.

We can now bound the required quantity‖Cxu‖2. Note that

‖Cxu‖2 = ‖CxΦv‖2 = ‖CxΦ(vF + vr)‖2

= ‖CxΦvF ‖2 + ‖CxΦvr‖2 + 2CxΦvF · CxΦvr

= ‖vF ‖2 − ‖ΦvF ‖2
︸ ︷︷ ︸

(a)

+ ‖CxΦvr‖2
︸ ︷︷ ︸

(b)

+2CxΦvF · CxΦvr
︸ ︷︷ ︸

(c)

where the last equality is by observingvF is in the span ofFx and applying Lemma 23 (a). We now bound
the terms(a),(b), and(c) individually.

Term (a): Note that1 − 2ξ ≤ ‖vF ‖2 ≤ 1 and observing thatΦ satisfies the conditions of Lemma 22
with δmax = (2/3)

√

D/d, δmin = (1/2) ≤ ‖Φv‖ (cf. Lemma 4) and
∣
∣v · vF

‖vF ‖

∣
∣ ≥ 1 − ξ, we have (recall

‖Φv‖ = ‖u‖ ≤ 1)

‖vF ‖2 − ‖ΦvF ‖2 ≤ 1− ‖vF ‖2
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≤ 1− (1− 2ξ)

∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≤ 1 + 2ξ −
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≤ 1 + 2ξ −
(
1− (4/3)

√

2ξD/d
)2 ‖Φv‖2

≤ 1− ‖u‖2 +
(
2ξ + (8/3)

√

2ξD/d
)
, (7)

where the fourth inequality is by using Lemma 22. Similarly,in the other direction

‖vF ‖2 − ‖ΦvF ‖2 ≥ 1− 2ξ − ‖vF ‖2
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≥ 1− 2ξ −
∥
∥
∥
∥
Φ

vF
‖vF ‖

∥
∥
∥
∥

2

≥ 1− 2ξ −
(
1 + (4/3)

√

2ξD/d
)2 ‖Φv‖2

≥ 1− ‖u‖2 −
(
2ξ + (32/9)ξ(D/d) + (8/3)

√

2ξD/d
)
. (8)
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d
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Φp

Φx1

Φx2

Φx3

Φx4

Figure 7:Basic setup for computing the normals to the underlyingn-manifoldΦM at the point of interestΦp. Observe
that even though it is difficult to find vectors normal toΦM atΦp within the containing spaceRd (because we only have
a finite-size sample fromΦM , viz. Φx1, Φx2, etc.), we can treat the pointΦp as part of the bigger ambient manifoldN
(= R

d, that containsΦM ) and compute the desired normals in a space that containsN itself. Now, for eachi, j iteration
of Algorithm II, Ψi,j acts on the entireN , and since we have complete knowledge aboutN , we can compute the desired
normals.

Term (b): Note that for anyx, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖. We can apply Lemma 23 (b) withσn
x ≥ 1/4 (cf.

Corollary 5) and noting that‖vr‖2 ≤ 2ξ, we immediately get

0 ≤ ‖CxΦvr‖2 ≤ 42 · (4/9)(D/d)‖vr‖2 ≤ (128/9)(D/d)ξ. (9)

Term (c): Recall that for anyx, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖, and using Lemma 23 (b) we have that‖Cx‖2 ≤
16 (sinceσn

x ≥ 1/4 – cf. Corollary 5).
Now let a := CxΦvF and b := CxΦvr. Then‖a‖ = ‖CxΦvF ‖ ≤ ‖Cx‖‖ΦvF ‖ ≤ 4, and‖b‖ =

‖CxΦvr‖ ≤ (8/3)
√

2ξD/d (see Eq. (9)).

Thus,|2a · b| ≤ 2‖a‖‖b‖ ≤ 2 · 4 · (8/3)
√

2ξD/d = (64/3)
√

2ξD/d. Equivalently,

−(64/3)
√

2ξD/d ≤ 2CxΦvF · CxΦvr ≤ (64/3)
√

2ξD/d. (10)

Combining (7)-(10), and notingd ≤ D, yields the lemma.

