Want To Study

Sample complexity rates for Metric Learning (ML).

What key factors of input data determine the rate?
> Representation dimension, noise levels, etc.
»  Are these factors necessary? (lower bounds)

Is it possible to adapt the rates to the intrinsic complexity

or information content of input data?

» How do we quantify information content in data?

» Is it possible to design algorithms that achieve error rates
oroportional to the information content without any a priori
<nowledge?

How does the theory fare in practice?

Metric Learning

Mahalanobis distance metric (with weighting M)

X1
[

par(x1,x2) = ||M (21 — x2)||? ,\pA
.XZ

feature 2

feature 1

Goal: Learn M, that improves
a prediction task
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Distance Based Learning:
Yij =1y =y

Given some distance based loss function:

ifY;; =1
otherwise

(e.g. losses MMC, ITML, LMNN)
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Find M that minimizes the loss [¢(103\j47 Yii)]

Classifier Based Learning:
Given a (real-valued) hypothesis class H := {X — [0,1]}

Find M that minimizes err(M) :=inf, E_ = [[h(Mz) —y| > 1/2]

Sample Complexity

Statistical sample complexity of Metric Learning

M™ = argmin,, err(M)

(best generalization error)

M’ = argmin,, errg (M)
(best sample error with m samples)

* atwhat rate does err(M} ) — err(M*) asm —> o ?
* what key factors affect the rate?
(data dimension, noise levels, etc.)
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For data that resides in a D-dimensional feature space:

Upper Bounds

Th.1: For any A-Lipschitz loss ¢, and any sample size m,

Dln(l/cS))

m

Distance based

err(M” ) —err(M™) <O ()\\/

Th.2: For any A-Lipschitz hypoth. class, and any sample size m,

(D? + Fat_,,,(H))In(A/~9) )

m

err(M” ) —err(M*) < O(\/

Classifier based
Fat_ g (H) is the Fat-shattering dimension at margin y/16.

w.p. = 1 - oover the draw of m size sample

Lower Bounds

For any ML alg. A that minimizes sample error (on sample S,).

Th.3: There exists a A-Lipschitz loss function ¢, s.t. for all g, o,
if sample size m < O(D/€*) then

Ps, |err(A(Sy,)) —err(M*) > €| > 6

Distance based

Th.4: There exists real-valued hypothesis class H
if sample size m < O((D? + Fat,gs,(H))/(e?In1/47)) then

Classifier based

Ps, |err(A(Sy,)) —err(M*) > €| > 6

what if most data has high representation
dimension but low intrinsic complexity?

Quantifying Intrinsic Complexity

Observation: not all features are created equal.
(each features has a different information content for the prediction task)

Fix a prediction task T, and
let M the optimal feature weighting for T for a given dataset.
Define: metric learning complexity

4" = [MTM][;
d* is unknown a priori

Question: Is it possible to achieve error rates that automatically
adapt to d*, without any prior knowledge about it?

Sample Complexity of Learning Mahalanobis Distance Metrics
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Refined Rates

Th.5: For a prediction task T with (unknown) metric learning
complexity d*

err(M™8) — err(M*) < O ( \/d* In(D) 11’1(1/5))

m

Distance & classifier based

where

M'°® = argmin,, [errgm(M) + AHMTMHF} A =~ \/In(D/§)/m

w.p. = 1 - ooverthe draw of m size sample S,

norm-regularization helps adapt to unknown intrinsic
complexity of a given dataset in metric learning

Previous Theoretical Analysis

Distance based Learning (upper-bounds):

e (Jin et al. 2009) norm-regularized convex loss for stable algs.
* (Bian & Tao 2011) thresholds on bounded convex losses.

* (Cao et al.2013) thresholds on hinge loss with norm reg.

e (Bellet & Habrard 2012) robust algs. with stable partitions.

Classifier based Learning (upper-bounds):
 (Balcan et al. 2008; Bellet et al. 2012) learn weighting
metrics that best assist linear classifiers.

Experiments

Given a dataset with small metric learning complexity (d*),
but high representation dimension (D). How do regularized
vs. unregularized Metric Learning algs. fare?

Approach

e pick benchmark datasets of Iris 4
| di i litv (d Wine 13
ow dimensionality (d) B

e augment each dataset with large (D dim.) corr. noise
Y.p ~ Wishart(unit-scale) Ty ~ N(0,3p)

for each sample x; create augmented sample x; = [x; x

e study the prediction accuracy as a function of noise dim.

UCI Iris Dataset UCI Wine Dataset UCI lonosphere Dataset
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