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Abstract

Itis well known from differential geometry that andimensional Riemannian manifold can be iso-
metrically embedded in a Euclidean space of dimengio# 1 [Nas54]. Though the proof by Nash
is intuitive, it is not clear whether such a constructiongliavable by an algorithm that only has
access to a finite-size sample from the manifold. In this pape study Nash’s construction and
develop two algorithms for embedding a fairly general clafss-dimensional Riemannian mani-
folds (initially residing inR”) into R* (wherek only depends on some key manifold properties,
such as its intrinsic dimension, its volume, and its cumatthat approximately preserves geodesic
distances between all pairs of points. The first algorithmprapose is computationally fast and
embeds the given manifold approximately isometricallp iaboutO(2<™) dimensions (where is

an absolute constant). The second algorithm, although etatipnally more involved, attempts to
minimize the dimension of the target space and (approximeemetrically) embeds the manifold
in aboutO(n) dimensions.

1 Introduction

Finding low-dimensional representations of manifoldsrasen to be an important task in data analysis and
data visualization. Typically, one wants a low-dimensi@rabedding to reduce computational costs while
maintaining relevant information in the data. For manyhéag tasks, distances between data-points serve as
an important approximation to gauge similarity betweendbgervations. Thus, it comes as no surprise that
distance-preserving @sometricembeddings are popular.

The problem of isometrically embedding a differentiablenif@d into a low dimensional Euclidean
space has received considerable attention from the diffief@eometry community and, more recently, from
the manifold learning community. The classic results byiN&&as54, Nas56] and Kuiper [Kui55] show that
any compact Riemannian manifold of dimensiooan be isometricallg’' -embeddetlin Euclidean space of
dimensior2n + 1, andC>°-embedded in dimensio(n?) (see [HHO6] for an excellent reference). Though
these results are theoretically appealing, they rely oicatel handling of metric tensors and solving a system
of PDEs, making their constructions difficult to compute hyiscrete algorithm.

On the algorithmic front, researchers in the manifold leagrcommunity have devised a number of
spectral algorithms for finding low-dimensional represéinhs of manifold data [TdSL0OO, RS00, BNO3,
DGO03, WS04]. These algorithms are often successful in utirgenon-linear manifold structure from
samples, but lack rigorous guarantees that isometry witireserved for unseen data.

Recently, Baraniuk and Wakin [BWO07] and Clarkson [Cla07]vg&d that one can achieve approximate
isometry via the technique of random projections. It turnsthat projecting am-dimensional manifold
(initially residing inR”) into a sufficiently high dimensional random subspace isughao approximately
preserveall pairwise distances. Interestingly, this linear embeddjngrantees to preserve both the ambient
Euclidean distances as well as the geodesic distances dre@llepairs of points on the manifold without
even looking at the samples from the manifold. Such a stresglr comes at the cost of the dimension
of the embedded space. To dét+ ¢)-isometry, for instance, Baraniuk and Wakin [BW07] show that
a target dimension of size aboQt(%4 log “2) is sufficient, wheré/ is the n-dimensional volume of the
manifold andr is a global bound on the curvature. This result was sharpége@larkson [Cla07] by

A C*-embedding of a smooth manifoldf is an embedding af/ that hask continuous derivatives.
2A (1 + €)-isometry means that all distances are within a multiplicative factt e ).
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Figure 1: A simple example demonstrating Nash’s embedding techniquelemanifold. Left: Original 1-manifold

in some high dimensional space. Middle: A contractive mapping of thenatignanifold via a linear projection onto
the vertical plane. Different parts of the manifold are contracted bymifft amounts — distances at the tail-ends are
contracted more than the distances in the middle. Right: Final embedding@figing a series of spiralling corrections.
Small spirals are applied to regions with small distortion (middle), largelsgara applied to regions with large distortions
(tail-ends). Resulting embedding is isometric (i.e., geodesic distanserpiieg) to the original manifold.

completely removing the dependence on ambient dimern3iand partially substituting with more average-
case manifold properties. In either case, 1fi¢* dependence is troublesome: if we want an embedding with
all distances withird9% of the original distances (i.ec,= 0.01), the bounds require the dimension of the
target space to be at least 10,000!

One may wonder whether the dependence @really necessary to achieve isometry. Nash’s theorem
suggests that attffree bound on the target space should be possible.

1.1 Our Contributions

In this work, we elucidate Nash@&'! construction, and take the first step in making Nash’s thaaigorith-
mic by providing two simple algorithms for approximatelpisetrically embedding-manifolds (manifolds
with intrinsic dimensiom), where the dimension of the target spacedependendf the ambient dimension
D and the isometry constaat The first algorithm we propose is simple and fast in computhre target
embedding but embeds the giveamanifold in about2™ dimensions (where is an absolute constant).
The second algorithm we propose focuses on minimizing ttgeetalimension. It is computationally more
involved but embeds the giverrmanifold in aboutO(n) dimensions.

We would like to highlight that both our proposed algorithwzrk for a fairly general class of manifolds.
There is no requirement that the originamanifold is connected, or is globally isometric (or evealgllly
diffeomorphic) to some subset &" as is frequently assumed by several manifold embeddingitigts.

In addition, unlike spectrum-based embedding algorithvadable in the literature, our algorithms yield an
explicit C*>°-embedding that cleanly embeds out-of-sample data p@intsprovide isometry guarantees over
the entire manifold (not just the input samples).

On the technical side, we emphasize that the techniquesimsen proof are different from what Nash
uses in his work; unlike traditional differential-geonietsettings, we can only access the underlying mani-
fold through a finite size sample. This makes it difficult torgaute quantities (such as the curvature tensor
and local functional form of the input manifold, etc.) tha¢ amportant in Nash’s approach for constructing
an isometric embedding. Our techniques do, however, useugadifferential-geometric concepts and our
hope is to make such techniques mainstream in analyzingohdifeéarning algorithms.

2 Nash’s Construction for C''-Isometric Embedding

Given ann-dimensional manifold/ (initially residing inR”), Nash’s embedding can be summarized in two
steps (see also [Nas54]). (1) Find a contraétiveapping ofM in the desired dimensional Euclidean space.
(2) Apply an infinite series of corrections to restore theatises to their original lengths.

In order to maintain the smoothness, the contraction antatget dimension in step one should be chosen
carefully. Nash notes that one can use Whitney’s constmidii¢hi36] to embed) in R*"*! without
introducing any kinks, tears, or discontinuities in the edhting. This initial embedding, which does not
necessarily preserve any distances, can be made into actorby adjusting the scale.

The corrections in step two should also be done with careh Eaection stretches out a small region of
the contracted manifold to restore local distances as msiplossible. Nash shows that applying a successive
sequence of spirdisn directions normal to the embeddéd is a simple way to stretch the distances while
maintaining differentiability. The aggregate effect oplpng these “spiralling perturbations” is a globally-
isometric mapping of\/ in R*"*!. See Figure 1 for an illustration.

3A contractive mapping or a contraction is a mapping that doesn't inetéasdistance between points.
“A spiral map is a mapping of the form— (¢, sin(t), cos(t)).



Remark 1 Adjusting the lengths by applying spirals is one of many waydo local corrections. Kuiper
[Kui55], for instance, discusses an alternative way to tetiethe contracted manifold by applying corruga-
tions and gets a similar isometry result.

2.1 Algorithm for Embedding n-Manifolds: Intuition

Taking inspiration from Nash’s construction, our proposatbedding will also be divided in two stages. The
first stage will attempt to find a contractidn: R” — R? of our givenn-manifold M/ c R” in low dimen-
sions. The second will apply a series of local correctiinsVs, . .. (collectively refered to as the mapping
¥ : RY — R¥F) to restore the geodesic distances.

Contraction stage: A pleasantly surprising observation is that a random ptigeaf M into d = O(n)
dimensions is a bona fide injective, differential-struetpreserving contraction with high probability (details
in Section 5.1). Since we don’t require isometry in the fitage (only a contraction), we can use a random
projection as our contraction mappifigwithout having to pay the /¢ penalty.

Correction stage: We will apply several corrections to stretch-out our coctied manifold®(A/). To un-
derstand a single correctiah; better, we can consider its effect on a small sectio@@¥/). Since, locally,

the section effectively looks like a contractedimensional affine space, our correction map needs to gstor
distances over this-flat. LetU := [u',...,u"] be ad x n matrix whose columns form an orthonormal

basis for this:-flatin R? and letsy, . . . , s,, be the corresponding shrinkages alongthirections. Then one
can consider applying am-dimensional analog of the spiral mapping; (t) := (¢, ¥sin(t), Pcos(t)), Where
Uin(t) := (sin((Ct)1),...,sin((Ct),)) and Weos(t) := (cos((Ct)1),...,cos((Ct),)). HereC serves as
ann x d “correction” matrix that controls how much of the surfaceeds to stretch. It turns out that if one
setsC to be the matrixSU T (whereS is a diagonal matrix with entng;; := /(1/s;)? — 1, recall thats;
was the shrinkage along directiaf), then the correctio’; precisely restores the shrinkages alongrthe
orthonormal directions on the resultant surface (see aaudsion in Section 5.2 for details).

Since different parts of the contracted manifold need totteched by different amounts, we localize
the effect of¥; to a small enough neighborhood by applying a specific kindeoh&l function known as a
“bump” function in the analysis literature (details in Sent5.2, cf. Figure 5 middle). Applying different
¥,’s at different parts of the manifold should have an aggeegéfect of creating an (approximate) isometric
embedding.

We now have a basic outline of our algorithm. Lt be ann-dimensional manifold ifR”. We first
find a contraction of\/ in d = O(n) dimensions via a random projection. This preserves theréifttial
structure but distorts the interpoint geodesic distanéés estimate the distortion at different regions of the
projected manifold by comparing a sample frdohwith its projection. We then perform a series of spiral
corrections—each applied locally—to adjust the lengths énltical neighborhoods. We will conclude that
restoring the lengths in all neighborhoods yields a glgbadinsistent (approximately) isometric embedding
of M. Figure 4 shows a quick schematic of our two stage embedditigvarious quantities of interest.

