
• Good accuracy on various subtrees of ImageNet datasets from
LSVRC challenge.

• Features: SIFT-based bag-of-words representation (provided),
vocabulary size 1000-dimensional, reduced to 250 with PCA.

• Our method (AggkNN-L), compared with regular kNN (baseline),
Non-linear SVM (NLSVM) (poly. kernel of deg. 9), Large Margin
Nearest Neighbor (LMNN), and Taxonomy Embedding (TaxEmb).
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Introduction Formulation Experimental results

• Associate a separate metric with each node of the taxonomy, and
distribute the burden of discriminating amongst categories.

• Information is shared between the metrics using the parent-child
relationships.

Advantage:
• Sharing helps to distribute the burden of category recognition: each

metric is mainly responsible for discriminating amongst the
categories associated with its siblings and children.

• Since each metric is responsible to discriminate amongst only a few
categories, the overall classification becomes easier!

• Using the hierarchy enables us do well on hierarchy specific tasks.

Key Idea 

• Performance of many classification algorithms relies heavily on
having a good notion of similarity or a metric on the input space.

• Learning good similarity metrics is especially hard for image
categorization, with hundreds of categories.

• Observation: categories in multiclass data are often part of a
underlying semantic taxonomy.

• Goal: to learn similarity metrics that leverage the class taxonomy to
yield good classification performance.

• Given a class taxonomy with T nodes, associate metrics
one with each node. We call them local metrics.

• Define the aggregate metrics as the combination of
the local metrics (from root to the node):

• We can thus define distance between any two examples x1 and x2
with respect to a metric Qt as

• Now, for an arbitrary example xq, we can measure its affinity to a
class y as its distance to the nearest neighbors in class y
(using metric Qy)

• In a probabilistic framework, we can define the probability of an
example x belonging to class y as:

• Now, given training samples:
we obtain a good set of  metrics                        by maximizing:  

subject to PSD constraint

• Optimization is jointly convex.

• Geometrically, the likelihood is maximized by: pulling together
the neighbors belonging to the same class, while pushing away
the neighbors from different class.

• The regularization reduces the complexity of the learned metrics.

• The optimization can be easily modified to incorporate context
sensitive loss.

Observations

Placing unseen categories in the taxonomy

Improved classification performance

• Given a taxonomy of 17 categories from Animals with Attribute
dataset (solid lines), we can place new categories (dashed lines) by
predicting the most likely parent.

• Green lines show correct placement, while red lines show
incorrect placement.

Visual similarity between 
example classes


