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Abstract
Metric learning seeks a transformation of the feature space that enhances predic-
tion quality for a given task. In this work we provide PAC-style sample complexity
rates for supervised metric learning. We give matching lower- and upper-bounds
showing that sample complexity scales with the representation dimension when
no assumptions are made about the underlying data distribution. In addition, by
leveraging the structure of the data distribution, we provide rates fine-tuned to a
specific notion of the intrinsic complexity of a given dataset, allowing us to relax
the dependence on representation dimension. We show both theoretically and em-
pirically that augmenting the metric learning optimization criterion with a simple
norm-based regularization is important and can help adapt to a dataset’s intrin-
sic complexity yielding better generalization, thus partly explaining the empirical
success of similar regularizations reported in previous works.

1 Introduction
In many machine learning tasks, data is represented in a high-dimensional Euclidean space. The
L2 distance in this space is then used to compare observations in methods such as clustering and
nearest-neighbor classification. Often, this distance is not ideal for the task at hand. For example,
the presence of uninformative or mutually correlated measurements arbitrarily inflates the distances
between pairs of observations. Metric learning has emerged as a powerful technique to learn a
metric in the representation space that emphasizes feature combinations that improve prediction
while suppressing spurious measurements. This has been done by exploiting class labels [1, 2] or
other forms of supervision [3] to find a Mahalanobis distance metric that respects these annotations.

Despite the popularity of metric learning methods, few works have studied how problem complexity
scales with key attributes of the dataset. In particular, how do we expect generalization error to
scale—both theoretically and practically—as one varies the number of informative and uninforma-
tive measurements, or changes the noise levels? In this work, we develop two general frameworks
for PAC-style analysis of supervised metric learning. The distance-based metric learning frame-
work uses class label information to derive distance constraints. The objective is to learn a metric
that yields smaller distances between examples from the same class than those from different classes.
Algorithms that optimize such distance-based objectives include Mahalanobis Metric for Clustering
(MMC) [4], Large Margin Nearest Neighbor (LMNN) [1] and Information Theoretic Metric Learn-
ing (ITML) [2]. Instead of using distance comparisons as a proxy, however, one can also optimize
for a specific prediction task directly. The second framework, the classifier-based metric learning
framework, explicitly incorporates the hypotheses associated with the prediction task to learn effec-
tive distance metrics. Examples in this regime include [5] and [6].
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Our analysis shows that in both frameworks, the sample complexity scales with a dataset’s represen-
tation dimension (Theorems 1 and 3), and this dependence is necessary in the absence of assump-
tions about the underlying data distribution (Theorems 2 and 4). By considering any Lipschitz loss,
our results improve upon previous sample complexity results (see Section 6) and, for the first time,
provide matching lower bounds.

In light of our observation that data measurements often include uninformative or weakly informa-
tive features, we expect a metric that yields good generalization performance to de-emphasize such
features and accentuate the relevant ones. We thus formalize the metric learning complexity of a
given dataset in terms of the intrinsic complexity d of the optimal metric. For Mahalanobis metrics,
we characterize intrinsic complexity by the norm of the matrix representation of the metric. We
refine our sample complexity results and show a dataset-dependent bound for both frameworks that
relaxes the dependence on representation dimension and instead scales with the dataset’s intrinsic
metric learning complexity d (Theorem 7).

Based on our dataset-dependent result, we propose a simple variation on the empirical risk min-
imizing (ERM) algorithm that returns a metric (of complexity d) that jointly minimizes the ob-
served sample bias and the expected intra-class variance for metrics of fixed complexity d. This
bias-variance balancing criterion can be viewed as a structural risk minimizing algorithm that pro-
vides better generalization performance than an ERM algorithm and justifies norm-regularization
of weighting metrics in the optimization criteria for metric learning, partly explaining empirical
success of similar objectives [7, 8]. We experimentally validate how the basic principle of norm-
regularization can help enhance the prediction quality even for existing metric learning algorithms
on benchmark datasets (Section 5). Our experiments highlight that norm-regularization indeed helps
learn weighting metrics that better adapt to the signal in data in high-noise regimes.

2 Preliminaries

In this section, we define our notation, and explicitly define the distance-based and classifier-based
learning frameworks. Given a D-dimensional representation space X = RD, we want to learn a
weighting, or a metric1 M∗ on X that minimizes some notion of error on data drawn from a fixed
unknown distribution D on X × {0, 1}:

M∗ := argminM∈M err(M,D),

whereM is the class of weighting metricsM := {M |M ∈ RD×D, σmax(M) = 1} (we constrain
the maximum singular value σmax to remove arbitrary scalings). For supervised metric learning,
this error is typically label-based and can be defined in two intuitive ways.

The distance-based framework prefers metrics M that bring data from the same class closer to-
gether than those from opposite classes. The corresponding distance-based error then measures how
the distances amongst data violate class labels:

errλdist(M,D) := E(x1,y1),(x2,y2)∼D

[
φλ
(
ρM(x1, x2), Y

)]
,

where φλ(ρ
M
, Y ) is a generic distance-based loss function that computes the degree of violation

between weighted distance ρ
M

(x1, x2) := ‖M(x1−x2)‖2 and the label agreement Y := 1[y1 = y2]
and penalizes it by factor λ. For example, φ could penalize intra-class distances that are more than
some upper limit U and inter-class distances that are less than some lower limit L > U :

φλL,U (ρM , Y ) :=

{
min{1, λ[ρ

M
−U ]

+
} if Y = 1

min{1, λ[L− ρ
M

]
+
} otherwise , (1)

1Note that we are looking at the linear form of the metric M ; usually the corresponding quadratic form
MTM is discussed in the literature, which is necessarily positive semi-definite.
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where [A]+ := max{0, A}. MMC optimizes an efficiently computable variant of Eq. (1) by con-
straining the aggregate intra-class distances while maximizing the aggregate inter-class distances.
ITML explicitly includes the upper and lower limits with an added regularization on the learned M
to be close to a pre-specified metric of interest M0.

While we will discuss loss-functions φ that handle distances between pairs of observations, it is easy
to extend to relative distances among triplets:

φλtriple(ρM
(x1, x2), ρ

M
(x1, x3), (y1, y2, y3)) :=

{
min{1, λ[ρ

M
(x1, x2)− ρ

M
(x1, x3)]

+
} if y1 = y2 6= y3

0 otherwise ,

LMNN is a popular variant, in which instead of looking at all triplets, it focuses on triplets in local
neighborhoods, improving the quality of local distance comparisons.

The classifier-based framework prefers metrics M that directly improve the prediction quality for
a downstream task. Let H represent a real-valued hypothesis class associated with the prediction
task of interest (each h ∈ H : X → [0, 1]), then the corresponding classifier-based error becomes:

errhypoth(M,D) := inf
h∈H

E(x,y)∼D

[
1
[
|h(Mx)− y| ≥ 1/2

]]
.

Example classifier-based methods include [5], which minimizes ranking errors for information re-
trieval and [6], which incorporates network topology constraints for predicting network connectivity
structure.

3 Metric Learning Sample Complexity: General Case

In any practical setting, we estimate the ideal weighting metric M∗ by minimizing the empirical
version of the error criterion from a finite size sample from D. Let Sm denote a sample of size
m, and err(M,Sm) denote the corresponding empirical error. We can then define the empirical
risk minimizing metric based on m samples as M∗m := argminM err(M,Sm), and compare its
generalization performance to that of the theoretically optimal M∗, that is,

err(M∗m,D)− err(M∗,D). (2)

Distance-Based Error Analysis. Given an i.i.d. sequence of observations z1, z2, . . . from
D, zi = (xi, yi), we can pair the observations together to form a paired sample2 Spair

m =
{(z1, z2), . . . , (z2m−1, z2m)} = {(z1,i, z2,i)}mi=1 of size m, and define the sample-based distance
error induced by a metric M as

errλdist(M,Spair
m ) :=

1

m

m∑
i=1

φλ
(
ρM(x1,i, x2,i),1[y1,i = y2,i]

)
.

Then for any B-bounded-support distribution D (that is, each (x, y) ∼ D, ‖x‖ ≤ B), we have the
following.3,4

Theorem 1 Let φλ be a distance-based loss function that is λ-Lipschitz in the first argument. Then
with probability at least 1 − δ over an i.i.d. draw of 2m samples from an unknown B-bounded-
support distribution D paired as Spair

m , we have

sup
M∈M

[
errλdist(M,D)− errλdist(M,Spair

m )
]
≤ O

(
λB2

√
D ln(1/δ)/m

)
.