Based on exactijow these different locall';’s are applied gives rise to our two algorithms. For the
first algorithm, we shall apply; maps simultaneously by making use of extra coordinatesatalifierent
corrections don't interfere with each other. This yieldsrape and computationally fast embedding. We
shall require abou2“” additional coordinates to apply the corrections, makirgfthal embedding size of
2" (herec is an absolute constant). For the second algorithm, we alithir Nash’s technique more closely
and apply¥; maps iteratively in the same embedding space without th@fuegtra coordinates. Since all
¥,’s will share the same coordinate space, extra care needsttdkén in applying the corrections. This will
require additional computational effort in terms of compgtnormals to the embedded manifold (details
later), but will result in an embedding of siz&n).

3 Preliminaries

Let M be a smoothy-dimensional compact Riemannian submanifoldéf. Since we will be working with
samples from\/, we need to ensure certain amount of regularity. Here weohotine notation from Niyogi
et al. [NSWO06] about the condition number &f.

Definition 1 (condition number [NSWO06]) Let M/ ¢ R” be a compact Riemannian manifold. The condi-
tion number ofM is } if 7 is the largest number such that the normals of length 7 at any two distinct
pointsp, ¢ € M don't intersect.

The condition numbet /7 is an intuitive notion that captures the “complexity” 8f in terms of its
curvature. We can, for instance, bound the directionalature at anyp € M by . Figure 2 depicts the



Figure 2: Tubular neighborhood of a manifold. Note that the normals (dotted linfez)particular length incident at
each point of the manifold (solid line) will intersect if the manifold is too curvy

normals of a manifold. Notice that long non-intersectingnals are possible only if the manifold is relatively
flat. Hence, the condition number 8f gives us a handle on how curvy cah be. As a quick example, let's
calculate the condition number of andimensional sphere of radiusiembedded iiR”). Note that in this
case one can have non-intersecting normals of length lass tfsince otherwise they will start intersecting
at the center of the sphere). Thus the condition number &f awsphere ig /r. Throughout the text we will
assume that/ has condition numbel/r.

We will use D¢ (p, g) to indicate the geodesic distance between pgingd ¢ where the underlying
manifold is understood from the context, dhe- ¢|| to indicate the Euclidean distance between pagirgad
q Where the ambient space is understood from the context.

To correctly estimate the distortion induced by the initahtraction mapping, we will additionally re-
quire a high-resolution covering of our manifold.

Definition 2 (bounded manifold cover) Let M/ ¢ R” be a Riemanniam-manifold. We callX ¢ M an
a-bounded p, §)-cover of M if for all p € M and p-neighborhoodX, := {z € X : ||z — p|| < p} around
p, we have

< 1/2n, fori # j. (covering criterion)

Tei=zoll * Tlzj—zol

e exist pointseg, ..., x, € X, such thaqM Li—%o

e |X,| < a. (local boundedness criterion)
e exists pointe € X, such that|z — p|| < p/2. (point representation criterion)

e foranyn+ 1 points inX,, satisfying the covering criterion, Iéi;, denote the:-dimensional affine space
passing through them (note tH"é’,; does not necessarily pass through Then, for any unit vectas in
Tp, we havq@ . Hf—)”| > 1 -0, wherew is the projection of onto the tangent space of at p. (tangent
space approximation criterion)

The above is an intuitive notion of manifold sampling that estimate the local tangent spaces. Curiously,
we haven't found such “tangent-space approximating” matiof manifold sampling in the literature. We do
note in passing that our sampling criterion is similar inrispo the (€, §)-sampling (also known as “tight”
e-sampling) criterion popular in the Computational Geométerature (see e.g. [DGGZ02, GWO03]).

Remark 2 Given ann-manifold A/ with condition numbet /7, and somé < ¢ < 1, if p < 76/3v/2n, then
one can construct a'°"*1-pounded p, §)-cover of M — see Appendix A.2 for details.

We can now state our two algorithms.

4 The Algorithms

Inputs. We assume the following quantities are given
(i) n —the intrinsic dimension ao#/.
(i) 1/7 —the condition number of/.

(iii) X —ana-bounded p, §)-cover of M.

(iv) p—thep parameter of the cover.



Notation. Let ¢ be a random orthogonal projection map that maps points &&hinto a random subspace
of dimensiond (n < d < D). We will haved to be abou(n). Set® := (2/3)(\/D/d)¢ as a scaled version
of ¢. Since® is linear,® can also be represented ag¢ & D matrix. In our discussion below we will use the
function notation and the matrix notation interchangeathigt is, for anyp € R”, we will use the notation
®(p) (applying function® to p) and the notatio®p (matrix-vector multiplication) interchangeably.
For anyz € X, letx,...,z, ben + 1 points from the se{z’ € X : ||z — 2'|| < p} such that
phste, . SR | < 1 /2n, for i # j (cf. Definition 2). LetF, be theD x n matrix whose column vectors

llzi—zoll ~ [le;—=oll

form some orthonormal basis of thedimensional subspace spanned by the vedters- zo }icn)

Estimating local contractions. We estimate the contraction causeddyat a small enough neighborhood
of M containing the point € X, by computing the “thin” Singular Value Decomposition (SVD, %, V,

of thed x n matrix ®F, and representing the singular values in the conventiorsdeteling order. That is,
OF, = U,%,V,', and sinceb F, is a tall matrix @ < d), we know that the bottond — n singular values are
zero. Thus, we only consider the tagof d) left singular vectors in the SVD (s0), isd x n, X, isn x n,
andV, isn x n)andol > 02 > ... > o7 Wherea; is thei'" largest singular value.

Observe that the singular valugs, . . ., o™ are precisely the distortion amounts in the direct'rm_b,s .
at®(z) € RY ([ul,.. . ul] = U,) when we applyb To see this, conS|der the directiadl := F,v’ in the
column-span of, ([vl,...,v7] = V,). Thendw’ = (®F,)v. = olui, which can be mterpreted ad

maps the vectow’ in the subspaCFI (in RP) to the vecton:!, (in R%) with the scaling obri.
Note that if0 < o2, < 1 (forallz € X and1l < i < n), we can define amn x d correction matrix

(corresponding to each € X) C* := S, U], whereS,, is a diagonal matrix witt{S,.); := /(1/0%)2 — 1.
We can also write5,, as(¥,* —1I)'/2. The correction matri<® will have an effect of stretching the direction
u!, by the amountS,.);; and killing any directior that is orthogonal to (column-span @f)..

Algorithm 1 Compute Correction§'*’s
1: for = € X (in any orderdo
2:  Letzg,...,z, € {2/ € X : ||z’ — 2| < p} be such thaﬁﬁ lij:i"”\ < 1/2n (fori # j).
3:  LetF, be aD x n matrix whose columns form an orthonormal ba5|s ofithdimensional span of the
vectors{z; — 2o }ic[n)-

4:  LetU,X,V, be the “thin” SVD of® F,.
5. SetC*® '—( 22— Dn'\2ul.
6: end for

Algorithm 2 Embedding Technique |
Preprocessing StageWe will first partition the given coverind( into disjoint subsets such that no subset
contains points that are too close to each other.ahet. ., z x| be the points inX in some arbitrary but
fixed order. We can do the partition as follows:

1: Initialize X, ..., X(F) as empty sets.

2: for x; € X (in any fixed orderpo

3: Letj be the smallest positive integer such thatis not within distance2p of any element inX ).

That is, the smallegt such that for al: € XU, ||z — 2| > 2p.
4 XU« XUy {x;}.
5: end for

The Embedding: Foranyp € M c R”, we embed it iR*2"¥ as follows:
1: Lett = ®(p).
2: Define W (t) = (t, Wi sin(t), Yicos(t), -, Yrsin(t), Uk cos(t)) Where W gin(t) =
l()zpjlsm( )y Wltsint)) and W coq(t) = (¥} cos(t), - -+, U7 odt)).  The individual terms are given
y

d};’,sin(t) = wEX(J) \/ A’i’(ﬂﬂ) )/w) sin(w th) ) i=1,...,nj=1,.
;‘,cos(t) = meX(J) V A<1>(x) )/w) cos(w(CTt);) ’ T ,

1 e—1/(=(la=bl/p)?)
whereA, (b) = ——tle=tl<et ©

— — — 2y
vex Lila—sl<py €~/ A=(Ta=01/p

3: return W(t) as the embedding gfin R4 27K

K
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Algorithm 3 Embedding Technique II

The Embedding: Letzy,. ..,z x| be the points inX in some arbitrary but fixed order. Now, fany point
pe M c RP, we embed it ifR2¢*2 as follows:

1 Lett = ®(p).

2: DefineW ,(t) := (¢,0,...,0)

——
d+3

3:fori=1,...,|X|do

4: DEfine\I/i70 = \1’1_17”.

5. forj=1,...,ndo

6: Letn; ;(t) andy; ;(t) be two mutually orthogonal unit vectors normalltg ;_, (M) at W, ;_;(t).

7: Define

A<I> € (t) . T A<I> x; (t) T,
Wi (8) 1= W1 (8) + 10 (8) (o ) sin(wn g (C711)) + v (8) (=) cos(wi (C748);)
Wi, j Wi, j

—1/(=(lla=bll/p)?)

_ 1{jla—bl<p} €
whereAaq(b) = Paex Lla-bi<py e~/ O Uambl/on
8: end for
9: end for

10: return ¥y ,,(¢) as the embedding gfinto R***2,

A few remarks are in order.

Remark 3 The functionA in both embeddings acts as a localizing kernel that helpsdalizing the effects
of the spiralling corrections (discussed in detail in Seotb.2), andv > 0 (for Embedding I) orw; ; > 0
(for Embedding Il) are free parameters controlling the fuegcy of the sinusoidal terms.

