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Abstract

Categories in multi-class data are often part of an un-

derlying semantic taxonomy. Recent work in object clas-

sification has found interesting ways to use this taxonomy

structure to develop better recognition algorithms. Here we

propose a novel framework to learn similarity metrics us-

ing the class taxonomy. We show that a nearest neighbor

classifier using the learned metrics gets improved perfor-

mance over the best discriminative methods. Moreover, by

incorporating the taxonomy, our learned metrics can also

help in some taxonomy specific applications. We show that

the metrics can help determine the correct placement of a

new category that was not part of the original taxonomy,

and can provide effective classification amongst categories

local to specific subtrees of the taxonomy.

1. Introduction

The performance of many classification algorithms relies

heavily on having a good notion of similarity or a metric on

the input space. Consider, for instance, an object recogni-

tion task with Support Vector Machines (SVMs): the right

similarity kernel can significantly improve SVM’s classifi-

cation accuracy. Such similarity metrics can not only help in

classification but are also shown to be effective in retrieval

and embedding tasks [17, 11]. It thus comes as no surprise

that a considerable amount of work focuses on learning rep-

resentations that capture the necessary similarity informa-

tion in data [22, 20, 1].

For the particular task of image categorization, one also

has to deal with unique challenges specific to image data –

image datasets tend to have 10s to 100s and now even up to

1000s of object categories, making classification especially

hard. Computer vision practitioners are finding novel ways

to improve the classification performance on such data. One

fruitful line of work tries to exploit the inherent structure in

the object categories. It turns out that object categories are

often part of an underlying semantic taxonomy. Having ac-
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Figure 1. Learning similarity metrics in a hierarchy. Each node

t in the taxonomy is associated with its local metric Qt. These

local metrics are combined together (Qt) along the paths of the

taxonomy for effective object categorization.

cess to this taxonomy structure has been shown to benefit

both the accuracy as well as the scalability of learning algo-

rithms [15, 16, 10].

Our goal in this work is to enhance our learned similar-

ity metrics when the taxonomy structure in the categories is

known. We provide a probabilistic nearest-neighbor classi-

fication based framework for learning a set of hierarchical

metrics that reflects the underlying class taxonomy. We as-

sociate a separate metric with each node of the taxonomy.

The key to learning good metrics is to share the discriminat-

ing information among them. This is where the parent-child

links in the taxonomy help. We train the metrics in such a

way that the burden of discriminating between the various

categories is shared between a node and its parent (see Fig-

ure 1): the metric associated with the root node contains the

discrimination information among the categories associated

with each of its children, while the metrics associated with

the individual children contain discrimination information



about the categories belonging to their children.

We show that learning these metrics in this way not only

helps in representing our multi-category data such that a

simple nearest neighbor classification provides good results,

but also provides good results on more taxonomy specific

tasks such as finding the correct placement of an unseen

category in the taxonomy. In particular, we show that our

our methodology benefits in all the following learning tasks.

Improved classification accuracy. We show state-of-the-

art classification performance on several datasets where tax-

onomy information is available. We use various subtrees

of the ImageNet dataset [6] and show that a nearest neigh-

bor classifier using the learned metrics yields better perfor-

mance than the best SVMs and embedding methods avail-

able in the literature.

Correct placement of unseen categories. We show that

our learned metrics can also help determine the correct lo-

cation of a new category that was not part of the original

taxonomy. This is especially useful in augmenting large

taxonomies with new categories, where manually inserting

a node is cumbersome. Our method is straightforward, and

can suggest a likely set of candidate locations for placing

the new category. A human expert can then place the cate-

gory at the appropriate location, reducing the overall man-

ual effort.

Good locally consistent classification. Since we learn a hi-

erarchy of metrics, our metrics have the unique ability to not

only discriminate well amongst the given categories in the

taxonomy, but to also discriminate well among categories

in any subtree of the taxonomy. That is, in order to do well

just on the categories belonging to a subtree of the taxon-

omy, one does not have to re-train a special set of similarity

metrics on the subtree. The corresponding subset of metrics

learned from the global taxonomy would do just as well. In

that sense, our framework has an advantage of performing

well on a specific categorization task when all it knows is

the general taxonomy.

The rest of the paper is organized as follows. In the

next section we discuss the related work. We formulate our

framework in Section 3, giving specific instantiations that

are helpful for image categorization. We then provide de-

tailed experiments on the efficacy of our proposed model in

Section 4, and conclude in Section 5.