2While we pair 2m samples into m independent pairs, it is common to consider all O(m2) possibly depen-
dent pairs. By exploiting independence we provide a simpler analysis yielding O(m−1/2) sample complexity
rates, which is similar to the dependent case.

3We only present the results for paired comparisons; the results are easily extended to triplet comparisons.
4All the supporting proofs are provided in Appendix A.
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This implies a bound on our key quantity of interest, Eq. (2). To achieve estimation error rate ε,
m = Ω((λB2/ε)2D ln(1/δ)) samples are sufficient, showing that one never needs more than a
number proportional to D examples to achieve the desired level of accuracy with high probability.

Since many applications involve high-dimensional data, we next study if such a strong dependency
on D is necessary. It turns out that even for simple distance-based loss functions like φλL,U (c.f. Eq.
1), there are data distributions for which one cannot ensure good estimation error with fewer than
linear in D samples.

Theorem 2 LetA be any algorithm that, given an i.i.d. sample Sm (of sizem) from a fixed unknown
bounded support distribution D, returns a weighting metric fromM that minimizes the empirical
error with respect to distance-based loss function φλL,U . There exist λ ≥ 0, 0 ≤ U < L (indep. of
D), s.t. for all 0 < ε, δ < 1

64 , there exists a bounded support distribution D, such that if m ≤ D+1
512ε2 ,

PSm

[
errλdist(A(Sm),D)− errλdist(M

∗,D) > ε
]
> δ.

While this strong dependence on D may seem discouraging, note that here we made no assump-
tions about the underlying structure of the data distribution. One may be able to achieve a more
relaxed dependence on D in settings in which individual features contain varying amounts of useful
information. This is explored in Section 4.

Classifier-Based Error Analysis. In this setting, we consider an i.i.d. set of observations z1, z2, . . .
fromD to obtain the unpaired sample Sm = {zi}mi=1 of sizem. To analyze the generalization-ability
of weighting metrics optimized w.r.t. underlying real-valued hypothesis class H, we must measure
the classification complexity of H. The scale-sensitive version of VC-dimension, the fat-shattering
dimension, of a hypothesis class (denoted Fatγ(H)) encodes the right notion of classification com-
plexity and provides a way to relate generalization error to the empirical error at a margin γ [9].

In the context of metric learning with respect to a fixed hypothesis class, define the empirical error
at a margin γ as errγhypoth(M,Sm) := infh∈H

1
m

∑
(xi,yi)∈Sm 1[Margin(h(Mxi), yi) ≤ γ], where

Margin(ŷ, y) := (2y − 1)(ŷ − 1/2).

Theorem 3 Let H be a λ-Lipschitz base hypothesis class. Pick any 0 < γ ≤ 1/2, and let m ≥
Fatγ/16(H) ≥ 1. Then with probability at least 1− δ over an i.i.d. draw of m samples Sm from an
unknown B-bounded-support distribution D (ε0 := min{γ/2, 1/2λB})

sup
M∈M

[
errhypoth(M,D)− errγhypoth(M,Sm)

]
≤ O

(√
1

m
ln

1

δ
+
D2

m
ln
D

ε0
+

Fatγ/16(H)

m
ln
(m
γ

))
.

As before, this implies a bound on Eq. (2). To achieve estimation error rate ε, m =
Ω((D2 ln(λDB/γ) + Fatγ/16(H) ln(1/δγ))/ε2) samples suffices. Note that the task of finding an
optimal metric only additively increases sample complexity over that of finding the optimal hypoth-
esis from the underlying hypothesis class. In contrast to the distance-based framework (Theorem 1),
here we get a quadratic dependence on D. The following shows that a strong dependence on D is
necessary in the absence of assumptions on the data distribution and base hypothesis class.

Theorem 4 Pick any 0 < γ < 1/8. LetH be a base hypothesis class of λ-Lipschitz functions that is
closed under addition of constants (i.e., h ∈ H =⇒ h′ ∈ H, where h′ : x 7→ h(x) + c, for all c)
s.t. each h ∈ H maps into the interval [1/2− 4γ, 1/2 + 4γ] after applying an appropriate theshold.

Then for any metric learning algorithm A, and for any B ≥ 1, there exists λ ≥ 0, for all 0 < ε, δ <

1/64, there exists a B-bounded-support distribution D s.t. if m ln2m < O
(

D2+d
ε2 ln(1/γ2)

)
PSm∼D[errhypoth(M∗,D) > errγhypoth(A(Sm),D) + ε] > δ,

where d := Fat768γ(H) is the fat-shattering dimension ofH at margin 768γ.
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4 Sample Complexity for Data with Un- and Weakly Informative Features

We introduce the concept of the metric learning complexity of a given dataset. Our key observa-
tion is that a metric that yields good generalization performance should emphasize relevant features
while suppressing the contribution of spurious features. Thus, a good metric reflects the quality of
individual feature measurements of data and their relative value for the learning task. We can lever-
age this and define the metric learning complexity of a given dataset as the intrinsic complexity d
of the weighting metric that yields the best generalization performance for that dataset (if multiple
metrics yield best performance, we select the one with minimum d). A natural way to characterize
the intrinsic complexity of a weighting metric M is via the norm of the matrix M . Using metric
learning complexity as our gauge for feature-set richness, we now refine our analysis in both canoni-
cal frameworks. We will first analyze sample complexity for norm-bounded metrics, then show how
to automatically adapt to the intrinsic complexity of the unknown underlying data distribution.

4.1 Distance-Based Refinement

We start with the following refinement of the distance-based metric learning sample complexity for
a class of Frobenius norm-bounded weighting metrics.

Lemma 5 Let M be any class of weighting metrics on the feature space X = RD, and define
d := supM∈M ‖MTM‖2

F
. Let φλ be any distance-based loss function that is λ-Lipschitz in the first

argument. Then with probability at least 1− δ over an i.i.d. draw of 2m samples from an unknown
B-bounded-support distribution D paired as Spair

m , we have

sup
M∈M

[
errλdist(M,D)− errλdist(M,Spair

m )
]
≤ O

(
λB2

√
d ln(1/δ)/m

)
.

Observe that if our dataset has a low metric learning complexity d� D, then considering an appro-
priate class of norm-bounded weighting metricsM can help sharpen the sample complexity result,
yielding a dataset-dependent bound. Of course, a priori we do not know which class of metrics is
appropriate; We discuss how to automatically adapt to the right complexity class in Section 4.3.

4.2 Classifier-Based Refinement

Effective data-dependent analysis of classifier-based metric learning requires accounting for poten-
tially complex interactions between an arbitrary base hypothesis class and the distortion induced
by a weighting metric to the unknown underlying data distribution. To make the analysis tractable
while still keeping our base hypothesis class H general, we assume that H is a class of two-layer
feed-forward networks.5 Recall that for any smooth target function f∗, a two-layer feed-forward
neural network (with appropriate number of hidden units and connection weights) can approximate
f∗ arbitrarily well [10], so this class is flexible enough to include most reasonable target hypotheses.

More formally, define the base hypothesis class of two-layer feed-forward neural network with K
hidden units as H2-net

σγ := {x 7→
∑K
i=1 wi σ

γ(vi · x) | ‖w‖1 ≤ 1, ‖vi‖1 ≤ 1}, where σγ : R →
[−1, 1] is a smooth, strictly monotonic, γ-Lipschitz activation function with σγ(0) = 0. Then, for
generalization error w.r.t. any classifier-based λ-Lipschitz loss function φλ,

errλhypoth(M,D) := inf
h∈H2-net

σγ

E(x,y)∼D
[
φλ
(
h(Mx), y

)]
,

we have the following.6

5We only present the results for two-layer networks in Lemma 6; the results are easily extended to multi-
layer feed-forward networks.