Remark 4 If p < 7/4, the number of subsets (i.&7) produced by Embedding | is at mas2” for an
a-bounded p, §) coverX of M (wherec < 4). See Appendix A.3 for details.

Remark 5 The success of Embedding Il crucially depends upon findirajraopnormal unit vectors) and
v in each iteration; we discuss how to approximate these inefxdjx A.9.

We shall see that for appropriate choicedpf, é andw (or w; ;), our algorithm yields an approximate
isometric embedding aof/ .

4.1 Main Result

Theorem 3 LetM c R” be a compact-manifold with volumé” and condition numbet/7 (as above). Let
d = Q(n+1In(V/7™)) be the target dimension of the initial random projection ipiag such that! < D.
Forany0 < e < 1, letp < (7d/D)(¢/350)%, § < (d/D)(¢/250)%, and letX C M be ana-bounded
(p, 0)-cover of M. Now, let

i. Ny c R%22m2™ phe the embedding dff returned by Algorithm (wherec < 4),
ii. Nip c R?**3 be the embedding dff returned by Algorithmil .

Then, with probability at least— 1/poly(n) over the choice of the initial random projection, for allg € M
and their corresponding mappings, g1 € Ny andprr, gir € N, we have

i. (1—=€)Dg(p,q) < Da(pr,q1) < (1+¢€)Da(p,q),
i. (1-¢)Dg(p,q) < Da(pm,qu) < (1+¢)Da(p;q).

5 Proof

Our goal is to show that the two proposed embeddings appeiglgnpreserve the length of all geodesic

curves. Now, since the length of any given cufve|a, b] — M is given byf: [Iv/(s)|lds, it is vital to study
how our embeddings modify the length of the tangent vectoasiapointp € M.

In order to discuss tangent vectors, we need to introducedtien of a tangent spade M at a particular
pointp € M. Consider any smooth curve (—e, ¢) — M such that(0) = p, then we know that’(0) is the
vector tangent te atp. The collection of all such vectors formed by all such curges well defined vector
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Figure 3:Effects of applying a smooth mafp on various quantities of interest. Left: A manifald containing point
p. v is a vector tangent td/ atp. Right: Mapping ofM underF. Pointp maps toF'(p), tangent vectov maps to

(DF)p(v).

space (with origin ap), called the tangent spa@gM . In what follows, we will fix an arbitrary poing € M
and a tangent vecter € 7, M and analyze how the various steps of the algorithm modifyehgth ofv.

Let ® be the initial (scaled) random projection map (frif to R?) that may contract distances d
by various amounts, and l&t be the subsequent correction map that attempts to restse thistances (as
defined in Step 2 for Embedding | or as a sequence of maps irvStefEmbedding Il). To get a firm footing
for our analysis, we need to study hdwand¥ modify the tangent vectar. It is well known from differential

geometry that for any smooth madp: M — N that maps a manifold/ ¢ R* to a manifoldN c R¥,
there exists a linear ma ), : T, M — T, N, known as the derivative map or the pushforwardpfat
that maps tangent vectors incidenipah M to tangent vectors incident &(p) in V. To see this, consider
a vectoru tangent toM at some poinp. Then, there is some smooth curwe (—¢,e) — M such that
¢(0) = p andc/(0) = u. By mapping the curve into N, i.e. F'(c(t)), we see thaf'(¢(t)) includes the point

F(p) att = 0. Now, by calculus, we know that the derivative at this po ,Eft(t))‘ is the directional

t=0
derivative (VF),(u), where(VF), is ak’ x k matrix called the gradient (at). The quantity(VF), is
precisely the matrix representation of this linear “pushvfard” map that sends tangent vectorsidéf(at p)
to the corresponding tangent vectors/éf(at F'(p)). Figure 3 depicts how these quantities are affected by
applying F'. Also note that ifF" is linear thenDF' = F'.
Observe that since pushforward maps are linear, withoatdbgenerality we can assume thdtas unit
length.

A quick roadmap for the proof. In the next three sections, we take a brief detour to studyeffests of
applying®, applyingV for Algorithm I, and applying¥ for Algorithm Il separately. This will give us the
necessary tools to analyze the combined effect of appWirg® on v (Section 5.4). We will conclude by
relating tangent vectors to lengths of curves, showing@pprate isometry (Section 5.5). Figure 4 provides a
quick sketch of our two stage mapping with the quantitiesitdriest. We defer the proofs of all the supporting
lemmas to the Appendix.

5.1 Effects of Applying ®

It is well known as an application of Sard’s theorem fromatiéntial topology (see e.g. [Mil72]) that almost
every smooth mapping of am-dimensional manifold int®?"*! is a differential structure preserving em-
bedding ofM. In particular, a projection onto a random subspace (of dgim2n + 1) constitutes such an
embedding with probability.

This translates to stating that a random projection iRt is enough to guarantee th@t doesn't
collapse the lengths of non-zero tangent vectors. Howelter,to computational issues, we additionally
require that the lengths are bounded away from zero (thasigtement of the forfi( D®),, (v)|| > Q(1)||v||
for all v tangent taM at all pointsp).

We can thus appeal to the random projections result by GlariSla07] (with the isometry parameter
set to a constant, sdy'4) to ensure this condition. In particular, it follows

Lemma 4 Let M c R” be a smootm-manifold (as defined above) with voluriieand condition number
1/7. Let R be a random projection matrix that maps points friH into a random subspace of dimensién
(d < D). Define® := (2/3)(1/D/d)R as a scaled projection mapping.df= Q(n + In(V/7™)), then with
probability at leastl — 1/poly(n) over the choice of the random projection matrix, we have

(a) Forallp € M and all tangent vectors € T,M, (1/2)|jv]| < |[(D®),(v)]| < (5/6)]v].

(b) Forallp,q € M, (1/2)[lp — ql| < [[2p — @ql| < (5/6)lp — qll-
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Figure 4:Two stage mapping of our embedding technique. Left: Underlying miahifo ¢ R” with the quantities of
interest — a fixed poinp and a fixed unit-vector tangent toM atp. Center: A (scaled) linear projection 8f into a
random subspace dfdimensions. The point maps toPp and the tangent vectermaps tou := (D®),(v) = Pv. The
length ofv contracts td|u||. Right: Correction of® M via a non-linear mapping into R***. We havek = O(a2°")
for correction technique |, ankl = d + 3 for correction technique Il (see also Section 4). Our goal is to showdthat
stretches length of contractedi.e. «) back to approximately its original length.

(c) Forallz € RP, |®z|| < (2/3)(\/D/d)|z|.

In what follows, we assume thatis such a scaled random projection map. Then, a bound onrgéhlef
tangent vectors also gives us a bound on the spectrubiFpf(recall the definition ofF, from Section 4).

Corollary 5 Let®, I, andn be as described above (recall thatc X that forms a boundegp, J)-cover
of M). Leto! represent the™ largest singular value of the matri@F,. Then, foré < d/32D, we have
1/4 <o <ol <1(forall z € X).

We will be using these facts in our discussion below in Sechidl.

5.2 Effects of Applying ¥ (Algorithm I)
As discussed in Section 2.1, the goallofs to restore the contraction induced®yn M. To understand the

action of U on a tangent vector better, we will first consider a simpleazdlat manifolds (Section 5.2.1),
and then develop the general case (Section 5.2.2).

5.2.1 Warm-up: flat M
Let’s first consider applying a simple one-dimensionalalpitap? : R — R? given byt — (t,sin(Ct), cos(Ct)),
wheret € T = (—e¢, €). Leto be a unit vector tangent tb(at, say0). Then note that

(D‘I’)tzo (T’) = %

Thus, applying¥ stretches the length affrom 1 to ||(1, C cos(Ct), —C'sin(Ct))|;—o|| = V1 + C2. No-
tice the advantage of applying the spiral map in computimgléimgths: the sine and cosine terms combine
together to yield a simple expression for the size of thadirdn particular, if we want to stretch the length
of v from 1 to, say,L > 1, then we simply need’ = v/L? — 1 (notice the similarity between this expression
and our expression for the diagonal compongnof the correction matrixC* in Section 4).

= (1,Ccos(Ct), —-C sin(Ct))|t:o~

t=0

We can generalize this to the casereflimensional flat manifold (a section of arflat) by considering a
map similar to¥. For concreteness, lét be aD x n matrix whose column vectors form some orthonormal
basis of then-flat manifold (in the original spacB”). Let ULV be the “thin” SVD of ®F. ThenFV
forms an orthonormal basis of theflat manifold (in R”) that maps to an orthogonal badi& of the
projectedn-flat manifold (inR%) via the contraction mapping. Define the spiral mag : RY — RN
in this case as followsW (t) := (¢, Usin(t), Weos(t)), With Wgin(t) = (L, (#), ..., ¥5(t)) and Wees(t) =
(Vdos(t), - - -, (t)). The individual terms are given as

Vin(t) :=sin((C:)
qpéos(ﬂ = COS((Ct)Z-) e

whereC' is now ann x d correction matrix. It turns out that settiig= (X ~2 — I)*/2UT precisely restores
the contraction caused b} to the tangent vectors (notice the similarity between tRjgression with the



correction matrix in the general ca6€ in Section 4 and our motivating intuition in Section 2.1). Sk this,
let v be a vector tangent to theflat at some poinp (in R”). We will represent in the FV/ basis (that is,

v=73, ozl(Fv') Whel’e[Fv ,Fv™] = FV). Note that|®v[|? = || >, a; @Fv*||? = || X, ao'u’|]? =
>, (a;0)? (whereo' are the |nd|V|duaI singular values a&f andu® are the left singular vectors formlng
the columns ofU). Now, letw be the pushforward of (that is,w = (D®),(v) = ®v = >, wse’,
where {¢'}; forms the standard basis ). Now, sinceD¥ is linear, we have|(D¥)s ) (w)|?> =
& d‘Ilsin t d\i’cos t H

H Z wz(D\II) ( H2 Where(D\I/)é(p)( ) = % 1=®(p) = (;tt“ dti( )7 dti( )) ‘t:fb(p)' The in-
dividual components are given by

dwsm( )/dti = +COS((Ct)k)Ck,i _ L

dwcos (t)/dti = — sin(CH))Chs k=1,....,n;1=1,...,d.
By algebra, we see that

I(D(¥ 0 @), (v)]>

H( D)o p) (DD), ()7 = [[(DV) ) (w)]*

= Zwk + ZCOS (C®(p))p)((CPV)L)* + Zsm (CP®(p))k)((CPV)L)?
= Zwk + Z (CPv))? = ||Bv]|? + |CPv|]? = || Bv]|* + (Pv) ' CTC(Dv)
= H<I>v||2 Z%U u' 2 I)UT(Z aiotut)

= [P —l—[oqo v ano™ (272 = Diago?t, .. ane™]"

180]2 + (3" a2 = 3 (i0%)?) = [@0]|* + [[v]|> — [ @v]| = [[v]|*.

