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Sample Complexity of Learning Mahalanobis Distance Metrics

Want To Study What We Show
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Mahalanobis distance metric (with weighting M)

Distance Based Learning:
Given some distance based loss function:

Find M that minimizes the loss

Classifier Based Learning:
Given a (real-valued) hypothesis class

Find M that minimizes

Sample Complexity
Statistical sample complexity of Metric Learning

• at what rate does                                    as m  ?
• what key factors affect the rate?

(data dimension, noise levels, etc.)

(best generalization error) (best sample error with m samples)

• Sample complexity rates for Metric Learning (ML).

• What key factors of input data determine the rate?
› Representation dimension, noise levels, etc.
› Are these factors necessary? (lower bounds)

• Is it possible to adapt the rates to the intrinsic complexity
or information content of input data?
› How do we quantify information content in data?
› Is it possible to design algorithms that achieve error rates

proportional to the information content without any a priori
knowledge?

• How does the theory fare in practice?

Given a dataset with small metric learning complexity (d*), 
but high representation dimension (D). How do regularized 
vs. unregularized Metric Learning algs. fare?

Approach

• pick benchmark datasets of 

low dimensionality (d) 

• augment each dataset with large (D dim.) corr. noise

for each sample xi, create augmented sample  xi = [xi x]  

• study the prediction accuracy as a function of noise dim.

UCI dataset dim (d)

Iris 4

Wine 13

Ionosphere 34

For data that resides in a D-dimensional feature space:

Upper Bounds

For any ML alg. A that minimizes sample error (on sample Sm).

Th.3: There exists a -Lipschitz loss function  , s.t. for all , , 

if sample size then

Th.4: There exists real-valued hypothesis class 

if sample size                                                                      then

Refined Rates

Lower Bounds

Th.5: For a prediction task T with (unknown) metric learning 
complexity d*

where

Goal: Learn M, that improves
a prediction task

(e.g. losses MMC, ITML, LMNN)

Th.1: For any -Lipschitz loss , and any sample size m, 

w.p.  1 -  over the draw of m size sample

Distance based

Classifier based

Th.2: For any -Lipschitz hypoth. class, and any sample size m, 

is the Fat-shattering dimension at margin /16.

Distance based

Classifier based

what if most data has high representation 
dimension but low intrinsic complexity?

Quantifying Intrinsic Complexity
Observation: not all features are created equal.

(each features has a different information content for the prediction task)

Fix a prediction task T, and 
let M the optimal feature weighting for T for a given dataset.
Define: metric learning complexity

Question: Is it possible to achieve error rates that automatically 
adapt to d*, without any prior knowledge about it?

d* is unknown a priori 

w.p.  1 -  over the draw of m size sample Sm

Distance & classifier based

norm-regularization helps adapt to unknown intrinsic 
complexity of a given dataset in metric learning

Distance based Learning (upper-bounds):
• (Jin et al. 2009) norm-regularized convex loss for stable algs.
• (Bian & Tao 2011) thresholds on bounded convex losses.
• (Cao et al. 2013) thresholds on hinge loss with norm reg.
• (Bellet & Habrard 2012) robust algs. with stable partitions.

Classifier based Learning (upper-bounds):
• (Balcan et al. 2008; Bellet et al. 2012) learn weighting

metrics that best assist linear classifiers.

Previous Theoretical Analysis
Metric Learning