6Since we know the functional form of the base hypothesis class H (i.e., a two layer feed-forward neural
net), we can provide a more precise bound than leaving it as Fat(H).
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Lemma 6 Let M be any class of weighting metrics on the feature space X = RD, and define
d := supM∈M ‖MTM‖2

F
. For any γ > 0, let H2-net

σγ be a two layer feed-forward neural network
base hypothesis class (as defined above) and φλ be a classifier-based loss function that λ-Lipschitz
in its first argument. Then with probability at least 1− δ over an i.i.d. draw of m samples Sm from
an unknown B-bounded support distribution D, we have

sup
M∈M

[
errλhypoth(M,D)− errλhypoth(M,Sm)

]
≤ O

(
Bλγ

√
d ln(D/δ)/m

)
.

4.3 Automatically Adapting to Intrinsic Complexity

While Lemmas 5 and 6 provide a sample complexity bound tuned to the metric learning complexity
of a given dataset, these results are not directly useful since one cannot select the correct norm-
bounded classM a priori, as the underlying distribution D is unknown. Fortunately, by considering
an appropriate sequence of norm-bounded classes of weighting metrics, we can provide a uniform
bound that automatically adapts to the intrinsic complexity of the unknown underlying data distri-
bution D.

Theorem 7 DefineMd := {M | ‖MTM‖2
F
≤ d}, and consider the nested sequence of weighting

metric classes M1 ⊂ M2 ⊂ · · · . Let µd be any non-negative measure across the sequence Md

such that
∑
d µd = 1 (for d = 1, 2, · · · ). Then for any λ ≥ 0, with probability at least 1− δ over an

i.i.d. draw of sample Sm from an unknown B-bounded-support distribution D, for all d = 1, 2, · · · ,
and all Md ∈Md,[

errλ(Md,D)− errλ(Md, Sm)
]
≤ O

(
C ·Bλ

√
d ln(1/δµd)/m

)
, (3)

where C := B for distance-based error, or C := γ
√

lnD for classifier-based error (forH2-net
σγ ).

In particular, for a data distribution D that has metric learning complexity at most d ∈ N, if there
are m ≥ Ω

(
d(CBλ)2 ln(1/δµd)/ε

2
)

samples, then with probability at least 1− δ[
errλ(M reg

m ,D)− errλ(M∗,D)
]
≤ O(ε),

for M reg
m := argmin

M∈M

[
errλ(M,Sm) + Λ

M
d
M

]
, Λ

M
:=CBλ

√
ln(δµ

dd2
M
e
)−1/m , d

M
:=‖MTM‖

F
.

The measure µd above encodes our prior belief on the complexity class Md from which a target
metric is selected by a metric learning algorithm given the training sample Sm. In absence of any
prior beliefs, µd can be set to 1/D (for d = 1, . . . , D) for scale constrained weighting metrics
(σmax = 1). Thus, for an unknown underlying data distribution D with metric learning complexity
d, with number of samples just proportional to d, we can find a good weighting metric.

This result also highlights that the generalization error of any weighting metric returned by an al-
gorithm is proportional to the (smallest) norm-bounded class to which it belongs (cf. Eq. 3). If two
metrics M1 and M2 have similar empirical errors on a given sample, but have different intrinsic
complexities, then the expected risk of the two metrics can be considerably different. We expect the
metric with lower intrinsic complexity to yield better generalization error. This partly explains the
observed empirical success of norm-regularized optimization for metric learning [7, 8].

Using this as a guiding principle, we can design an improved optimization criteria for metric learning
that jointly minimizes the sample error and a Frobenius norm regularization penalty. In particular,

min
M∈M

err(M,Sm) + Λ ‖MTM‖
F

(4)

for any error criteria ‘err’ used in a downstream prediction task and a regularization parameter Λ.
Similar optimizations have been studied before [7, 8], here we explore the practical efficacy of
this augmented optimization on existing metric learning algorithms in high noise regimes where a
dataset’s intrinsic dimension is much smaller than its representation dimension.
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Figure 1: Nearest-neighbor classification performance of LMNN and ITML metric learning algorithms with-
out regularization (dashed red lines) and with regularization (solid blue lines) on benchmark UCI datasets. The
horizontal dotted line is the classification error of random label assignment drawn according to the class pro-
portions, and solid gray line shows classification error of k-NN performance with respect to identity metric (no
metric learning) for baseline reference.

5 Empirical Evaluation
Our analysis shows that the generalization error of metric learning can scale with the representation
dimension, and regularization can help mitigate this by adapting to the intrinsic metric learning
complexity of the given dataset. We want to explore to what degree these effects manifest in practice.

We select two popular metric learning algorithms, LMNN [1] and ITML [2], that are used to find
metrics that improve nearest-neighbor classification quality. These algorithms have varying degrees
of regularization built into their optimization criteria: LMNN implicitly regularizes the metric via its
“large margin” criterion, while ITML allows for explicit regularization by letting the practitioners
specify a “prior” weighting metric. We modified the LMNN optimization criteria as per Eq. (4) to
also allow for an explicit norm-regularization controlled by the trade-off parameter Λ.

We can evaluate how the unregularized criteria (i.e., unmodified LMNN, or ITML with the prior
set to the identity matrix) compares to the regularized criteria (i.e., modified LMNN with best Λ, or
ITML with the prior set to a low-rank matrix).

Datasets. We use the UCI benchmark datasets for our experiments: IRIS (4 dim., 150 samples),
WINE (13 dim., 178 samples) and IONOSPHERE (34 dim., 351 samples) datasets [11]. Each dataset
has a fixed (unknown, but low) intrinsic dimension; we can vary the representation dimension by
augmenting each dataset with synthetic correlated noise of varying dimensions, simulating regimes
where datasets contain large numbers of uninformative features. Each UCI dataset is augmented
with synthetic D-dimensional correlated noise as detailed in Appendix B.

Experimental setup. Each noise-augmented dataset was randomly split between 70% training, 10%
validation, and 20% test samples. We used the default settings for each algorithm. For regularized
LMNN, we picked the best performing trade-off parameter Λ from {0, 0.1, 0.2, ..., 1} on the valida-
tion set. For regularized ITML, we seeded with the rank-one discriminating metric, i.e., we set the
prior as the matrix with all zeros, except the diagonal entry corresponding to the most discriminating
coordinate set to one. All the reported results were averaged over 20 runs.

Results. Figure 1 shows the nearest-neighbor performance (with k = 3) of LMNN and ITML on
noise-augmented UCI datasets. Notice that the unregularized versions of both algorithms (dashed
red lines) scale poorly when noisy features are introduced. As the number of uninformative features
grows, the performance of both algorithms quickly degrades to that of classification performance in
the original unweighted space with no metric learning (solid gray line), showing poor adaptability
to the signal in the data.

The regularized versions of both algorithms (solid blue lines) significantly improve the classification
performance. Remarkably, regularized ITML shows almost no degradation in classification perfor-
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mance, even in very high noise regimes, demonstrating a strong robustness to noise. These results
underscore the value of regularization in metric learning, showing that regularization encourages
adaptability to the intrinsic complexity and improved robustness to noise.

6 Discussion and Related Work

Previous theoretical work on metric learning has focused almost exclusively on analyzing upper-
bounds on the sample complexity in the distance-based framework, without exploring any intrinsic
properties of the input data. Our work improves these results and additionally analyzes the classifier-
based framework. It is, to best of our knowledge, the first to provide lower bounds showing that the
dependence on D is necessary. Importantly, it is also the first to provide an analysis of sample
rates based on a notion of intrinsic complexity of a dataset, which is particularly important in metric
learning, where we expect the representation dimension to be much higher than intrinsic complexity.

[12] studied the norm-regularized convex losses for stable algorithms and showed an upper-bound
sublinear in

√
D, which can be relaxed by applying techniques from [13]. We analyze the ERM

criterion directly (thus no assumptions are made about the optimization algorithm), and provide a
precise characterization of when the problem complexity is independent of D (Lm. 5). Our lower-
bound (Thm. 2) shows that the dependence on D is necessary for ERM in the assumption-free case.

[14] and [15] analyzed the ERM criterion, and are most similar to our results providing an upper-
bound for the distance-based framework. [14] shows a O(m−1/2) rate for thresholds on bounded
convex losses for distance-based metric learning without explicitly studying the dependence on
D. Our upper-bound (Thm. 1) improves this result by considering arbitrary (possibly non-convex)
distance-based Lipschitz losses and explicitly revealing the dependence onD. [15] provides an alter-
nate ERM analysis of norm-regularized metrics and parallels our norm-bounded analysis in Lemma
5. While they focus on analyzing a specific optimization criterion (thresholds on the hinge loss with
norm-regularization), our result holds for general Lipschitz losses. Our Theorem 7 extends it further
by explicitly showing when we can expect good generalization performance from a given dataset.