In other words, our non-linear correction mapcan exactlyrestore the contraction caused byfor any
vector tangent to an-flat manifold.

In the fully general case, the situation gets slightly mavenplicated since we need to apply different
spiral maps, each corresponding to a different size cooreat different locations on the contracted manifold.
Recall that we localize the effect of a correction by apmyine so-called “bump” function (details below).
These bump functions, although important for localizatizewve an undesirable effect on the stretched length
of the tangent vector. Thus, to ameliorate their effect @nléingth of the resulting tangent vector, we control
their contribution via a free parameter

5.2.2 The General Case

More specifically, Embedding Technique | restores the emtitvn induced by® by applying a non-linear
map W (t) := (¢, Y1 sin(t), U1cos(t), - - -5 Yirsin(t), Yk cos(t)) (recall thatkK is the number of subsets we
decomposeX into — cf. description in Embedding I in Section 4), withy sin(t) := (1] gin(t), - - -, ¥} in(t))

and W cos(t) := (V] cos(t); - - -, ¥l eos(t)). The individual terms are given as

joinlt) = zexm (VAg@) (t)/w) sin(w CIt)) i=1...,mj=1,... K
;',cos(t) = zEX(]) \/A<I>(ac) /w cos(w(Ct);) ’ Y ' Y

whereC*’s are the correction amounts for different locatiansn the manifoldw > 0 controls the frequency
(cf. Section 4), and\g () (t) is defined to be\p () (t)/ >_ e x Ao (q)(t), With

e () = { exp(—1/(1 = [[t = ®(@)[I*/p?)) if |t = ()] < p.

0 otherwise.

) is a classic example of laump function(see Figure 5 middle). It is a smooth function with compact
support. Its applicability arises from the fact that it caa fnade “to specifications”. That is, it can be
made to vanish outside any interval of our choice. Here wéoixhis property to localize the effect of our
corrections. The normalization af(the functionA) creates the so-called smooth partition of unity that helps
to vary smoothly between the spirals applied at differegtaes of M/ .

Since any tangent vector & can be expressed in terms of the basis vectors, it sufficésdg sow DW

acts on the standard bagis’}. Note that( D), (¢) = (4L, Wien®) dWrodt) | d¥icon() dq’zgfs“))\t,




A0

05 [ 05
It=xl/p

Figure 5: Effects of applying a bump function on a spiral mapping. Left: Spirappiegt — (t,sin(t), cos(t)).
Middle: Bump function),: a smooth function with compact support. The parameteontrols the location while
controls the width. Right: The combined effe¢t (¢, Az (¢) sin(t), Az () cos(t)). Note that the effect of the spiral is
localized while keeping the mapping smooth.

where
k i 1 : T dA;/(fw Q) T T
)/t = Y e & (5in(@(CP)) =22 ) + Ra D cos@(CTNCE, k=1, s i =

. ; oy G0 () , . z
AP ol ) /At =3 e x %(cos(w(C tm%) = VAa(@) (1) sin(w(C*)x)CF

One can now observe the advantage of having the ¢erBy pickingw sufficiently large, we can make the
first part of the expression sufficiently small. Now, for aapgent vector. = . u;e’ such thaf|u|| < 1,
we have (by algebra)

[(DW)()]* = H}:usz
- Zuk—FZZ[ > (falD s DY 4 /Ao 8 cos(( @) (C7u)i]

k=1j=1 zeXx

+[ > ( ! )f Acpm(t)Sin(w(Cxt)k)(Cz“)’“r )

zeX ()

whereASy (1) i= =, ug sin(w(C=4)x) (dA G (1) /dt)) andAGsE (1) == X, u cos(w(Co)x) (A, () /).

We can further simplify Eq. (1) and get

Lemma 6 Lett be any point in®(M) andu be any vector tagent td (M) at ¢ such that|u|| < 1. Lete be
the isometry parameter chosen in Theorem 3. Rick Q(na29"v/d/ pe), then
D@ = ull® + Y Aaw®) Y (C™w)i + ¢, )

reX k=1
where|(] < e/2.

We will use this derivation of (D¥),(u)||* to study the combined effect @ o ® on M in Section 5.4.

5.3 Effects of Applying ¥ (Algorithm II)

The goal of the second algorithm is to apply the spirallingr@ctions while using the coordinates more
economically. We achieve this goal by applying them seqakyin the same embedding space (rather than
simultaneously by making use of ext2a /X coordinates as done in the first algorithm), see also [Nas54]
Since all the corrections will be sharing the same coordirsglace, one needs to keep track of a pair of
normal vectors in order to prevent interference among tfierdnt local corrections.

More specifically,¥ : R? — R??*3 (in Algorithm 11} is defined recursively a := V| x|,» such that
(see also Embedding Il in Section 4)

Ao (t) . . Az, (t)
W, (8) = Wy i1 (8) + iy (8) LB in (w5 (C18) ) + vy (8) Y2

Wi, j Wi, j
d+3

COS(wZ‘J‘ (Czl t)j)7

where¥; o(t) := ¥;_1,(t), and the base functiof ,,(¢) is given ast — (¢,0,...,0). n; ;(t) andw; ;(t)
are mutually orthogonal unit vectors that are approxinyatelrmal to¥; ;_;(®M) at ¥; ;i (t). In this
section we assume that the normaBndwr have the following properties:
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- [ni,3(t) -v| < €0 @and|v; (1) - v| < € for all unit-lengtho tangent tol; ;. (PM) atW; ;1 (¢). (quality of
normal approximation)

- Foralll <[ < d, we have|dn; ;(t)/dt'| < K;; and||dv; ;(t)/dt'| < K, ;. (bounded directional
derivatives)

We refer the reader to Section A.9 for details on how to eggéraach normals.

Now, as before, representing a tangent veater >, ue’ (such thatul|* < 1) in terms of its basis

2d+3
vectors, it suffices to study ho®w ¥ acts on basis vectors. Observe that; ;).(e') = (‘“’TJI“)% ‘ ,
’ =1 It

with the £ component given as

(P27 0o (OCTIBELD) — (0100 Aaie (OCT B0
k

o {(dn;;l(t)>k Maey (DB (1) + (dyzj,fz(t)>k Aa (o) () B (2)

Wi,j

dAY2 (1) Ayl (1)

(10 () — = BUA (1) + (3 () — o — B (1),

Sin

terms in the bracket (being multiplied tgw; ;) in the above expression. Then, we have (for 4y

|DT) @I = |3 (D)
l
2d+3 B
> [ (W)kﬂm(t))k Aoy () oslions (€ 0);) 3 G

where B%J,(t) = cos(w; ;(C*t);) and BYY (t) := sin(w; ;(C*it);). For ease of notation, Id?fj be the

k=1 l
G ¢
(00 Moty (1) sinfns (C71),) 3D Cim (1) 3R 7
! A/—/
) ¢
= (DT )ew)P+ Ay (1)(CTu)?
_Zk(lJ) _Zk(zJ) +(C£b3)2

+Z[< o) (2 ) (5 P ) (iR R D] @

Zij

where the last equality is by expanding the square and bygaohiat) °, gjffgfff = 0 sincen andv are
orthogonal to each other. The base cde ¥, ,,):(u)||* equals||u||>.

Again, by pickingw; ; sufficiently large, and by noting that the cross tedmg (¢ ¢%) and Y, (¢ ¢)
are very close to zero singeandr are approximately normal to the tangent vector, we have

Lemma 7 Lett be any point in®(M) andu be any vector tagent td (M) at ¢ such that|u|| < 1. Lete be
the isometry parameter chosen in Theorem 3. Rick> Q((K; ; + (a9 /p))(nd|X|)?/¢) (recall that K;

is the bound on the directional derivatepfindv). If e, < O(e/d(n|X|)?) (recall thate, is the quality of
approximation of the normals andv), then we have

|X] n

(D) ()] = (D) x|,n)e ()| = [[ul® + ZA‘I’“”(t)Z (Cu)F + ¢, (4)

J=1

where|(] < €/2.
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5.4 Combined Effect of ¥(®(M))

We can now analyze the aggregate effect of both our embesldimghe length of an arbitrary unit vector
tangent tolM atp. Letu := (D®),(v) = ®v be the pushforward of. Then|ju|| < 1 (cf. Lemma 4). See
also Figure 4.

Now, recalling thatD(¥ o &) = DV o D®, and noting that pushforward maps are linear, we have
[(D(T 0 ®)),(v)]|* = [[(DP) g (u )|| Thus, representingasy_, u;¢’ in ambient coordinates @&, and
using Eq. (2) (for Algorithm I) or Eq. (4) (for Algorithm Il)we get

(Do @), ()" = [[(DW)ay@)]]” = [ul® + 3 Ao (@E)ICu]? + ¢,
reX

where || < €/2. We can give simple lower and upper bounds for the above ssjame by noting that
Ag(, is a localization function. DefingV), := {z € X : ||®(xz) — ®(p)|| < p} as the neighborhood
aroundp (p as per the theorem statement). Then only the poinf§,rtontribute to above equation, since
Ao (2)(P(p)) = dAg ) (®(p))/dt" = 0for [|®(x) —®(p)| > p. Also note that for all: € N,,, ||z —p|| < 2p
(cf. Lemma 4).

