
Sample Complexity of Learning 
Mahalanobis Distance Metrics

Nakul Verma

Janelia, HHMI



Mahalanobis Metric Learning

Comparing observations in feature space:

Q: What should be the correct weighting M? 

A: Data-driven. 

feature 1

fe
a
tu

re
 2 

x1

x2

(all features are equally weighted)

(using weighting mechanism M) 

[sq. Euclidean dist]

[sq. Mahalanobis dist]

Given data of interest, learn a metric (M), which helps in the prediction task. 



Learning a Mahalanobis Metric

Suppose we want M s.t.:

- data from same class  distance U

- data from different classes  distance L [ U < L ]

Given two labelled samples                             from a sample S. Then 

- the distance between the pair

- label agreement between the pair

Define a pairwise penalty function

So total error:

(empirical error over the sample S) (generalization error)

(error of M over the sample S) (error of M over the (unseen) population)



Statistical consistency of Metric Learning

Best possible metric on the population:

Best possible metric on the sample S (of size m)  [drawn independently from the population]

Questions we want to answer:

(i) Does                                      as m  ?  (consistency)

(ii) At what rate does                                     ? (finite sample rates)

(iii) What factors affect the rate ? (data dim, feature info content)



What we show: Theorem 1

Given a D-dimensional feature space.

For any -Lipschitz penalty function  ,

and any sample size m, 

(with probability at least 1- over the draw of the sample)

If we want                                              , 

then we require

Question:  Is the convergence rate on the data dimension D tight?

This gives us consistency as well as a rate!



What we show: Theorem 2

Given a D-dimensional feature space.

For any metric learning algorithm A that (given a sample Sm) returns

There exists a -Lipschitz penalty function  , s.t. for all , , 

if sample size 

then

Remark: this is the worst case analysis in the absence of any other information about 
the data distribution. 

Can we refine our results if we know about the quality of our feature set?

Dependence on the representation dimension D is tight!



Quantifying feature-set quality

Quantifying the quality of our feature set.

Each feature has a different information content for the prediction task.

Fix a particular prediction task T.

Let M be the optimal feature weighting for task T.  

Define the metric learning complexity d* for task T as:

Question: Can we get a sample complexity rate that only depends on d*? 

Observation: not all features are created equal

d* is unknown a priori



What we show: Theorem 3

Given a D-dimensional feature space, and 

a prediction task T with (unknown) metric learning complexity d*

For any -Lipschitz penalty function  ,

and any sample size m, 

(with probability at least 1- over the draw of the sample)

Take home message:

regularization can help adapt to the unknown metric learning complexity!



Empirical Evaluation

Want to study

Given a dataset with small metric learning complexity, but high representation 
dimension. How do regularized vs. unregularized Metric Learning algs. fare?

Approach

• pick benchmark datasets of low dimensionality (d)

• augment each dataset with large (D dim.) corr. noise

for each orig. sample xi,  augmented sample  xi = [xi x]     

• study the prediction accuracy of regularized & unregularized Metric Learning

algorithms as a function of noise dimension.

UCI dataset dim (d)

Iris 4

Wine 13

Ionosphere 34

(we can now control signal-noise ratio)



Empirical Evaluation



Theorem 1

Given a D-dimensional feature space.

For any -Lipschitz penalty function  and any 

sample size m, 

(with probability at least 1- over the draw of the sample)

If we want                                              , 

then we require

This gives us consistency as well as a rate!

How can we prove this?



Proof Idea (Theorem 1)

Want to find a sample size m such that for any weighting M

empirical performance of M  generalization performance of M

Try 1 (covering argument)

Fix a weighting metric M, define random variable

Then, choosing the best M on samples, will have 
close to best generalization performance!

if  is bounded 
per example pair

By Hoeffding’s bound (since Z is bounded r.v.)

w.p.  1-  over the draw of Sm

But, we want to have a similar result for all M!

For all M 

Collection 
of all M



Proof Idea (Theorem 1)

Try 2 (VC argument)

If we view metric learning as classification, we can apply VC-style results!

Recall: given a (binary) classification class F, for all f  F

For metric learning: say penalty function  is binary threshold on distance.