[16] provides an interesting analysis for robust algorithms by relying upon the existence of a partition
of the input space where each cell has similar training and test losses. Their sample complexity
bound scales with the partition size, which in general can be exponential in D.

It is worth emphasizing that none of these closely related works discuss the importance of or lever-
age the intrinsic structure in data for the metric learning problem. Our results in Section 4 formalize
an intuitive notion of dataset’s intrinsic complexity for metric learning, and show sample complex-
ity rates that are finely tuned to this metric learning complexity. Our lower bounds indicate that
exploiting the structure is necessary to get rates that don’t scale with representation dimension D.

The classifier-based framework we discuss has parallels with the kernel learning and similarity learn-
ing literature. The typical focus in kernel learning is to analyze the generalization ability of linear
separators in Hilbert spaces [17, 18]. Similarity learning on the other hand is concerned about find-
ing a similarity function (that does not necessarily has a positive semidefinite structure) that can best
assist in linear classification [19, 20]. Our work provides a complementary analysis for learning
explicit linear transformations of the given representation space for arbitrary hypotheses classes.

Our theoretical analysis partly justifies the empirical success of norm-based regularization as well.
Our empirical results show that such regularization not only helps in designing new metric learning
algorithms [7, 8], but can even benefit existing metric learning algorithms in high-noise regimes.
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A Appendix: Various Proofs

A.1 Proof of Theorem 1

Let P be the probability measure induced by the random variable (X, Y ), where X := (x, x′),
Y := 1[y = y′], st. ((x, y), (x′, y′)) ∼ (D×D).

Define function class

F :=

{
fM : X 7→ ‖M(x− x′)‖2

∣∣∣∣∣ M ∈M
X = (x, x′) ∈ (X ×X)

}
,

and consider any loss function φλ(ρ, Y ) that is λ-Lipschitz in the first argument. Then, we are
interested in bounding the quantity

sup
fM∈F

E(X,Y )∼P [φλ(fM (X), Y )]− 1

m

m∑
i=1

φλ(fM (Xi), Yi),

where Xi := (x1,i, x2,i) and Yi := 1[y1,i = y2,i] and the sample based versions from the paired
sample Spair

m = {((x1,i, y1,i), (x2,i, y2,i))}mi=1.

Define x̄i := x1,i − x2,i for each Xi = (x1,i, x2,i). Then, the Rademacher complexity7 of our
function class F (with respect to the distribution P) is bounded, since (let σ1, . . . , σm denote inde-
pendent uniform {±1}-valued random variables)

Rm(F ,P) := EXi,σi
i∈[m]

[
sup
fM∈F

1

m

m∑
i=1

σifM (Xi)

]

=
1

m
EXi,σi
i∈[m]

sup
M∈M

[ m∑
i=1

σix̄
T
iM

TMx̄i

]
=

1

m
EXi,σi
i∈[m]

sup
M∈M, s.t.

[ajk]jk:=MTM

[∑
j,k

ajk
m∑
i=1

σix̄
j
i x̄
k
i

]

≤ 1

m
EXi,σi
i∈[m]

sup
M∈M

[
‖MTM‖F

(∑
j,k

( m∑
i=1

σix̄
j
i x̄
k
i

)2
)1/2]

≤
√
D

m
EXi,i∈[m]

(
Eσi,i∈[m]

∑
j,k

( m∑
i=1

σix̄
j
i x̄
k
i

)2
)1/2

=

√
D

m
EXi,i∈[m]

(∑
j,k

m∑
i=1

(
x̄ji

)2(
x̄ki

)2
)1/2

=

√
D

m
EXi,i∈[m]

(
m∑
i=1

‖x̄i‖4
)1/2

=

√
D

m
E(xi,x

′
i)∼(D |X×D |X),

i∈[m]

(
m∑
i=1

‖xi − x′i‖4
)1/2

7See the definition of Rademacher complexity in the statement of Lemma 8.
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≤
√
D

m

(
E(x,x′)∼(D |X×D |X)‖x− x′‖4

)1/2

≤ 4B2

√
D

m
,

where the second inequality is by noting that supM∈M ‖MTM‖
F
≤
√
D for the class of weighting

metricsM :=
{
M |M ∈ RD×D, σmax(M) = 1

}
.

Recall thatD has bounded support (with boundB). Thus, by noting that φλ is 8B2 bounded function
that is λ-Lipschitz in the first argument, we can apply Lemma 8 and get the desired uniform deviation
bound.

Lemma 8 (Rademacher complexity of bounded Lipschitz loss functions [23]) Let D be a fixed
unknown distribution over X × {−1, 1}, and let Sm be an i.i.d. sample of size m from D. Given
a hypothesis class H ⊂ RX and a loss function ` : R×{−1, 1} → R, such that ` is c-bounded,
and is λ-Lipschitz in the first argument, that is, sup(y′,y)∈R×{−1,1} |`(y′, y)| ≤ c, and |`(y′, y) −
`(y′′, y)| ≤ λ|y′ − y′′|, we have the following:

for any 0 < δ < 1, with probability at least 1− δ, every h ∈ H satisfies

err(` ◦ h,D) ≤ err(` ◦ h, Sm) + 2λRm(H,D) + c

√
2 ln(1/δ)

m
,

where

• err(` ◦ h,D) := Ex,y∼D[`(h(x), y)],

• err(` ◦ h, Sm) := 1
m

∑
(xi,yi)∈Sm `(h(xi), yi),

• Rm(H,D) is the Rademacher complexity of the function classH with respect to the distri-
bution D given m i.i.d. samples, and is defined as:

Rm(H,D) := E xi∼D |X ,
σi∼unif{±1},

i∈[m]

[
sup
h∈H

1

m

m∑
i=1

σih(xi)

]
,

where σi are independent uniform {±1}-valued random variables.

A.2 Proof of Theorem 2

We shall exhibit a finite class of bounded support distributions D, such that ifD is chosen uniformly
at random from D, the expectation (over the random choice of D) of the probability of failure (that
is, generalization error of the metric returned byA that uses fewer thanO(D/ε2) samples compared
to that of the optimal metric exceeds the specified tolerance level ε) is at least δ. This implies that
for some distribution in D the probability of failure is at least δ as well, yielding the desired result.

Let ∆D := {x0, . . . , xD} be a set of D + 1 points that form the vertices of a regular simplex (that
is circumscribed in a (D − 1)-sphere of radius D/4) from the underlying space X = RD as per
Definition 1 (see below). For a fixed parameter 0 < α < 1 (exact value to be determined later),
define D′ as the class of all distributions D on X × {0, 1} such that:

• D assigns zero probability to all sets not intersecting ∆D × {0, 1}.
• for each i = 0, . . . , D, either

11



– P[(xi, 1)] = (1 +
√
α)/2 and P[(xi, 0)] = (1−

√
α)/2, or

– P[(xi, 1)] = (1−
√
α)/2 and P[(xi, 0)] = (1 +

√
α)/2.

Observe that the class D′ contains 2D+1 distributions. We shall discard two distributions from this
class: the distribution that assigns P [(xi, 1)] = (1+

√
α)/2 for all i, and the distribution that assigns

P [(xi, 1)] = (1−
√
α)/2 for all i. This reduced collection of 2D+1−2 distributions will be denoted

by D.

For concreteness, we shall use a specific instantiation of φλL,U in errλdist with U = 0, L = 1 and
λ = 1, in our proof below.

Proof overview. We first show, by the construction of the distributions under consideration in D, the
sample error and the generalization error minimizing metrics over any D ∈ D belong to a restricted
class of weighting matrices (Eq. 5). We then make a second simplification by noting that finding
these (sample- and generalization-) error minimizing metrics (in the restricted class) is equivalent
to solving a binary classification problem (Eq. 6). This reduction to binary classification enables us
to use VC-style lower bounding techniques to give a lower bound on the sample complexity. We
now fill in the details.

Consider a subset of weighting metricsM0-1 that map points in ∆D to exactly one of two possible
points that are (squared) distance at least 1 apart, that is,

M0-1 := {M |M ∈M,∃z0, z1 ∈ RD,∀x ∈ ∆D,

Mx ∈ {z0, z1} and ‖z0 − z1‖2 ≥ 1}.