Letzy := argmax,ey, ||C¥ul|? anda,, := argmingey, [|Cul|* are quantities that attain the maxi-
mum and the minimum respectively, then:

lull® + [C=ul® — e/2 < [(D(T 0 @), (v)[|* < [Jul® + IO ul* + ¢/2. (5)

Notice that ideally we would like to have the correction &actC?«” in Eq. (5) since that would give the
perfect stretch around the poipt But what about correction’w for closebyz’s? The following lemma
helps us continue in this situation.

Lemma 8 Letp, v, u be as above. Forany € N, C X, letC* and F, also be as discussed above (recall
that ||p — z|| < 2p, and X C M forms a boundedp, ¢)-cover of the fixed underlying manifold with

condition numbei /7). Define := (4p/7) + 6 +4/pd/7. It p < 7/4ando < d/32D, then

1 — |jul|* — 40 - max {\/€D/d,(D/d} < ||C*u||* < 1 — [jul|* 4+ 51 - max {\/(D/d,£{D/d}.

Note that we chose < (7d/D)(¢/350)% andd < (d/D)(e/250)? (cf. theorem statement). Thus,
combining Eq. (5) and Lemma 8, we get (redpl|| = 1)

(L=flol* < DT o 2))p(v)]|* < (L+ o]

So far we have shown that our embedding approximately presehe length of a fixed tangent vector
at a fixed point. Since the choice of the vector and the poirgt avaitrary, it follows that our embedding
approximately preserves the tangent vector lengths tautgthe embedded manifold uniformly. We will
now show that preserving the tangent vector lengths implieserving the geodesic curve lengths.

5.5 Preservation of the Geodesics

Pick any two (path-connected) pointsndq in M, and leto be the geodesigath betweep andq. Further
let p, ¢ anda be the images af, ¢ ando under our embedding. Note thatis not necessarily the geodesic
path betweemp andg, thus we need an extra piece of notation: Adbe the geodesic path betwegandg
(under the embedded manifold) adde its inverse image in/. We need to showl — ¢)L(«) < L(8) <
(1+¢)L(a), whereL(-) denotes the length of the patfend points are understood).

First recall that for any differentiable map and curvey, ¥ = F(v) = 7 = (DF)(v'). By (1 £ ¢)-
isometry of tangent vectors, this immediately givesus- €)L(y) < L(¥) < (1 + €)L(y) for any pathy in
M and its imagey in embedding of\/. So,

(1= €)Da(p,q) = (1 = €)L(a) < (1 =€) L(B) < L(B) = D (p, ).

Similarly,
Dq(p,q) = L(B) < L(a) < (1+€)L(e) = (1 + €)De(p, ).

SGlobally, geodesic paths between points are not necessarily uniques intéeested in a path that yields the shortest
distance between the points.

12



6 Conclusion

This work provides two simple algorithms for approximatentric embedding of manifolds. Our algo-
rithms are similar in spirit to Nash§'" construction [Nas54], and manage to remove the dependeniteo
isometry constant from the target dimension. One should observe that thisrdbgreey does however show
up in the sampling density required to make the necessargat@mns.

The correction procedure discussed here can also be realdipted to create isometric embeddings from
any manifold embedding procedure (under some mild conijioTake any off-the-shelf manifold embed-
ding algorithm.A (such as LLE, Laplacian Eigenmaps, etc.) that maps-amanifold in, say, dimensions,
but does not necessarily guarantee an approximate is@reattiedding. Then as long as one can ensure that
the embedding produced by is a one-to-one contractibiibasically ensuring conditions similar to Lemma
4), we can apply corrections similar to those discussed go/thms | or 1l to produce an approximate iso-
metric embedding of the given manifold in slightly highemdinsions. In this sense, the correction procedure
presented here serves agraversal proceduréor approximate isometric manifold embeddings.
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A Appendix

A.1 Properties of a Well-conditioned Manifold

Throughout this section we will assume thdtis a compact submanifold &% of dimension, and condi-
tion numberl /7. The following are some properties of such a manifold thatleide useful throughout the
text.

Lemma 9 (relating closeby tangent vectors — implicit in the poof of Proposition 6.2 [NSWO06]) Pick
any two (path-connected) poingsq € M. Letu € T,,M be a unit length tangent vector ande T, M
be its parallel transport along the (shortest) geodesichpttq. Ther, i) u - v > 1 — Dg(p,q)/7, ii)

u— vl <\/2Dc(p,q)/T-

Lemma 10 (relating geodesic distances to ambient distancedProposition 6.3 of [NSWO6))If p,q € M

such that|p — q|| < 7/2,thenD¢(p,q) < 7(1 — /1 =2[p —ql|/7) < 2|]p — ql|-

Lemma 11 (projection of a section of a manifold onto the tanget space)Pick anyp € M and define
M,, :={q € M :|jg—p| <r}. Letf denote the orthogonal linear projection 8f, ,, onto the tangent
spacel, M. Then, for any- < 7/2

(i) the mapf : M, — T,M is1 — 1. (see Lemma 5.4 of [NSWO06])

(i) forany =,y € My, |f(z) — f(W)||> > (1 = (r/7)?) - |z — y||>. (implicit in the proof of Lemma 5.3
of [NSWO6])

Lemma 12 (coverings of a section of a manifoldPick anyp € M and definelf,, , :== {g € M : ||[g—p| <
r}. If r < 7/2, then there exist§’ C M, , of size at mos9™ with the property: for any’ € M, ., exists
¢ € C such thatl|p’ — ¢|| < r/2.

Proof: The proof closely follows the arguments presented in thefpsbTheorem 22 of [DF08].

Forr < 7/2, note thatM,, , C RP” is (path-)connected. Lef denote the projection alf, , onto
T,M = R". Quickly note thatf is 1 — 1 (see Lemma 11(i)). Thenf{(M,,) C R™ is contained in an
n-dimensional ball of radius. By standard volume argumeni,/,, ,.) can be covered by at ma$t balls
of radiusr/4. WLOG we can assume that the centers of these covering belis g{1/, ). Now, noting
that the inverse image of each of these covering ball&{ijpis contained in &-dimensional ball of radius
r/2 (see Lemma 11(ii)) finishes the prodf.

Lemma 13 (relating closeby manifold points to tangent vects) Pick any pointp € M and letq € M
(distinct fromp) be such thaD¢(p, ¢) < 7. Letv € T,,M be the projection of the vectgr— p ontoT), M.

Then, | 27 - 457 | = 1= (Dalp.@)/20)2 ) || g2 — 125 | < Dop. a)/mv2.

ol — Ta—pll

Proof: If vectorsv andg — p are in the same direction, we are done. Otherwise, condidgrlane spanned
by vectorsv andg — p. Then sincel/ has condition numbelr/7, we know that the poing cannot lie within
any7-ball tangent tal/ atp (see Figure 6). Consider suchraall (with centerc) whose center is closest to
g and letq’ be the point on the surface of the ball which subtends the saigle (“pcq’) as the angle formed
by ¢ (£pcq). Let this angle be called. Then using cosine rule, we haves 0 = 1 — ||¢’ — p||?/272.

Define« as the angle subtended by vectorandq — p, anda’ the angle subtended by vectarsand
¢ — p. WLOG we can assume that the angleand«’ are less tham. Then,cosa > cosa’ = cos6/2.
Using the trig identitycos 6 = 2 cos? (%) — 1, and noting|q — p||? > ||¢’ — p||?, we have

v q—-p

0
— . ————| =cosa > cos — > \/1 —|lg = p||?/412 > 1 — (D¢ (p, q)/27)>.
ol llg —pll 2

Now, by applying the cosine rule, we haN’?ZT\ — T=E ||2 =2(1 — cos ). The lemma followsl

"Technically, it is not possible to directly compare two vectors that residéfareht tangent spaces. However, since
we only deal with manifolds that are immersed in some ambient spaceameeaat the tangent spacesadimensional
affine subspaces. We can thus parallel translate the vectors to the dritji@ ambient space, and do the necessary
comparison (such as take the dot product, etc.). We will make a similseatif notation for any calculation that uses
vectors from different affine subspaces to mean to first translateettterg and then perform the necessary calculation.
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Figure 6:Plane spanned by vectajs— p andv € T, M (wherew is the projection ofy — p ontoT,, M), with 7-balls
tangent tg. Note thaty’ is the point on the ball such thaipcq = Zpcq’ = 6.

Lemma 14 (approximating tangent space by closeby samplekgt0 < § < 1. Pick any pointpy € M
and letpy, ..., p, € M ben points distinct fronp, such that (for alll <i < n)

(i) Dc(po,pi) <76/\f
(i) | po=bey - mompey| < 1/2n (fori # j).

LetT be then dimensional subspace spanned by vec{@rs— po }icjn). FOr any unit vector € T, letu be
>1-0.
H [ |

Proof: Define the vectorg; := Hg::ﬁﬂ\l (for 1 < i < n). Observe tha{?; };c[,) forms a basis of". For
1 < i < n, definev; as the projection of vectar; ontoT,,, M. Also note that by applying Lemma 13, we
have that for alll <i < n, ||t; — v;]|* < 62/2n.