2. Related work

With a few notable exceptions, most works in the liter-

ature either focus on developing good classifiers for taxon-

omy data without learning a metric [4, 3, 15, 16, 10, 7],

or focus on developing good metrics without exploiting the

taxonomy structure [22, 8, 12, 9, 1, 18]. For instance, Hier-

archical SVM [4]—an example of the first kind—adapts the

basic SVM classifier to learn a linear hyperplane for each

category by accumulating contributions from each node

along the path from the root to a leaf, but does not yield a

metric directly. Neighborhood Component Analysis [8]—

an example of the second kind—adopts a probabilistic ap-

proach to learn a nearest neighbor respecting low dimen-

sional embedding, but is oblivious to the taxonomy struc-

ture. Our work explores how to combine the two paradigms

and benefit from their respective strengths.

Taxonomy Embedding [21] and Label Embedding Trees

[2] are two approaches that leverage the taxonomy struc-

ture while learning an embedding. Taxonomy Embedding

jointly learns a prototype for each category such that nearby

categories in the taxonomy have similar prototypes, while

learning a single linear embedding that maps the data points

close to their corresponding prototype. Label Tree Embed-

ding, a slightly different approach, tries to learn the taxon-

omy itself from the empirical confusion matrix of a one-

vs-rest classification to find a good embedding. Both these

approaches are rather restrictive as they commit to a single

metric. We, on the other hand, learn multiple metrics that

are essentially parameterized by the taxonomy. The way we

combine the metrics for the classification task make them

more expressive than a single linear metric.

Some works go beyond the traditional classification task

and demonstrate interesting applications using the taxon-

omy. Li et al. [14], for instance, learn a taxonomy from

images and the associated tag information to perform clas-

sification, annotation, and automatic hierarchical organiza-

tion of a photo collection. Deng et al. [5] use a taxonomy

to learn an image similarity function for improved retrieval.

Salakhutdinov et al. [19] show that learning in a hierar-

chy can improve recognition performance on classes with a

small number of training cases. Whereas, Zweig and Wein-

shall [23] train a recognition model on images for an object

category close to a unseen object in a hierarchy and show

improved accuracy for that new object given its correct lo-

cation in the hierarchy. Here we explore a slightly different

application where we find the correct placement of a related,

but previously unseen, category in a given taxonomy.

3. Distance metric learning for taxonomies

Given an underlying class taxonomy, we associate a sep-

arate metric with each node. The individual metrics serve

as local viewpoints for representing the data according to

the different nodes. Having local representations of the data

has two main advantages:

1. Having separate metrics for separate categories (leaf

nodes) can significantly improve the classification ac-

curacy compared to having just a single metric across

categories [22].

2. In a hierarchical setting, local representations make it

possible for the children to share the representation (or



the metric) of their parent. This sharing helps dis-

tribute the burden of category recognition in such a

way that a metric associated with a node is mainly re-

sponsible for discriminating among the categories as-

sociated with its siblings and children. Hence, each

metric is responsible to discriminate among only a few

categories, making the overall classification easier.

Here we suggest two sharing mechanisms through which

a metric associated with a parent can share information with

the metrics associated with its children: (i) distance metric

sharing, and (ii) transformation sharing.

Notation. For a given node t in the taxonomy, let pt de-

note its parent, and At denote the set of nodes in the path

from t to the root node (that is, the set of all its ancestors

including itself). The variables x and y shall represent the

D-dimensional feature vector and the corresponding class

label respectively. We assume that the class labels are asso-

ciated only with the leaf node categories in the taxonomy.

Distance metric sharing (DMS) model. In this model, we

associate a local distance metric Qt with each node, that is,

each Qt is a D ×D positive semidefinite (PSD) matrix. In

order to get a globally consistent node representation, these

local metrics are combined together with their ancestor rep-

resentations by simple aggregation. We define a node’s ag-

gregate metric as Qt :=
∑

i∈At
Qi.

Such a combination implies that a child’s aggregate dis-

tance metric can be written as the sum of its parent’s aggre-

gate metric and its own local metric, i.e. Qt = Qpt
+Qt.

As an example, in Figure 1 observe that nodes Owl and Pi-

geon have Bird as the parent. The corresponding metrics

Qowl = Qbird +Qowl and Qpigeon = Qbird +Qpigeon share the

parent’s metric Qbird.

Note that such kind of sharing is meaningful since one

can now define the distance with respect to a new test ex-

ample xt in a consistent way. Let xo and xp be examples

belonging to categories Owl and Pigeon respectively. Then

comparing the distances

ρ(xt,xo;Qowl) := (xt −xo)
T Qowl(xt −xo), and

ρ(xt,xp;Qpigeon) := (xt −xp)
T Qpigeon(xt −xp)

becomes a comparison in the respective local viewpoints

and in the shared metric Qbird at the parent level.

If one is interested in transforming the feature space,

one can factorize these metrics to obtain node specific low-

dimensional visualizations for the data.