Now pick any D ∈ D, and let Sm := (x1, y1), . . . , (xm, ym) be an i.i.d. sample of size m from D,
and denote the corresponding paired sample as Spair

m . Observe that both the sample-based and the
distribution-based error minimizing weighting metric fromM on D also belongs toM0-1. That is,
(c.f. Lemma 10 and our choice of U , L and λ)

argminM∈M errλdist(M,D) ∈M0-1

argminM∈M errλdist(M,Spair
m ) ∈M0-1. (5)

A reduction to binary classification on product space. For each M ∈ M0-1, we associate a
classifier fM : (∆D × ∆D) → {0, 1} defined as (xi, xj) 7→ 1[Mxi = Mxj ]. Now, consider the
probability measureP induced by the random variable (X, Y ), where X := (x, x′), Y := 1[y = y′],
s.t. ((x, y), (x′, y′)) ∼

(
D |(∆D×{0,1}) ×D |(∆D×{0,1})

)
. It is easy to check that for all M ∈M0-1

errλdist(M,D) = E(X,Y )∼P
[
1[fM (X) 6= Y ]

]
errλdist(M,Spair

m ) =
1

|Spair
m |

∑
((x,y),(x′,y′))∈Spair

m

1
[
fM ((x, x′)) 6= 1[y = y′]

]
. (6)

Define

η(X) := PY∼P|Y |X [Y = 1|X]

= P(y,y′)∼(D×D)|(y,y′)|(x,x′) [y = y′|x, x′]

=

{
1
2 + α

2 if P(y|x) = P(y′|x′)
1
2 −

α
2 if P(y|x) 6= P(y′|x′)

. (7)

Observe that η(X) is the Bayes error rate at X for distribution P . Since, by construction ofM0-1,
the class {fM}M∈M0-1 contains a classifier that achieves the Bayes error rate, the optimal classifier

12



f∗ := argminfM E(X,Y )∼P 1[fM (X) 6= Y ] necessarily has f∗(X) = 1[η(X) > 1
2 ] (for all X).

Then, for any fM ,

E(X,Y )∼P
[
1[fM (X) 6= Y ]

]
− E(X,Y )∼P

[
1[f∗(X) 6= Y ]

]
= EX∼P|X

[
η(X)

(
1[f∗(X) = 1]− 1[fM (X) = 1]

)
+ (1− η(X))

(
1[f∗(X) = 0]− 1[fM (X) = 0]

)]
= EX∼P|X

[
(2η(X)− 1)

(
1[f∗(X) = 1]− 1[fM (X) = 1]

)]
= EX∼P|X

[
2|η(X)− 1/2| · 1[fM (X) 6= f∗(X)]

]
=

2α

(D + 1)2

∑
0≤i<j≤D

[
1[fM ((xi, xj)) 6= f∗((xi, xj))]

]
, (8)

where (i) the second to last equality is by noting that f∗(X) 6= 1 ⇐⇒ η(X) ≤ 1/2, and (ii)
the last equality is by noting Eq. (7), fM ((xi, xi)) = f∗((xi, xi)) = 1 for all i and f((xi, xj)) =
f((xj , xi)) for all f . For notational simplicity, we shall define Xi,j := (xi, xj).

Now, for a given sample Sm, let N(Sm) := (Ni)i (for all 0 ≤ i ≤ D), where Ni is the number of
occurrences of the point xi in Sm. Then for any fM ,

ESm

[
1

(D + 1)2

∑
i<j

1[fM (Xi,j) 6= f∗(Xi,j)]

]

=
1

(D + 1)2

∑
i<j

PSm [fM (Xi,j) 6= f∗(Xi,j)]

=
1

(D + 1)2

∑
i<j

∑
N∈ND+1

PSm [fM (Xi,j) 6= f∗(Xi,j)|N(Sm) = N ] ·P[N(Sm) = N ]

=
1

(D + 1)2

∑
N∈ND+1

P[N(Sm) = N ] ·
∑
i<j

PSm [fM (Xi,j) 6= f∗(Xi,j)|Ni, Nj ].

For any algorithm A that takes the sample Sm as an input and returns a metric M that minimizes
the empirical error, we have

ESm

[
1

(D + 1)2

∑
i<j

1[fA(Sm)(Xi,j) 6= f∗(Xi,j)]

]

=
1

(D + 1)2

∑
N∈ND+1

P[N(Sm) = N ] ·
∑
i<j

PSm [fA(Sm)(Xi,j) 6= f∗(Xi,j)|Ni, Nj ]

≥ 1

(D + 1)2

∑
N∈ND+1

P[N(Sm) = N ] ·
∑
i<j

1

4

(
1−

√√√√1− exp

(
−(max{Ni, Nj}+ 1)α2

1− α2

))

≥ 1

4

D

D + 1

(
1−

√√√√1− exp

(
−(m/(D + 1) + 1)α2

1− α2

))

≥ 1

8

(
1−

√√√√1− exp

(
−(m/(D + 1) + 1)α2

1− α2

))
,

where (i) the first inequality is by applying Lemma 11, (ii) the second inequality is by assuming
WLOG Ni ≥ Nj , and noting that the expression above is convex in Ni so one can apply Jensen’s
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inequality and by observing that E[Ni] = m/(D + 1) and that there are total D(D + 1) summands
for i < j, and (iii) the last inequality is by noting that D ≥ 1. Now, let B denote the r.h.s. quantity
above. Then by recalling that for any [0, 1]-valued random variable Z, P(Z > γ) > EZ− γ (for all
0 < γ < 1), we have

PSm

[ 1

(D + 1)2

∑
i<j

1
[
fA(Sm)((xi, xj)) 6= f∗((xi, xj))

]
> γB

]
> (1− γ)B.

Or equivalently, by combining Eqs. (5), (6) and (8), we have

ED∼unif(D)PSm∼D

[
errλdist(A(Sm),D)− errλdist(M

∗
D,D) > 2αγB

]
> (1− γ)B,

where M∗D := argminM∈M errλdist(M,D) and A(Sm) is any metric returned by empirical error
minimizing algorithm. Now, if (cond. 1) B ≥ δ/1− γ and (cond. 2) ε ≤ 2γαB hold, it follows that
for some D ∈ D

PSm∼D

[
errλdist(A(Sm),D)− errλdist(M

∗
D,D) > ε

]
> δ. (9)

To satisfy cond. 1 & 2, we shall select γ = 1− 16δ. Then cond. 1 follows if

m ≤ (D + 1)

(
1− α2

α2
ln(4/3)− 1

)
.

Choosing parameter α = 8ε/γ (and by noting B ≥ 1/16 by cond. 1 for choice of γ and m), cond.
2 is satisfied as well. Hence,

m ≤ (D + 1)

(
(1− 16δ)2 − (8ε)2

64ε2
ln(4/3)− 1

)

implies Eq. (9). Moreover, if 0 < ε, δ < 1/64 then m ≤ (D+1)
512ε2 would suffice.

Definition 1 Define D + 1 vectors ∆D := {v0, . . . , vD}, with each vi ∈ RD as

v0,j := −1/2 for 1 ≤ j ≤ D

vi,j :=

{
(D−1)

√
D+1+1

2D if i = j

1−
√
D+1)

2D otherwise
for 1 ≤ i, j ≤ D

Fact 9 (properties of vertices of a regular D-simplex) Let ∆D = {v0, . . . , vD} be a set of D+ 1

vectors in RD as per Definition 1. Then, ∆D defines vertices of a regular D-simplex circumscribed
in a (D − 1)-sphere of radius

√
D/2, with

(i) ‖vi‖2 = D/4 (for all i), and

(ii) ‖vi − vj‖2 = (D + 1)/2 (for i 6= j).

Moreover, for any non-empty bi-partition of ∆D into ∆
(1)
D and ∆

(2)
D with |∆(1)

D | = k and |∆(2)
D | =

D + 1 − k, define a(1) and a(2) the means (centroids) of the points in ∆
(1)
D and ∆

(2)
D respectively.