LetV = [01,...,0,] be theD x n matrix. We represent the unit vectoasV o = ). o;0;. Also, since
u is the projection ofi, we haveu = 3. a;v;. Then,|la|? < 2. To see this, we first identif§” with R"
via an isometrys (a linear map that preserves the lengths and angles of abirsdia 7'). Note thatS can be
represented as anx D matrix, and sincé’ forms a basis fofl’, SV is ann x n invertible matrix. Then,
sinceSi = SVa, we haven = (SV) ™' Sa. Thus, (recall| S| = 1)

lof* < max [[(SV)'2]* = Amax ((SV) T (SV) )
resSn—1

Anax((SV)7HSV)™T) = Aana(VIV) ™) = 1/ Ain (VTV)
1/1—=((n—1)/2n) <2,

where i) Anax(A4) and\nin (A) denote the largest and smallest eigenvalues of a squareetyimmatrix A
respectively, and ii) the second inequality is by noting &V is ann x n matrix with 1’s on the diagonal

and at most /2n on the off-diagonal elements, and applying the Gershgaritectheorem.
Now we can bound the quantity of interest. Note that

> Ja"(a— (i~ ))\>1—Hu—uH—1—HZaH v;)
1—Z|a2|||vz—v,H>1—(5/\/7 Z|az\>1—

IN

IIUH‘

Y

where the last inequality is by notinjg||; < v/2n. 1

A.2  On Constructing a Bounded Manifold Cover

Given a compact-manifold M c R” with condition numbei /7, and somé < J < 1. We can construct
ana-boundedp, §) coverX of M (with a < 21°"*+! andp < 76/3+/2n) as follows.

Setp < 76/3v/2n and pick a(p/2)-netC of M (that isC' ¢ M such that, i. forc,¢’ € C such that
c#c,|le—c| > p/2,ii.forall p € M, existsc € C such that|c—p|| < p/2). WLOG we shall assume that
all points ofC' are in the interior of\/. Then, for eack: € C, defineM, ,/» := {p € M : |[p — ¢/ < p/2},
and the orthogonal projection mgp: M.,/ — T.M that projects\/. ,,, ontoT.M (note that, cf. Lemma
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11(i), f. is1—1). Note thatT. M can be identified witfR™ with thec as the origin. We will denote the origin
asz|”, thatis,z(” = f.(c).

Now, let B. be anyn-dimensional closed ball centered at the origgﬁ) € T.M of radiusr > 0 that is
completely contained itf.(M, ,/2) (thatis,B. C f.(M, ,/2)). Pick a set ofs pointhgc), ..,2'% on the
surface of the balB, such that(z\” — z{”) - (xéc) —2{?) = 0fori # j.

Define the bounded manifold cover as

X= |J £ (6)

ceC,i=0,...,n

Lemma 15 Let0 < 6 < 1 andp < 76/3+/2n. LetC be a(p/2)-net of M as described above, and be as
in Eq. (6). ThenX forms a2'°"*+1-bounded p, §) cover of M.

Proof: Pick any pointp € M and defineX, := {z € X : |z — p|| < p}. Letc € C be such that
llp — |l < p/2. ThenX, has the following properties.

Covering criterion:For0 < i < n, since| £ (2!)) — ¢|| < p/2 (by construction), we havif; ! (2!)) —
pll < p. Thus,f (') € X, (for0 < i < n). Now, for1 < i < n, noting thatDg (£ ('), f71(z4)) <

7 C

_ (e) — (e)
2||fc—1(xgc)) —f;l(xéc))n < p (cf. Lemma 10), we have that for the vecﬁﬁf) = chiigéc);_;iigm?cﬁﬂ and
c Z; —Je (g
(e)

oo 8l — UEC)H < p/v/27 (cf. Lemma 13). Thus,

e} =g

for i # j, we have (recall, by construction, we haxé@ : UJ(F’) =0)

2

its (normalized) projectiomgc) = onto7,. M,

67049 = (08 — v + () - (07 — 0l i)
(
J

9 _ gl (59 — o) 40 (5 — o) 4 (60 — o) - )]

15 = w1857 = )+ [98) — v{|| + [[857 — {7
< 3p/V2r <1/2n.

IN

Point representation criterionThere exists: € X,, namelyf. ! (z\”) (= ¢), such that|p — || < p/2.

Local boundedness criterioefine M, 3,/> := {q € M : ||q¢ — p|| < 3p/2}. Note thatX, C {fgl(xgc)) :
c€ CNM,s,2,0 <i<mn}. Now, using Lemma 12 we have that exists a caVerC M), 3,/ of size
at most9®” such that for any poing € M, 3,/», there exists, € N such that|q — n|| < p/4. Note that,
by construction of”, there cannot be am € N such that it is within distancg/4 of two (or more) distinct
¢, € C (since otherwise the distange — ¢’|| will be less tharp/2, contradicting the packing af). Thus,
|C' N M, 5,2 < 9°". It follows that| X, | < (n + 1)9°" < 210+,

Tangent space approximation criteriohet Tp be then-dimensional span o{fﬁgc)}ie[n] (note that’f“p may

not necessarily pass through Then, for any unit vectof, € Tp, we need to show that its projectian,

onto T, M has the propertyi - H'Zﬁ| > 1— 6. Letd be the angle between vectarsindu,. Letu. be the

projection ofu onto T, M, and6, be the angle between vectaisandu., and letf, be the angle between
vectorsu,. (atc) and its parallel transport along the geodesic path LOG we can assume thét andé-
are at mostr/2. Then,f < 6; + 6, < 7. We get the bound on the individual angles as follows. By wpg|
Lemma 14cos(6;) > 1 — /4, and by applying Lemma @ps(62) > 1 — 6/4. Finally, by using Lemma 16,
we have|d - #’ =cos(f) > cos(f; +62) >1—6.1

[up |l

Lemma 16 Let0 < ej,e5 < 1. Ifcosa > 1—¢; andcos 8 > 1 —eq, thencos(a+8) > 1—€; —e3—2,/c163.

Proof: Applying the identitysin = /1 — cos? 6 immediately yieldsina < /2¢; andsin 8 < /2es.
Now, cos(a + 3) = cosaccos B —sinasin 8 > (1 —e1)(1 — €2) — 2 /€162 > 1 — €1 — €2 — 2 /c162. 1

Remark 6 A dense enough sample fralfi constitutes as a bounded cover. One can selectively prune th
dense sampling to control the total number of points in eagghiborhood, while still maintaining the cover
properties.
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A.3 Bounding the number of subsetg< in Embedding |

By construction (see the preprocessing stage of Embedfifg+ max,cx | X N B(z,2p)| (WhereB(z, )
denotes a Euclidean ball centeredvadf radiusr). That is, K is the largest number of's (¢ X) that are
within a2p ball of somer € X.

Now, pick anyz € X and consider the sétl,, := M N B(x,2p). Then, ifp < 7/4, M, can be covered
by 2¢ balls of radiusp (see Lemma 12). By recalling tha&f forms ana-bounded(p, §)-cover, we have
|X N B(x,2p)| = |X N M| < a2 (Wherec < 4).

A.4 Proof of Lemma 4

SinceR is a random orthoprojector frof” to RY, it follows that

Lemma 17 (random projection of n-manifolds — adapted from Theorem 1.5 of [Cla07])Let A/ be a smooth
compactrn-manifold with volumé’ and condition numbet /7. Let R := \/D/dR be a scaling ofR. Pick
any0 <e<land0<é < 1. Ifd=Q(e ?log(V/7") + e 2nlog(1/€) + In(1/4)), then with probability
atleastl — ¢, forall p,q € M

(1—e)llp—gqll < |Rp— Ryl < (1+¢€)|p—qll-

We apply this result witlh = 1/4. Then, ford = Q(log(V/7™) + n), with probability at least — 1/poly(n),
3/|p —qll < ||IRp — Rq|| < (5/4)|lp — q||. Now let® : R” — R? be defined a®z := (2/3)Rz =
(2/3)(\/D/d)x (as per the lemma statement). Then we immediately b&t)|p — ¢|| < ||Pp — P¢|| <
(5/6)llp — qll.

Also note that for any: € R”, we havel|®z| = (2/3)(v/D/d)||Rz|| < (2/3)(\/D/d)|z| (sinceR is
an orthoprojector).

Finally, for any pointp € M, a unit vectoru tangent toM atp can be approximated arbitrarily well by
considering a sequenge; },; of points (inM) converging te (in M) such thatp; — p)/||p; — p|| converges
to u. Since for all pointg;, (1/2) < ||®p; — ®pl||/llp: — pll < (5/6) (with high probability), it follows that
(1/2) < [(D®)p(w)]| < (5/6).

A.5 Proof of Corollary 5

Letvl andv? (€ R™) be the right singular vectors corresponding to singuléweso! ando” respectively
of the matrix®F,. Then, quickly note that! = ||®F,v!||, ando? = ||®F,v"|. Note that since, is
orthonormal, we have thatF,v!|| = ||F,v"|| = 1. Now, sinceF,v" is in the span of column vectors of
F,, by the sampling condition (cf. Definition 2), there existsirat length vectorw! tangent toM (at z)
such thaf F,v? - 7| > 1 — 6. Thus, decomposing. v into two vectorsa?” andb? such that” Lb" and
al ;= (Fyol - o)u?, we have

x

oy = [®FE")| = | @((Frvy - v3)v7) + @b ||
> (1=9)[[evy]| — [z
> (1-0)(1/2) = (2/3)v/26D/d,

since||by || = [ Fovp[|* - [laz]|* < 1—(1-6)* < 26 and||@by || < (2/3)(y/D/d)|[b;]| < (2/3)\/20D/d.

