

Multiple Instance Learning with Manifold Bags

Serge Belongie¹ Piotr Dollar² Nakul Verma¹ Boris Babenko¹

¹ Computer Science and Engineering University of California, San Diego {bbabenko,naverma,sjb}@cs.ucsd.edu

² Computer Science California Institute of Technology {pdollar}@caltech.edu

ABSTRACT

- Multiple Instance Learning is a relaxed form of supervised learning
- » Learner receives labeled **bags** rather than labeled instances
- » Reduces burden of collecting labeled data
- Existing analysis assumes bags have a finite size
- For many applications, bags are modeled better as manifolds in feature space; thus existing analysis is not appropriate
- In this setting we show:
- » geometric structure of manifold bags affects PAC learnability
- » a MIL algorithm that learns from finite sized bags can be trained with manifold bags
- » a simple heuristic algorithm for reducing memory requirements

MULTIPLE INSTANCE LEARNING (MIL)

DEFINITION

MIL: relaxed form of supervised learning

- » (set of examples, label) pairs provided
- » MIL lingo: set of examples = bag of instances
- » Bag labeled positive if at least one instance in bag is positive

Bag 1: positive ★ Bag 2: positive **♯** Bag 3: negative ■ Negative instance □ Positive instance

EXISTING ANALYSIS

Data model (bottom up)

- » Draw r instances and their labels from fixed distribution $\mathcal{D}_{\mathcal{I}}$
- » Create bag from instances, determine its label (max of instance labels)
- » Return bag & bag label to learner
- Blum & Kalai (1998)
- » If: access to noise tolerant instance learner, instances drawn independently
- » Then: bag sample complexity **linear** in r

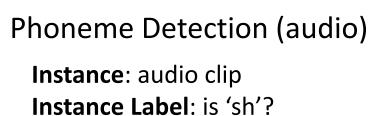
Sabato & Tishby (2009)

- » If: can minimize empirical error on bags
- » Then: bag sample complexity **logarithmic** in r

APPLICATIONS

Object Detection (images)

Instance: image patch **Instance Label**: is face? Bag: whole image Bag Label: contains face?

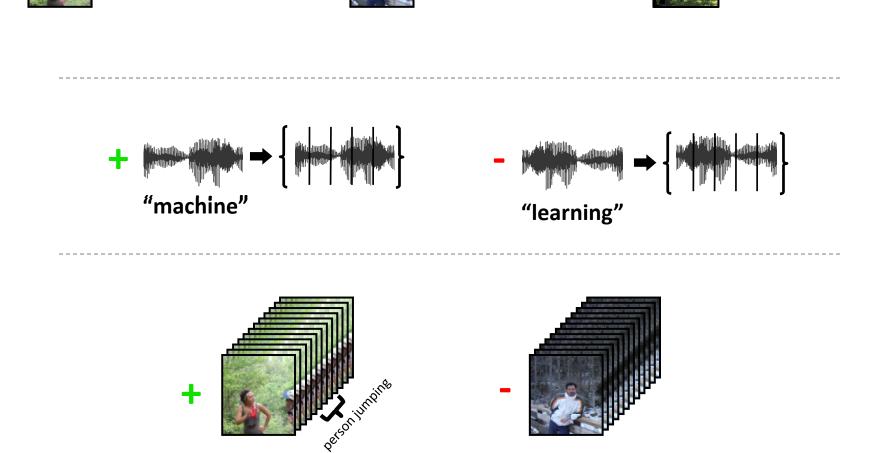


Bag Label: contains 'sh'?

Bag: whole audio

Bag: whole video

Event Detection (video) Instance: video clip **Instance Label**: is 'jump'?



OBSERVATIONS

Bag Label: contains 'jump'?

- Top down process: draw entire bag from a **bag distribution**, then get instances
- Instances of a bag lie on a manifold
- Potentially infinite number of instances per bag -- existing analysis inappropriate
- Expect sample complexity to scale with **manifold** parameters (curvature, dimension, volume, etc)