Then, we also have

(i) (a(1) − a(2)) · (a(i) − vj) = 0 (for i ∈ {1, 2}, and vj ∈ ∆
(i)
D ).
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(ii) ‖a(1) − a(2)‖2 = (D+1)2

4k(D+1−k) ≥ 1, for 1 ≤ k ≤ D.

Lemma 10 Let ∆D be a set of D + 1 points {X0, . . . , XD} in RD as per Definition 1, and let D
be an arbitrary distribution over ∆D × {0, 1}. Define the following quantities:

• Pi := 1[PD[(Xi, 1)] > 1/2] (for 0 ≤ i ≤ D).

• Π := {π : ∆D → RD} as the collection of all functions that map points in ∆D to arbitrary
points in RD.

• f((x, y), (x′, y′);π) :=

{
min{1, ‖π(x)− π(x′)‖2} if y = y′

min{1, [1− ‖π(x)− π(x′)‖2]+} if y 6= y′
as the pairwise

loss function with respect to the mapping function π ∈ Π.

• E(π) := E(x,y),(x′,y′)∼D×D[f((x, y), (x′, y′);π)] as the average loss induced by a map-
ping π, and E∗ := infπ∈Π E(π) as the minimum possible achievable error.

Then, for any π̄ ∈ Π such that

(i) π̄(Xi) = π̄(Xj), if Pi = Pj

(ii) ‖π̄(Xi)− π̄(Xj)‖2 ≥ 1, if Pi 6= Pj ,

we have that E(π̄) = E∗. Moreover, define Ā as

• Ā := A1−A0

‖A1−A0‖ , where A0 := mean(Xi) such that Pi = 0, and A1 := mean(Xi) such that
Pi = 1 (if exists at least one Pi = 0 and at least one Pi = 1).

• Ā := 0, i.e. the zero vector in RD (otherwise).

And let M be a D ×D matrix defined as

M := ĀĀ
T

.

Then, we have the following:

(i) either M is identically the zero matrix (in the case when Ā = 0), or the maximum singular
value of M , σmax(M) = 1.

(ii) the linear map πM : x 7→Mx satisfies conditions (i) and (ii) above, and thus E(πM ) = E∗.

Proof. The proof follows from the geometric properties of the vertices of a regular simplex ∆D and
Fact 9.

Lemma 11 Given two random variables α1 and α2, each uniformly distributed on {α−, α+} inde-
pendently, where α− = 1/2− ε/2 and α+ = 1/2 + ε/2 with 0 < ε < 1. Suppose that ξ1

1 , . . . , ξ
1
m1

and ξ2
1 , . . . , ξ

2
m2

are two i.i.d. sequences of {0, 1}-valued random variables with P(ξ1
i = 1) = α1

and P(ξ2
i = 1) = α2 for all i. Then, for any likelihood maximizing function f from {0, 1}N to

{α−, α+} that estimates the bias α1 and α2 from the samples,

P
[(
f(ξ1

1 , . . . , ξ
1
m1

) 6= α1 and f(ξ2
1 , . . . , ξ

2
m2

) = α2

)
,

or
(
f(ξ1

1 , . . . , ξ
1
m1

) = α1 and f(ξ2
1 , . . . , ξ

2
m2

) 6= α2

)]
>

1

4

(
1−

√
1− exp

(−2dmax{m1,m2}/2eε2
1− ε2

))
.
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Proof. Note that

P
[(
f(ξ1

1 , . . . , ξ
1
m1

) 6= α1 and f(ξ2
1 , . . . , ξ

2
m2

) = α2

)
or
(
f(ξ1

1 , . . . , ξ
1
m1

) = α1 and f(ξ2
1 , . . . , ξ

2
m2

) 6= α2

)]
= P[f(ξ1

1 , . . . , ξ
1
m1

) 6= α1] ·P[f(ξ2
1 , . . . , ξ

2
m2

) = α2] + P[f(ξ1
1 , . . . , ξ

1
m1

) = α1] ·P[f(ξ2
1 , . . . , ξ

2
m2

) 6= α2]

≥ 1

2
P
[
f(ξ1

1 , . . . , ξ
1
m1

) 6= α1

]
+

1

2
P
[
f(ξ2

1 , . . . , ξ
2
m2

) 6= α2

]
>

1

4

(
1−

√√√√1− exp

(
−2
⌈

max{m1,m2}/2
⌉
ε2

1− ε2

) )
,

where the first inequality is by noting that a likelihood maximizing f will select the correct bias
better than random (which has probability 1/2), and the second inequality is by applying Lemma
12.

Lemma 12 (Lemma 5.1 of [9]) Suppose that α is a random variable uniformly distributed on
{α−, α+}, where α− = 1/2− ε/2 and α+ = 1/2 + ε/2, with 0 < ε < 1. Suppose that ξ1, . . . , ξm
are i.i.d. {0, 1}-valued random variables with P(ξi = 1) = α for all i. Let f be any function from
{0, 1}m to {α−, α+}. Then

P
[
f(ξ1, . . . , ξm) 6= α

]
>

1

4

(
1−

√
1− exp

(−2dm/2eε2
1− ε2

))
.

A.3 Proof of Theorem 3

For any M ∈ M define real-valued hypothesis class on domain X as HM := {x 7→ h(Mx) : h ∈
H} and define

F := {x 7→ h(Mx) : M ∈M, h ∈ H} =
⋃
M

HM .

Observe that a uniform convergence of errors induced by the functions in F implies convergence of
the class of weighted matrices as well.

Now for any domain X , real-valued hypothesis class G ⊂ [0, 1]X , margin γ > 0, and a sample
S ⊂ X , define

covγ(G, S) :=

{
C ⊂ G

∣∣∣ ∀g ∈ G,∃g′ ∈ C,
maxs∈S |g(s)− g′(s)| ≤ γ

}
as the set of γ-covers of S by G. Let γ-covering number of G for any integer m > 0 be defined as

N∞(γ,G,m) := max
S⊂X:|S|=m

min
C∈covγ(G,S)

|C|,

with the minimizing cover C called as the minimizing (γ,m)-cover of G

Now, for the given γ, we will first estimate the γ-covering number of F , that is, N∞(γ,F ,m).

For any M ∈ M, let HM be the minimizing (γ/2,m)-cover of HM . Note that |HM | =
N∞(γ/2,HM ,m) ≤ N∞(γ/2,H,m) (because MX ⊂ X).

Now letMε be an ε-spectral cover ofM (that is, for every M ∈ M, exists M ′ ∈ Mε such that
σmax(M −M ′) ≤ ε), and define

F̄ε := {x 7→ h(Mx) : M ∈Mε, h ∈ HM}.
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Note that |F̄ε| ≤ |Mε||HI | ≤ N∞(γ/2,H,m)(1 + 2D/ε)D
2

(c.f. Lemma 13). Observe that F̄ε
is a (γ/2 + Bλε)-cover of F , since (i) for any f ∈ F (formed by combining, say, M0 ∈ M and
h0 ∈ H), exists f̄ ∈ F̄ε, namely the f̄ formed by M̄0 such that σmax(M0 − M̄0) ≤ ε, and (ii)
h̄0 ∈ HM̄0

such that |h0(M̄0x)− h̄0(M̄0x)| ≤ γ/2 (for all x ∈ X). So, (for any x ∈ X)

|f(x)− f̄(x)| = |h0(M0x)− h̄0(M̄0x)|
≤ |h0(M0x)− h0(M̄0x)|

+|h0(M̄0x)− h̄0(M̄0x)|
≤ λ‖M0x− M̄0x‖+ γ/2

≤ λσmax(M0 − M̄0)‖x‖+ γ/2

≤ λεB + γ/2.

So, if we pick ε = min{ 1
2λB ,

γ
2 }, it follows that

N∞(γ,F ,m) ≤ |F̄ε| ≤ N∞(γ/2,H,m)(1 + 2D/ε)D
2

.

By noting Lemmas 14 and 15, it follows that

PSm∼D

[
∃f ∈ F : err(f) ≥ errγ(f, Sm) + α

]
≤ 4
(

1 +
2D

ε

)D2(128m

γ2

)Fatγ/16(H) ln
(

32em
Fatγ/16(H)γ

)
e−α

2m/8.

The lemma follows by bounding this failure probability with at most δ.