Similarly decomposing’, v} into two vectorsz. andb’ such that! 1b! andal := (F,v} - 9!)sl, we have

oy = |O(Fpu,)|| = |®((Fyvy - 5,)0;) + by |
< |lovz|| + l|ebzl
< (5/6) + (2/3)\/20D/d,

where the last inequality is by notingbbl || < (2/3)+/26D/d. Now, by our choice of (< d/32D), and by
noting thatd < D, the corollary follows.
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A.6 Proof of Lemma 6

We can simplify Eq. (1) by recalling how the subséf§’) were constructed (see preprocessing stage of
Embedding I). Note that for any fixeld at most one term in the séf\ g (,) (%)}, x» IS non-zero. Thus,

n

d
S w30 Ao (1) cos? (W(C) (CPu)E + Ay (1) sin® (w(CTH)(CTu)}
k=1

k=1lxeX

(D), (u)]*

[ ((A5200)” + (ABZ(9)”) oo + 2452 (0) Moy (1) cos(C* 1) O

¢1 4
—2A82(8)1/ Mg (a) (t) sin(w(CIt)k)(Cwu)k}

(3

n

Jul|* + ZAé(z Z w)i + ¢,

rzeX k=1

where¢ := (¢1 + (2 + ¢3)/w. Noting that i) the term$Am( )| and |A%:%(t)| are at mosO(a9"Vd/p)

(see Lemma 18), ii)(C*u)| < 4, and iii) \/Ag(,)(t) < 1, we can pickw sufficiently large (sayw >
Q(na?9"Vd/pe) such that¢| < e/2 (wheree is the isometry constant from our main theorem).

Lemma 18 For all k,  andt, the termg A®%(¢)| and | A%:% (¢)| are at mosO(a9"\/d/ p).

sin

Proof: We shall focus on bounding!”:”(¢)| (the steps for boundin )| are similar). Note that

COS (

AL/2 dA1/2
|Abm ‘Zuzsm @(x) ‘ < Z| A ’ ‘i’(x) ‘ Z’ @(x)

since||u|| < 1. Thus, we can boundd”:” (¢)| by O(a9™v/d/p) by noting the following lemmal

sin

Lemma 19 For all 4,  andt, \dAl/2 (t)/dt!| < O(a9™/p).

Proof: Pick anyt € ®(M), and letp, € M be (the unique element) such thetp,) = ¢. DefineN,, =
{z € X : ||®(z) — ®(po)|| < p} as the neighborhood aroupd. Fix an arbitraryzy € N,, C X (since if

xo & Np, thenclAl/2 (¢ )/dt" = 0), and consider the function

A2 () = Mo\ et/ (- 2(o)l*/e) v
@ (x0) > en,, M () S een,, € VA-T=S@ER) |-
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Pick an arbitrary coordinatg € {1, ..., d} and consider the (directional) derivative of this function

Pate®) 1y (e ()
( ;N: —A,(z))l/Q ( GXN: —At(z))(_2(tio pf(%)m)(z‘lt(fvo))?) (e—At(zo)>
_ z PO z PO
2<e—A,,(x0)>1/2 ( ezN: e—At(a:)>2
2E€N,,
(e—At(zo)) (IEZNIPO —2(t;, ;2‘1’(33)1'0) (At(x))ZefAt(a:))
=T
z€N,
( Z e’At(z)> (—2(157;0 ;S(Io)iu) (At(xo))Q) (:At(mo))1/2
zEN,
— 0 2( Z e*At(I))]ﬂS
2€N,
(e—At(mO))l/2( Z —2(t4, p2<I>(a:)v:0) (At(x))ZefAt(m)>
2E€Np,
B (@) 1.5 )
o 3 )

whereA,(z) := 1/(1 — (||t — ®(x)||?>/p?)). Observe that the domain ef; is {z € X : ||t — ®(2)| < p}
and the range i§l, o). Recalling that for any3 > 1, |3%e=#| < 1 and|p%e~?/2| < 3, we have that
|A,()2e= 40| < 1and|4,(-)%e~4()/2| < 3. Thus,

. ‘2(% - ‘I;(SEO)io)

3.‘ Y e

1/2
‘qu)(wo)(t) ’ _ wEN,, P

dtto 2( Z e_At(w))l.S

xE€Np,

: 2(ti, — ®(x);
etz | S <p2<w>)

z€Np,

(3)/p)| 3o e M|+ [ A2 7 (/)
< TENp, TENp,
> 1.5
(3 )
zE€Np,
< 0(a9"/p),

where the last inequality is by noting: |V,,| < 9" (since for allz € N,,, ||z — po|| < 2p — cf. Lemma
4, X is ana-bounded cover, and by noting that fer< 7/4, a ball of radiu®2p can be covered b9™ balls
of radiusp on the givenn-manifold — cf. Lemma 12), iije=4+(*)| < |e=4:(#)/2| < 1 (for all z), and iii)
ZIGNW e~4+®) > (1) (since our coverX ensures that for any,, there exists: € N,,, € X such that

lpo — || < p/2 — see also Remark 2, and hence':(*) is non-negligible for some € N,,). I
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A.7 Proof of Lemma 7

Note that by definition|| (DW), (u)||* = [|[(DV|x|,):(u)||?>. Thus, using Eqg. (3) and expanding the recur-
sion, we have

(D) (w)]?

[(DW x| n)e(w)]?
[(D¥) x| n—1)e(u)]* + A@(zm)(ﬂ(cz‘x‘u)i + Z1x|n

| X n
1(DD0)e (@) + [ 3 Aoy (0 (€™ )2 + 3 7
i=1 j=1 ]

Note that(DW; o) (u) :== (DV;_1 ,,)¢(u). Now recalling that| (D, ,,):(u)||* = ||u||* (the base case of the
recursion), all we need to show is that, ; Z; ;| < ¢/2. This follows directly from the lemma below.

Lemma 20 Letey < O(e/d(n|X])?), and for anyi, j, letw; ; > Q((K; ; + (29" /p))(nd| X|)?/e€) (as per
the statement of Lemma 7). Then, for any, | Z; ;| < ¢/2n|X|.

Proof: Recall that (cf. Eq. (3))

1 2 <k4
k.4 i,j
Zi,j:w_z_ E :(Ci,j) +2§ :w»
2V 4

:
J
Wi

k1, k2, k3 kol k2 kol k)3
(G + G+ ) +23 GG +2 3G G
k k

(a) ©) (e) (d)

Term (a): Note that]| Zk(gi’ff)2| < O(d3(K;; + (a9"/p))?) (cf. Lemma 21 (iv)). By our choice af; ;,
we have term (a) at most(e/n| X]|).

Term (b): Note that](f”;-1 + Cf;f + Cﬁf’] < O(nlX| + (¢/dn|X])) (by noting Lemma 21 (i)-(iii), recall-
ing the choice ofv; ;, and summing over aff, j'). Thus,| >, C{ff((ﬁf + Cff + C,-’ff)\ < O((d*(Ki; +

(9"/p))) (n|X| + (¢/dn|X]))). Again, by our choice of; ;, term (b) is at mosO(e/n|X]|).

Terms (c) and (d):We focus on bounding term (c) (the steps for bounding ternmafd)same). Note that
| SR R < A1, ¢ (i (8)r]. Now, observe tha((f,}l)k:Lde+3 is a tangent vector with length

at mostO(dn|X| + (e/dn|X])) (cf. Lemma 21 (i)). Thus, by noting that ; is almost normal (with quality
of approximatiore,), we have term (c) at mo$t(e/n| X|).

By choosing the constants in the order terms appropriateycan get the lemmd.
Lemma 21 Let¢!, ¢2, ¢, and¢)’s' be as defined in Eq3). Thenforalll <i < |X|and1 < j < n,
we have '
Q) 165" < 1+ 8n|X |+ X0, 02 O(d(Kar jr + (a9 p)) fwir jv),
.. k,2
(i) 1G5 1<4,
k,3
(i) |51 <4,
(V) I¢'] < Od(Kyj + (a9 /p))).

Proof: First note for anyul| < 1 and for anyz; € X, 1 < j <nandl <! <d, we havel 3, C7ju| =
|(C%iu);| < 4 (cf. Lemma 23 (b) and Corollary 5).

Noting that for alli andyj, ||; ;|| = ||lvi,;

= 1, we havel¢?7[| < 4 and|¢]f| < 4.

Observe that;' = >, w.R}}. For alli, j, k andl, note that i)|dn; ; (¢)/dt'|| < K; ; and||dv; ;(t)/dt!|| <
K;jandii)[d\> | (t)/dt'] < O(a9"/p) (cf. Lemma 19). Thus we have';'| < O(d(K; ; + (29"/p))).

Now for anyi, j, rj_olte thatgjj;.l = >, wd¥; ;j_1(t)/dt'. Thus by recursively expandinggﬁl’ﬂ <1+
8n| X[+ 320y 5=y O(d(Kir jr + (29" /p)) wir j1). 1
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A.8 Proof of Lemma 8
We start by stating the following useful observations:

Lemma 22 Let A be a linear operator such thahax ;- [[Az| < dmax. Letu be a unit-length vector. If
[lAw|| > dmin > 0, then for any unit-length vectarsuch thatw - v| > 1 — ¢, we have

1— 5max\/2 < HAU” <1+ 5max\/i'
Omin HAUH Smin
Proof: Letv’ = v if u-v > 0, otherwise let/ = —v. Quickly note thatju —v'||? = ||Jul|* + ||v'||> —2u-v" =

2(1 —u-v'") < 2e. Thus, we have,
i (| Av]| = [[Av]| < [[Aull + |A(u = o) < || Aull + dmaxv/2e,
i. [ Av]| = [|Av|| > [|Au]l = [A(u — ') > [[Aul| = Gmaxv/2e.
Noting that|| Au|| > d.min Yields the resultl

Lemma 23 Letzy,...,z, € R” be a set of orthonormal vectors] := [x1,...,2,] be @D x n matrix
and let® be a linear map fronR” to R? (n < d < D) such that for all non-zera € spar(F) we have
0 < ||®al| < ||a|. LetUZVT be the thin SVD ob F. DefineC = (X2 — I)'/2UT. Then,

@) [|C(@a)|[* = [lal|* - [|®al|?, for anya € spar(F),
(b) ||C||> < (1/0™)?, where|| - || denotes the spectral norm of a matrix amt is then' largest singular
value of o F.