F = { M : M  }

what is the maximum number of pairs which can attain all labeling from F ?

Recall: VC-theory is only for binary classification

w.p.  1-  over 
the draw of Sm

maximum sample size that can achieve all 
possible labels from using f  F

+ labeling => M for a pair is small
– labeling => M for a pair is large

(a) only works for thresholds on 

(b) cannot adapt to quality of the feature space! (VC complexity of ellipsoids)



Proof Idea (Theorem 1)

Try 3 (Rademacher Complexity argument)

Rademacher Complexity: given a class F, how well does some f  F correlate 
to binary noise   {-1, 1}.

Then for all f

For metric learning

w.p.  1-  over 
the draw of Sm

F = { M : M  }

(a) works for any Lipschitz 
(b) can adapt to quality of the feature space! 

for scale restricted metrics M, MTM2  D



Theorem 2

Given a D-dimensional feature space.

For any metric learning algorithm A that (given a sample Sm) returns

There exists a -Lipschitz penalty function  , s.t. for all , , 

if sample size 

then

Dependence on the representation dimension D is tight!

How can we prove this?



Proof Idea (Theorem 2) 

Try 1: (VC argument, by treating Metric Learning as classification)

If we can lower bound         m , 

then a standard construction gives a specific distribution on which we must 
have (m/2) samples to get accuracy within . 

Try 2: (Our approach -- deconstruct the VC argument)

We’ll use the probabilistic method.

• Create a collection of distributions such that if one of them is chosen at 
random then the generalization error of M returned by A would be large.

So there is some distribution in the collection which has large error.

These distributions constructed so that Metric Learning acts as classification.

Since, we work with pairs of points, the specific 
distribution for VC argument doesn’t actually ever occur! 

(we need this distribution to be a product distribution)



Proof Idea (Theorem 2) 

Construction:  (point masses on the vertices regular simplex)

• Collection of distributions:   

each vertex is labeled + or – (randomly) with bias ½ + 

• Loss function: 

Key insight: for this collection of distributions and this loss function the 
problem reduces to binary classification in the product space! 

For m i.i.d. samples from a randomly selected dist. from the collection

any empirical error minimizing algorithm would require m  (D/2) 

Other possible approaches: 

Use information-theoretic arguments to establish minimum number of samples 
needed to distinguish good metric from bad ones. (e.g. use Fano’s inequality)

[ U = 0, L = 1 ]

How? Calculate minimum number of samples required to 
distinguish the bias of two coins. Repeat it for ~D/2 pairs.



Theorem 3

Given a D-dimensional feature space, and a 

prediction task T with (unknown) metric learning complexity d*

For any -Lipschitz penalty function  and any 

sample size m, 

(with probability at least 1- over the draw of the sample)

Take home message:

regularization can help adapt to the unknown metric learning complexity!



Using Rademacher complexity argument, already shown:

If we know M* has small norm (say d << D), then we are done!

Will use a refinement trick…

For all d  D and all Md (s.t. Md T Md2  d)

Proof Idea (Theorem 3) 

 D

but don’t know the norm of the best metric a priori…

w.p.  1-  over 
the draw of 

sample of size m

MTM2  1

MTM2  2

MTM2  D

. .
 .

A refinement of 

Observation: we are allowed to fail  fraction of 
time, we distribute this over each class  / D



So, if the algorithm picks:

Then (w.p.  1- ):

Proof Idea (Theorem 3) 



Comparison with previous results

Previous results Our results

Convergence rate 
(upper bound)

For thresholds on convex 

Stable and regularized algs.

For general Lipschitz  with ERM

Theorem 1

Convergence rate 
(lower bound)

No known results

In absence of any other information, 
exists Lipschitz , with ERM

Theorem 2

Data complexity
d*

No known results

For gen. Lipschitz  with regularized ERM

Theorem 3



Open problems

• Analysis of Metric Learning in Online and Active Learning framework?

• Non-linear metric learning?

• ‘Structured’ metric learning? (ranking problems, clustering problems, etc)



Questions / Discussion



Thank You!