Lemma 13 (ε-spectral coverings of D ×D matrices) LetM := {M |M ∈ RD×D, σmax(M) =
1} be the set of matrices with unit spectral norm. DefineMε as the ε-cover ofM, that is, for every
M ∈M, there exists M ′ ∈Mε such that σmax(M −M ′) ≤ ε. Then for all ε > 0, there existsMε

such that |Mε| ≤
(
1 + 2D

ε

)D2

.

Proof. Fix any ε > 0 and letNε/D be a minimal size (ε/D)-cover of Euclidean unit ball BD in RD.
That is, for any v ∈ BD, there exists v′ ∈ Nε/D such that ‖v − v′‖ ≤ ε/D. Using standard volume

arguments (see e.g. proof of Lemma 5.2 of [24]), we know that |Nε/D| ≤
(
1 + 2D

ε

)D
. Define

Mε :=
{
M ′

∣∣M ′ = [v′1 · · · v′D] ∈ RD×D, v′i ∈ Nε/D
}
.

ThenMε constitutes as an ε-cover ofM, since for any M = [v1 · · · vD] ∈ M there exists M ′ =
[v′1 · · · v′D] ∈Mε, in particular M ′ such that ‖vi − v′i‖ ≤ ε/D (for all i). Then

σmax(M −M ′) ≤ ‖M −M ′‖
F

=
∑
i

‖vi − v′i‖ ≤ ε.

Without loss of generality we can assume that each M ′ ∈ Mε, σmax(M ′) = 1. Moreover, by

construction, |Mε| ≤
(
1 + 2D

ε

)D2

.

Lemma 14 (extension of Theorem 12.8 of [9]) Let H be a set of real functions from a domain X
to the interval [0, 1]. Let γ > 0. Then for all m ≥ 1,

N∞(γ,H,m) < c0(4m/γ2)
Fatγ/4(H) ln 4em

Fatγ/4(H)γ .

for some universal constant c0.
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Proof. Theorem 12.8 of [9] asserts this for m ≥ Fatγ/4(H) ≥ 1 with c0 = 2. Now, if 1 ≤ m <

Fatγ/4(H), for some universal constant c′, we have N∞(γ,H,m) ≤ (c′/γ)m ≤ (c′/γ)Fatγ/4(H).

Lemma 15 (Theorem 10.1 of [9]) Suppose that H is a set of real-valued functions defined on
domain X . Let D be any probability distribution on Z = X × {0, 1}, 0 ≤ ε ≤ 1, real γ > 0 and
integer m ≥ 1. Then,

PSm∼D

[
∃h ∈ H : err(h) ≥ errγ(h, Sm) + ε

]
≤ 2N∞

(γ
2
,H, 2m

)
e−ε

2m/8,

where Sm is an i.i.d. sample of size m from D.

A.4 Proof of Theorem 4

For any fixed 0 < γ < 1/8 and the given bounded class of distributions with bound B ≥ 1,
consider a (1/B)-bi-Lipschitz base hypothesis class H that maps hypothesis from the domain X to
[1/2− 4γ, 1/2 + 4γ], and define

F := {x 7→ h(Mx) : M ∈M, h ∈ H}.

Note that finding M that minimizes errhypoth is equivalent to finding f that minimizes error on F .
Using Lemma 19, we have for any 0 < γ < 1/2, the sample complexity of F is (for all 0 < ε, δ <
1/64)

m ≥ Fat2γ(π4γ(F))

320ε2
, (10)

where π4γ(F) is the (4γ)-squashed function class of F (see Definition 2 below). We lower bound
Fat2γ(π4γ(F)) in terms of fat-shattering dimension ofH to yield the lemma.

To this end we shall first define the (γ,m)-covering and packing number of a generic real-valued
hypothesis class G. For any domain X , real-valued hypothesis class G ⊂ [0, 1]X , margin γ > 0, and
a sample S ⊂ X , define

covγ(G, S) :=

{
C ⊂ G

∣∣∣ ∀g ∈ G,∃g′ ∈ C,
maxs∈S |g(s)− g′(s)| ≤ γ

}
,

pakγ(G, S) :=

{
P ⊂ G

∣∣∣ ∀g 6= g′ ∈ P,
maxs∈S |g(s)− g′(s)| ≥ γ

}
as the set of γ-covers (resp. γ-packings) of S by G. Let γ-covering number (resp. γ-packing number)
of G for any integer m > 0 be defined as

N∞(γ,G,m) := max
S⊂X:|S|=m

min
C∈covγ(G,S)

|C|,

P∞(γ,G,m) := max
S⊂X:|S|=m

max
P∈pakγ(G,S)

|P |

with the minimizing cover C (resp. maximizing packing P ) called as the minimizing (γ,m)-cover
(resp. maximizing (γ,m)-packing) of G.

With these definitions, we have the following (for some universal constant c0).

c0

( m

16γ2

)Fat2γ(π4γ(F)) ln(em/2γ)

≥ N∞(8γ, π4γ(F),m) [Lemma 14]

≥ P∞(16γ, π4γ(F),m) [Lemma 17]
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≥
( 1

32γ

)D2

P∞(48γ, π4γ(H),m) [see (*) below]

=
( 1

32γ

)D2

P∞(48γ,H,m) [by the choice ofH]

≥
( 1

32γ

)D2

N∞(48γ,H,m) [Lemma 17]

≥
( 1

32γ

)D2

eFat768γ(H)/8. [Lemma 18] (11)

(*) We show that P∞(16γ, π4γ(F),m) ≥ (1/32γ)D
2P∞(48γ, π4γ(H),m), by exhibiting a set

S ⊂ π4γ(F) of size (1/32γ)D
2P∞(48γ, π4γ(H),m) that is a (16γ)-packing of π4γ(F).

Let π4γ(H48γ) ⊂ π4γ(H) be a maximal (32γ)-packing of π4γ(H) (that is, a maximal set such that
for all distinct (π4γ ◦h), (π4γ ◦h′) ∈ π4γ(H48γ), exists x ∈ X such that |π4γ(h(x))−π4γ(h′(x))| ≥
48γ). Fix ε (exact value determined later), and define

Sε :=

{
x 7→ (π4γ ◦ h)(Mx)

∣∣∣ (π4γ ◦ h) ∈ π4γ(H48γ),
M ∈Mε

}
,

whereMε is a ε-spectral net ofM, that is, for all M ∈ M, exists M ′ ∈ Mε such that σmax(M −
M ′) ≤ ε, and for all distinct M ′,M ′′ ∈Mε, σmax(M ′ −M ′′) ≥ ε/2.

Then for any two distinct f, f ′ ∈ Sε, such that f(x) = (π4γ ◦h)(Mx) and f ′(x) = (π4γ ◦h′)(M ′x),
we have

• (case 1) h and h′ are distinct. In this case, there exists x ∈ X , s.t.

|f(x)− f ′(x)| =|π4γ(h(Mx))− π4γ(h′(M ′x))|
≥ |π4γ(h(Mx))− π4γ(h′(Mx))|
− |π4γ(h′(Mx))− π4γ(h′(M ′x))|

≥ 48γ − (1/B)σmax(M −M ′)‖x‖
≥ 48γ − (1/B)εB = 48γ − ε.

• (case 2) h, h′ same but M and M ′ distinct. In this case, there exists x (with ‖x‖ = 1) s.t.

|f(x)− f ′(x)| = |π4γ(h(Mx))− π4γ(h(M ′x))|
= |h(Mx)− h(M ′x)|
≥ B‖(M −M ′)x‖
≥ B · min

M 6=M ′∈Mε

σmax(M −M ′)

≥ B(ε/2).

Thus, by setting ε = 32γ, distinct classifiers f, f ′ ∈ S32γ are at least 16γ apart (since B ≥ 1).
Hence S32γ forms a (16γ)-packing of π4γ(F). Therefore, the packing number

P∞(16γ, π4γ(F),m) ≥ |S32γ | = |M32γ ||H48γ | ≥ (1/32γ)D
2

P∞(48γ, π4γ(H),m).

Thus, from Eq. (11), it follows that

Fat2γ(π4γ(F)) ≥ Ω
(D2 ln(1/γ) + Fat768γ(H)

ln(m/γ2) ln(m/γ)

)
.