Proof: Note thatF'V forms an orthonormal basis for the subspace spanned by nslofi¥’ that maps to
UY. via the mappingp. Thus, sincex € spar{F), lety be such that = FVy. Note that i)||a|* = ||y||?, ii)
[®a]l?* = |USy* = y"=%y. Now,

[C®al® = (272 —1)2UT)®FVyl?
= (=2 -DYV2UTUsVTVy|?
= (72— D)2y
= yly—y' Sy

all® - [|®all?.
Now, considet|C|?.
IcI> < (=2 =212 |Ium)?
< e (272 — 1)} 2z||
S EmeE
= max i/ (o")?
< (1)),

wherec® are the (top:) singular values forming the diagonal mateix |

Lemma 24 Let M c R” be a compact Riemanniam-manifold with condition numbet /7. Pick any
x € M and letF, be anyn-dimensional affine space with the property: for any uniteee, tangent tolM
atz, and its projection, p ONto Fy, |v, - rp=ty| > 1—4. Then forany € M such thaf|z —p|| < p < 7/2,

and any unit vector tangent toM atp, (€ := (2p/7) + & + 24/2pd /)

fU.'UiF

Tor| 2176
i. [Jup|®>1-2¢,
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i, ||, ||? < 2¢,
whereuv is the projection ob onto I, andv,. is the residual (i.ev = vg + v, andvp Lv,.).

Proof: Let~ be the angle betweern. andv. We will bound this angle.

Letw, (atz) be the parallel transport of(atp) via the (shortest) geodesic path via the manifold connec-
tion. Let the angle between vectarandv, be «. Letv,r be the projection of,, onto the subspacg,,
and let the angle between andv, r be 5. WLOG, we can assume that the angleand are acute. Then,

sincey < a+ 8 < m, we have tha}v c B = (a + B). We bound the individual termss «

andcos 3 as follows.
Now, since|lp — z|| < p, using Lemmas 9 and 10, we hawes(a) = |v - v,| > 1 — 2p/7. We also

havecos(f8) = |v, - o ”‘ > 1 —4. Then, using Lemma 16, we finally g%& = |cos(y)| >

1—=2p/7—6—2y/2pd/7=1-¢.
Also note sincd = [|v]|* = (v &) ‘ e
lor)>=1—|lv.])? >1—2¢.1

Now we are in a position to prove Lemma 8. Let be the projection of the unit vecter(at p) onto the
subspace spanned by (the columnsiafandw,. be the residual (i.e: = vg + v, andvg Lv,.). Then, noting
thatp, z, v and F,, satisfy the conditions of Lemma 24 (within the Lemma 24 replaced wittp from the

statement of Lemma 8), we have:& (4p/7) + 8§ + 4+/pd /T)
a) |U -¢,
b) fJop|® =1 - 2¢,
c) [lon|* < 2¢.
We can now bound the required quantjty“«||?. Note that
IC™ul?> = [CT®v||* = [CT®(vp + v,)||?
[CTDvp|]? + || C*Pv,||? + 2CTDvy - CT Do,
lvr|l? — |®vp|? + ||CT®v,||* + 2CDvp - CF D,
—_— — \—(/)_’
(a) (b) ¢

where the last equality is by observing is in the span off,, and applying Lemma 23 (a). We now bound
the termga),(b), and(c) individually.

JRCH
lloell

, we have||v,||? =1 — (v T ) < 2¢,and

Torl

HUFH | =

Term (a): Note thatl — 2¢ < |lvr||? < 1 and observing tha® satisfies the conditions of Lemma 22
With dmax = (2/3)y/D/d, émin = (1/2) < || ®v]| (cf. Lemma 4) andv - | > 1 - ¢, we have (recall

HUFH

[®v]] = [lull < 1)
2
2 2 _ 2 ||q VF
Jorl? = I@vel? < 1 ur? o2
2
< 1—(1—2£)H<I>UF
[or|
< 1+2§—H o
lopll
< 1+26— (1-(4/3)V/26D/d)" | @]
< L= [lul® + (26 + (8/3)V/2¢D/d), (@)
where the fourth inequality is by using Lemma 22. Similaiythe other direction
2
logllP = [®orl” > 1-2¢- e
[or|
|
IIUFH
> 1—26— (14 (4/3)y/2¢D/d)* | v
> 1= |lull® = (2¢ + (32/9)¢(D/d) + (8/3)/26D/d). ®)
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dxs ;

b (P:L’Q ‘___.' @M

Ex-

R2d+3

Figure 7:Basic setup for computing the normals to the underlyinganifold ® M at the point of interesbp. Observe
that even though it is difficult to find vectors normal®d/ at ®p within the containing spacg® (because we only have
a finite-size sample fronb M, viz. dz1, Pz, etc.), we can treat the poiftp as part of the bigger ambient manifahd
(= R?, that containgb M) and compute the desired normals in a space that contaitself. Now, for each, j iteration
of Algorithm II, ¥; ; acts on the entirév, and since we have complete knowledge aligutve can compute the desired
normals.

Term (b): Note that for anyz, ||®z|| < (2/3)(\/D/d)||z||. We can apply Lemma 23 (b) witi! > 1/4 (cf.
Corollary 5) and noting thdtv,.||? < 2¢, we immediately get

0 < [|C™@u,||* < 4% - (4/9)(D/d)||vr ||* < (128/9)(D/d)¢. 9)

Term (c): Recall that for any, ||®z| < (2/3)(y/D/d)| ||, and using Lemma 23 (b) we have th&t*||
16 (sincec? > 1/4 —cf. Corollary 5).

Now leta := C*®vp andb := C*®v,. Thenla|]| = ||C*Pvp| < ||C*||[|Pvr|| < 4, and||b]|
IC*®u, || < (8/3)\/26D/d (see Eq. (9)).

Thus,|2a - b] < 2||al|||b]] < 2-4-(8/3)\/26D/d = (64/3)/2£D/d. Equivalently,

—(64/3)y/26D/d < 2C* Bvp - C*®v, < (64/3)/26D/d. (10)

Combining (7)-(10), and noting < D, yields the lemma.

IN

A.9 Computing the Normal Vectors

The success of the second embedding technique crucialgndspupon finding (at each iteration step) a pair
of mutually orthogonal unit vectors that are normal to thebedding of manifoldM (from the previous
iteration step) at a given poipt At a first glance finding such normal vectors seems infeasbice we
only have access to a finite size sampldrom M. The saving grace comes from noting that the corrections
are applied to the-dimensional manifoldb (/) that is actually aubmanifoldof d-dimensional spaci“.
Let's denote this spacg? as a flatd-manifold N (containing our manifold of interesk(M)). Note that
even though we only have partial information ab@f\/) (since we only have samples from it), we have
full information about)V (since it is the entire spad?). What it means is that given some point of interest
®p € (M) C N, finding a vector normal t&V (at $p) automatically is a vector normal (M) (at $p).

Of course, to find two mutually orthogonal normals td-enanifold IV, N itself needs to be embedded in a
larger dimensional Euclidean space (although embeddinglin 2 should suffice, for computational reasons
we will embedN into Euclidean space of dimensi@d + 3). This is precisely the first thing we do before
applying any corrections (cf. Step 2 of Embedding Il in Smt#). See Figure 7 for an illustration of the
setup before finding any normals.

Now for every iteration of the algorithm, note that we havenptete knowledge ofV and exactly what
function (namely¥; ; for iterations, ;) is being applied taV. Thus with additional computation effort, one
can compute the necessary normal vectors.

More specifically, We can estimate a pair of mutually orthogaunit vectors that are normal f; ; (V)
at ®p (for any step, 5) as follows.
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Algorithm 4 Compute Normal Vectors
Preprocessing Stage:

1. Let nra”d andz/rand be vectors ifR??*3 drawn independently at random from the surface of the ypfiese
(f0f1§ZS|X| 1<j<n).

Compute Normals: For any point of interegt € M, lett := ®p denote its projection int&“. Now, for any
iterations, j (wherel < i < |X]|, andl < j < n), we shall assume that vectorandv upto iterations, j — 1
are already given. Then we can compute the (approximatedaisn; ;(t) andy; ;(t) for the iteration, j
as follows.

1: Let A > 0 be the quality of approximation.

2: fork=1,...,ddo

3:  Approximate the:™" tangent vector as

\I/i,j—l(t + Aek) - \I/i7j_1(t)
A )
where¥; ;_; is as defined in Section 5.3, anllis thek™ standard vector.
4: end for

5: Letn = nla”d andy = pfand
6: Use Gram-Schmidt ortﬁogonallzatlon process to extradfrom n) that is orthogonal to vectors

Tk .=

{T",...,T%.
7: Use Gram-Schmidt orthogonalization process to extradfrom v) that is orthogonal to vectors
{T17"'?Td7n}

8: return 7/||7|| and #/||7|| as mutually orthogonal unit vectors that are approximatsymal to
Ui j1(®M) atW; ;1 (t).

A few remarks are in order.

Remark 7 The choice of target dimension of sizé + 3 (instead ofd + 2) ensures that a pair of random
unit-vectorsy andv are not parallel to any vector in the tangent bundlelof; _; (V') with probability1. This
again follows from Sard’s theorem, and is the key obsematiareducing the embedding size in Whitney’s
embedding [Whi36]. This also ensures that our orthogomdilin process (Steps 6 and 7) will not result in a
null vector.

Remark 8 By picking A sufficiently small, we can approximate the normaland » arbitrarily well by
approximating the tangentg', ..., 7¢ well.

Remark 9 For each iterationi, j, the vector97/||n|| and/||7| that are returned (in Step 8) are a smooth
modification to the starting vectovg"‘“ and Vra”d respectively. Now, since we use the same starting vectors

n’a”d and /2" regardless of the point of appllcatlonl & op), it follows that the respective directional
dérivates of the returned vectors are bounded as well.

By noting Remarks 8 and 9, the approximate normals we reatisig the conditions needed for Embed-
ding Il (see our discussion in Section 5.3).
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