MANIFOLD BAGS

FORMULATION

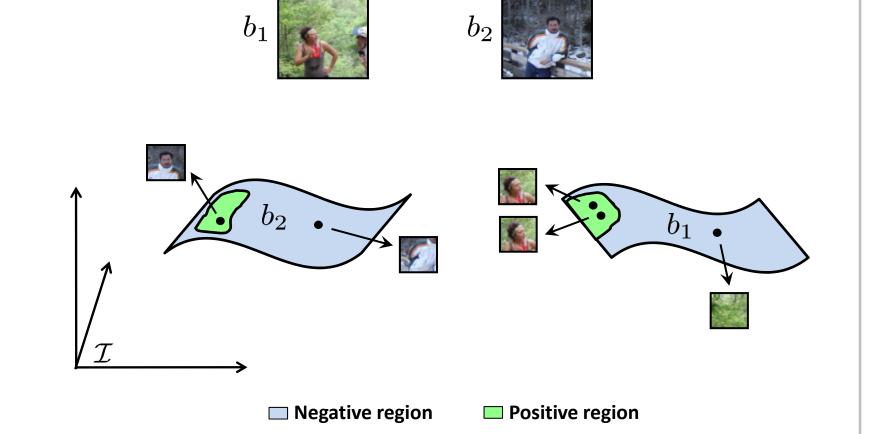
- Manifold bag b drawn from **bag** distribution $\mathcal{D}_{\mathcal{B}}$
- Instance hypotheses:

 $h \in \mathcal{H}, h: \mathcal{I} \to \{0, 1\}$

Corresponding bag hypotheses:

 $\bar{h}(b) \stackrel{\text{def}}{=} \max_{x \in b} h(x)$

 $\bar{h} \in \overline{\mathcal{H}}, \ \bar{h} : \mathcal{B} \to \{0, 1\}$

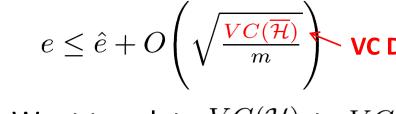


 $h \in \mathcal{H} \nearrow$

GENERALIZATION BOUNDS

VC DIMENSION

- A way of relating **empirical** error (\hat{e}) to **generalization** error (e)
- Standard bound:



VC Dimension of bag hypothesis class

- Want to relate $VC(\mathcal{H})$ to $VC(\overline{\mathcal{H}})$
 - $VC(\overline{\mathcal{H}}) \le VC(\mathcal{H})\log(r)$

• For finite sized bags (Sabato & Tishby 2009):

• Turns out $VC(\overline{\mathcal{H}})$ is unbounded even for arbitrarily smooth bags

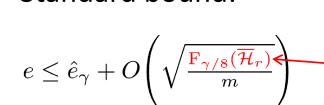
TAMING THE RICHNESS

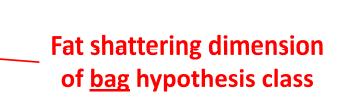
- Bag hypothesis class too powerful: for positive bag, need to only classify one instance as positive
- Infinitely many instances -> too much flexibility for bag hypothesis
- Would like to ensure a **non-negligible portion** of positive bags is labeled **positive**
- Solution:
- » Switch to real-valued hypothesis class $h_r \in \mathcal{H}_r : \mathcal{I} \to [0,1]$
- » h_r must be Lipschitz smooth w.r.t. \mathcal{I} » h_r must label bags with a **margin**

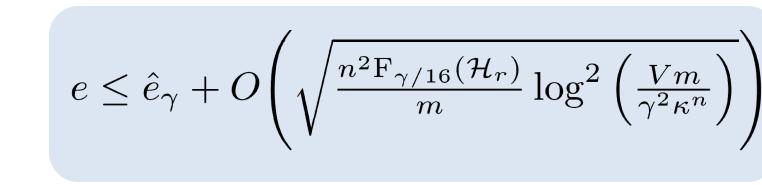
small positive $x \in b$ √ smooth → large positive

FAT SHATTERING DIMENSION

- Fat shattering dimension relates empirical error at **margin** γ to generalization error
- Standard bound:







- Unlike VC, we can relate $F_{\gamma}(\overline{\mathcal{H}}_r)$ to $F_{\gamma}(\mathcal{H}_r)$
- ullet Key quantities: empirical error at margin γ (\hat{e}_{γ}), number of training bags (m), manifold bag dimension (n), manifold bag volume (V), smoothness (κ)

QUERYING INSTANCES

- In practice, learner can only access small number of instances (ρ)
- ullet Same bound holds with increased failure probability δ

TAKE-HOME MESSAGE

- Increasing m reduces complexity term
- Increasing ρ reduces **failure probability**
- » Seems to contradict previous results (smaller bag size r is better)
- » Important difference between r and ρ !
- » If ρ is small, may only get negative instances from a positive bag
- Increasing m requires **extra labels**, increasing ρ does not