A.9 Computing the Normal Vectors

The success of the second embedding technique crucially depends upon finding (at each iteration step) a pair
of mutually orthogonal unit vectors that are normal to the embedding of manifoldM (from the previous
iteration step) at a given pointp. At a first glance finding such normal vectors seems infeasible since we
only have access to a finite size sampleX fromM . The saving grace comes from noting that the corrections
are applied to then-dimensional manifoldΦ(M) that is actually asubmanifoldof d-dimensional spaceRd.
Let’s denote this spaceRd as a flatd-manifoldN (containing our manifold of interestΦ(M)). Note that
even though we only have partial information aboutΦ(M) (since we only have samples from it), we have
full information aboutN (since it is the entire spaceRd). What it means is that given some point of interest
Φp ∈ Φ(M) ⊂ N , finding a vector normal toN (atΦp) automatically is a vector normal toΦ(M) (atΦp).
Of course, to find two mutually orthogonal normals to ad-manifoldN , N itself needs to be embedded in a
larger dimensional Euclidean space (although embedding into d+2 should suffice, for computational reasons
we will embedN into Euclidean space of dimension2d + 3). This is precisely the first thing we do before
applying any corrections (cf. Step 2 of Embedding II in Section 4). See Figure 7 for an illustration of the
setup before finding any normals.

Now for every iteration of the algorithm, note that we have complete knowledge ofN and exactly what
function (namelyΨi,j for iterationi, j) is being applied toN . Thus with additional computation effort, one
can compute the necessary normal vectors.

More specifically, We can estimate a pair of mutually orthogonal unit vectors that are normal toΨi,j(N)
atΦp (for any stepi, j) as follows.
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Algorithm 4 Compute Normal Vectors
Preprocessing Stage:
1: Let ηrand

i,j andνrand
i,j be vectors inR2d+3 drawn independently at random from the surface of the unit-sphere

(for 1 ≤ i ≤ |X|, 1 ≤ j ≤ n).

Compute Normals: For any point of interestp ∈M , let t := Φp denote its projection intoRd. Now, for any
iterationi, j (where1 ≤ i ≤ |X|, and1 ≤ j ≤ n), we shall assume that vectorsη andν upto iterationsi, j−1
are already given. Then we can compute the (approximated) normalsηi,j(t) andνi,j(t) for the iterationi, j
as follows.
1: Let∆ > 0 be the quality of approximation.
2: for k = 1, . . . , d do
3: Approximate thekth tangent vector as

T k :=
Ψi,j−1(t+∆ek)−Ψi,j−1(t)

∆
,

whereΨi,j−1 is as defined in Section 5.3, andek is thekth standard vector.
4: end for
5: Let η = ηrand

i,j , andν = νrand
i,j .

6: Use Gram-Schmidt orthogonalization process to extractη̂ (from η) that is orthogonal to vectors
{T 1, . . . , T d}.

7: Use Gram-Schmidt orthogonalization process to extractν̂ (from ν) that is orthogonal to vectors
{T 1, . . . , T d, η}.

8: return η̂/‖η̂‖ and ν̂/‖ν̂‖ as mutually orthogonal unit vectors that are approximatelynormal to
Ψi,j−1(ΦM) atΨi,j−1(t).

A few remarks are in order.

Remark 7 The choice of target dimension of size2d + 3 (instead ofd + 2) ensures that a pair of random
unit-vectorsη andν are not parallel to any vector in the tangent bundle ofΨi,j−1(N) with probability1. This
again follows from Sard’s theorem, and is the key observation in reducing the embedding size in Whitney’s
embedding [Whi36]. This also ensures that our orthogonalization process (Steps 6 and 7) will not result in a
null vector.

Remark 8 By picking∆ sufficiently small, we can approximate the normalsη and ν arbitrarily well by
approximating the tangentsT 1, . . . , T d well.

Remark 9 For each iterationi, j, the vectorŝη/‖η̂‖ and ν̂/‖ν̂‖ that are returned (in Step 8) are a smooth
modification to the starting vectorsηrand

i,j andνrand
i,j respectively. Now, since we use the same starting vectors

ηrand
i,j and νrand

i,j regardless of the point of application (t = Φp), it follows that the respective directional
derivates of the returned vectors are bounded as well.

By noting Remarks 8 and 9, the approximate normals we return satisfy the conditions needed for Embed-
ding II (see our discussion in Section 5.3).
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