Combining this with Eq. (10), the lemma follows.
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Lemma 16 (ε-spectral packings of D ×D matrices) LetM := {M | M ∈ RD×D, σmax(M) =
1} be the set of matrices with unit spectral norm. DefineMε ⊂ M as the ε-packing ofM, that is,
for every distinct M,M ′ ∈Mε, σmax(M −M ′) ≥ ε. Then for all ε > 0, there existsMε such that

|Mε| ≥
(

1
2ε

)D2

.

Proof. Fix any ε > 0 and let Pε be a maximal size ε-packing of Euclidean unit ball BD in RD.
That is, for all distinct v, v′ ∈ BD, ‖v − v′‖ ≥ ε. Using standard volume arguments (see e.g. proof
of Lemma 5.2 of [24]), we know that |Pε| ≥

(
1
2ε

)D
. Define

Mε :=
{
M ′

∣∣M ′ = [v′1 · · · v′D] ∈ RD×D, v′i ∈ Pε
}
.

Then Mε constitutes as an ε-packing of M, since for any distinct M,M ′ ∈ Mε such that M =
[v1 · · · vD] and M ′ = [v′1 · · · v′D], we have

σmax(M −M ′) ≥ max
i
‖vi − v′i‖ ≥ ε.

Without loss of generality we can assume that each M ∈ Mε, σmax(M) = 1. Moreover, by

construction, |Mε| ≥
(

1
2ε

)D2

.

Lemma 17 (follows from Theorem 12.1 of [9]) For any real valued hypothesis classH into [0, 1],
all m ≥ 1, and 0 < γ < 1/2,

P∞(2γ,H,m) ≤ N∞(γ,H,m) ≤ P∞(γ,H,m).

Lemma 18 (Theorem 12.10 of [9]) LetH be a set of real functions from a domainX to the interval
[0, 1]. Let γ > 0. Then for m ≥ Fat16γ(H),

N∞(γ,H,m) ≥ eFat16γ(H)/8.

Lemma 19 (Theorem 13.5 of [9]) Suppose that H is a class of real valued functions that is closed
under addition of constants, that is,

h ∈ H =⇒ h′ ∈ H, where h′ : x 7→ h(x) + c for all c.

such that each h ∈ H maps into the interval [0, 1] after applying an appropriate threshold. Pick any
0 < γ < 1/2. Then for any classification learning algorithm A for H, and for all 0 < ε, δ < 1/64,
there exists a distribution D such that if m ≤ d

320ε2 , then

PSm∼D[err(h∗,D) > errγ(A(Sm),D) + ε] > δ

where d := Fat2γ(π4γ(H)) ≥ 1 is the fat-shattering dimension of π4γ(H)—the (4γ)-squashed
function class ofH, see Definition 2 below—at margin 2γ.

Definition 2 (squashing function) For any 0 < γ < 1/2, define the squashing function πγ : R →
[1/2− γ, 1/2 + γ] as

πγ(α) =

{
1/2 + γ if α ≥ 1/2 + γ
1/2− γ if α ≤ 1/2− γ
α otherwise

.

Moreover, for a collection F of functions into R, define πγ(F ) := {πγ ◦ f | f ∈ F}.
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A.5 Proof of Lemma 5

Let P be the probability measure induced by the random variable (X, Y ), where X := (x, x′),
Y := 1[y = y′], st. ((x, y), (x′, y′)) ∼ (D×D).

Define function class

F :=

{
fM : X 7→ ‖M(x− x′)‖2

∣∣∣∣∣ M ∈M
X = (x, x′) ∈ (X ×X)

}
,

Following the steps of proof of Theorem 1, we can conclude that the Rademacher complexity of F
is bounded. In particular,

Rm(F) ≤ 4B2

√
supM∈M ‖MTM‖2

F

m
.

The result follows by noting that φ is λ-Lipschitz in the first argument and by applying Lemma 8.

A.6 Proof of Lemma 6

Consider the function class

F :=
{
fv,M : x 7→ v ·Mx

∣∣ ‖v‖1 ≤ 1,M ∈M
}
,

and define the composition class

Fσ :=

{
x 7→

K∑
i=1

wiσ
γ(fi(x))

∣∣∣ ‖wi‖1 ≤ 1,
f1, . . . , fK ∈ F

}
.

Then, first note that the Gaussian complexity of F (with respect to the distribution D) is bounded,
since (let g1, . . . , gm denote independent standard Gaussian random variables)

Gm(F ,D) := Exi∼D |X
gi,i∈[m]

[
sup

fv,M∈F

1

m

m∑
i=1

gifv,M (xi)

]

=
1

m
Exi∼D |X
gi,i∈[m]

[
sup
M∈M
‖v‖1≤1

v ·
m∑
i=1

gi(Mxi)

]

=
1

m
Exi∼D |X
gi,i∈[m]

[
max
j

sup
M∈M

m∑
i=1

gi(Mxi)j

]

≤ 1

m
Exi∼D |X
gi,i∈[m]

max
j∈[D]

[
m∑
i=1

gi sup
M∈M

∣∣(Mxi)j
∣∣]

≤ c ln
1
2 (D)

m
Exi∼DX max

j,j′∈[D]

(
Egi

[
m∑
i=1

gi

(
sup
M∈M

∣∣(Mxi)j
∣∣− sup

M ′∈M

∣∣(M ′xi)j′ ∣∣)]2) 1
2

=
c ln

1
2 (D)

m
Exi∼DX max

j,j′∈[D]

(
m∑
i=1

[
sup
M∈M

∣∣(Mxi)j
∣∣− sup

M ′∈M

∣∣(M ′xi)j′∣∣]2)
1
2

≤ c′B
√
d lnD

m
,
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where (i) second to last inequality is by applying Lemma 20, (ii) c, c′ are absolute constants,
(iii) d := supM∈M ‖MTM‖2

F
. Note that bounding the Gaussian complexity also bounds the

Rademacher complexity by Lemma 21.

Finally by noting that Fσ is a γ-Lipschitz composition class of F and φλ is a classification based
loss function that is λ-Lipschitz in the first argument, we can apply Lemma 8 yielding the desired
result.

Lemma 20 (Lemma 20 of [23]) Let Z1, . . . , ZD be random variables such that each Zj =∑m
i=1 aijgi, where each gi is independent N(0, 1) random variables. Then there is an absolute

constant c such that

Egi max
j
Zj ≤ c ln

1
2 (D) max

j,j′

√
Egi(Zj − Zj′)2.

Lemma 21 (Lemma 4 of [23]) There are absolute constants c and C such that for every class F
and every integer m

cRm(F ,D) ≤ Gm(F ,D) ≤ C ln(m)Rm(F ,D),

whereR and G are Rademacher and Gaussian complexities of a function class F with respect to the
distribution D respectively.

A.7 Proof of Theorem 7

The conclusion of Eq. (3) is immediate by dividing the given failure probability δ across the
sequence M1,M2, · · · such that δµd failure probability is associated with class Md, then apply
Lemma 5 (for distance based metric learning) or Lemma 6 (for classifier based metric learning) to
each classMd individually, and finally combining the individual deviations together with a union
bound.

For the second part, for any M ∈ M define dM and ΛM as per the lemma statement. Then with
probability at least 1− δ

errλ(M reg
m ,D)− errλ(M∗,D) ≤ errλ(M reg

m , Sm) + d
M

reg
m

Λ
M

reg
m
− errλ(M∗,D)

≤ errλ(M∗, Sm) + d
M∗Λ

M∗ − errλ(M∗,D)

≤ O(d
M∗Λ

M∗ ) = O(ε),

where (i) the first inequality is by applying Eq. (3) on weighting metric M reg
m (with failure proba-

bility set to δ/2), (ii) the second inequality is by noting that M reg
m is the (regularized) sample error

minimizer as per the lemma statement, (iii) the third inequality is by applying Eq. (3) on weighting
metric M∗ (with failure probability set to δ/2), and (iv) the last equality by noting the definitions of
ΛM∗ and our choice of m.

B Appendix: Creating Correlated-Synthetic-Noise Augmented Dataset

We first sample a covariance matrix ΣD from unit-scale Wishart distribution (that is, letA be aD×D
Gaussian random matrix with entry Aij ∼ N(0, 1) drawn i.i.d., and set ΣD := ATA). Then each
sample xi from the dataset is appended independently by drawing noise vector xσ ∼ N(0,ΣD).

We varied the ambient noise dimension D between 0 and 500 dimensions and added it to the UCI
datasets, creating the noise-augmented datasets.
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