TRAINING WITH MANY INSTANCES

- Problem: want many instances/bag, but have computational limits
- Solution: Iterative Querying Heuristic (IQH)
- » Grab small number of instances/bag, run standard MIL algorithm
- » Query more instances from each bag, only keep the ones that get high score from current classifier

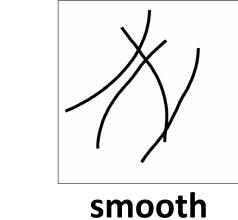
Iteration 2

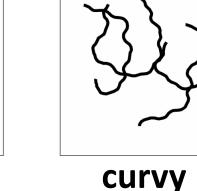
Iteration 3

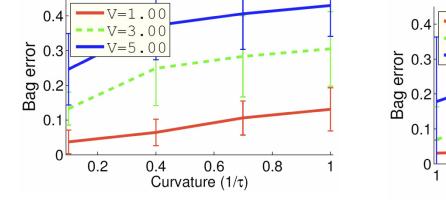
At each iteration, train with small # of instances

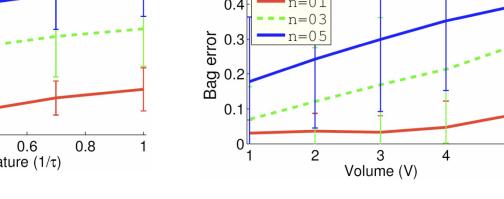
EXPERIMENTS

SYNTHETIC DATA





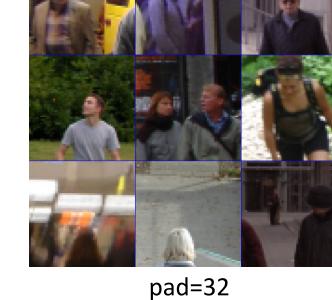


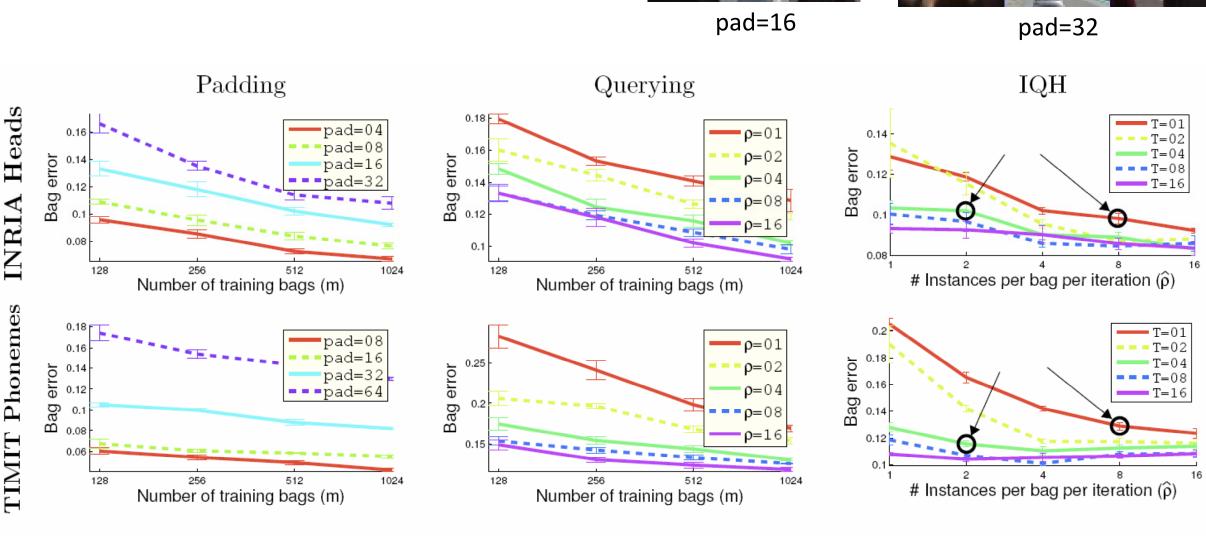


Error scales with curvature and volume

REAL DATA

- INRIA Heads (Dalal et al. '05)
- TIMIT Phonemes (Garofolo et al., '93)





 Error scales with number of training bags, volume, number of queried instances and number of IQH iterations.