Transformation sharing (TS) model. It is also possible to

directly associate a local d × D transformation matrix Lt

with each node. These matrices represent d-dimensional

linear transformations of the data in the local viewpoint

of the corresponding nodes. Sharing the representation

across nodes can be done in a similar way by defining a

node’s aggregate transformation matrix Lt :=
∑

i∈At
Li =

Lpt
+Lt.

The corresponding distance metric can be compared us-

ing the quadratic form

LT

t Lt = LT

t Lt + LT

pt
Lpt

+LT

pt
Lt + LT

t Lpt
.

Comparison between the two models. Though the TS

model has an advantage of explicitly incorporating low-

dimensional representations (by the choice of d), it is gen-

erally unclear how to pick d for a given application. More-

over, even if one knows the right d, explicitly optimizing

the objective function for that d is hard.

If one enforces orthogonality between Lt and its parent

Lpt
then the cross terms in the quadratic form LT

t Lt disap-

pear, making it equivalent to the DMS model. Due to ease

of implementation, we shall use the DMS model for our ex-

periments.

3.1. Learning and inference

We present a novel discriminative probabilistic nearest

neighbor classification approach to learn in the ‘distance

metric sharing’ model.

First define the distance between any two input data-

points x1 and x2 with respect to the distance metric Qt

as ρ(x1,x2;Qt) := (x1 −x2)
T Qt(x1 −x2). Now given

an input query x, we define the score f(x; y) with re-

spect to an arbitrary class y, by combining the distances

between x and the closest examples to x in the class y

(in the metric associated with class y), that is, f(x; y) :=
∑

x̃∈Ny(x)
ρ(x, x̃;Qy), where Ny(x) denotes the set of k

closest neighbors in the class y. This score gives an esti-

mate of how close a given example is to the examples of

class y. Using the scores for all the classes, we can define

the class probability distribution of the example x as:

p(y|x;Q) :=
exp(−f(x; y))

∑

ȳ exp(−f(x, ȳ))
, (1)

where Q is simply the set of all the distance metrics {Qt}.

Now, given the training data (x1, y1), . . . , (xn, yn), we

learn the distance metrics by maximizing a regularized like-

lihood function:

L(Q) =
1

n

n
∑

i=1

log p(yi|xi;Q)−
λ

2

∑

t

trace(QT

t Qt) (2)

subject to positive semidefinite (PSD) constraints on the lo-

cal distance metrics, Qt � 0. Here λ is the regularization

constant. Note that satisfying the PSD constraints on the

local Qt’s makes the aggregate metrics Qt’s PSD as well.

Observe that the equivalent minimization problem along

with the PSD constraints is a convex optimization problem

and can be solved efficiently.



We explain the role of the two terms in the optimization.

For the first term, observe that Eq. (1) can be rewritten as:

p(y|x;Q) =
1

1 +
∑

ȳ 6=y exp
(

f(x, y)− f(x, ȳ)
) .

Hence, the likelihood is maximized by (i) minimizing

f(xi, yi), and (ii) maximizing f(xi, ȳ) (for ȳ 6= yi) for

each training point xi. Geometrically these terms can be

thought as pulling together the same class neighbors, while

pushing away different class neighbors. (In this sense, our

optimization can be thought as an efficient hierarchical gen-

eralization of LMNN [22] or NCA [8].)

The regularization term in the likelihood can be written

as: trace(QT

t Qt) = trace
(

(Qpt
−Qt)

T(Qpt
−Qt)

)

. As a

result, it attempts to keep the distance metrics of the chil-

dren Qt to be closer to that of the parent Qpt
.

Incorporating context sensitive loss. Sometimes it is fa-

vorable to penalize misclassification between different cat-

egories differently. Consider, for instance, mispredicting

an image of Wolf as a Horse versus mispredicting it as a

Pigeon (c.f . Figure 1). The latter misclassification seems

more severe and our optimization should try to minimize it.

Such a requirement can be addressed by using a context

sensitive loss (CSL) function1: ∆(y, ȳ) ≥ 0 (with the re-

quirement that ∆(y, y) = 0, for all y) denoting the penalty

assigned to predict ȳ when the true label was y. We can

easily incorporate this in our formulation by redefining our

probability distribution during training (c.f . Eq. (1)) as

pcsl(y|x;Q) ∝
exp(−f(x; y))

∑

ȳ exp(−f(x, ȳ) + ∆(y, ȳ))
, (3)

Observe that this has the effect of pushing the neighbors

associated with severely penalized categories farther than

those with less penalty.

Optimization details. For experiments, we optimize our

objective function as shown in Algorithm 1. We used a sim-

ple gradient ascent procedure with an adaptive step-size:

we start by setting the step (η) as 0.001 and decrease it by

half whenever the function value decreases (worsens), or in-

crease it by 1.01 if the function value increases (improves).

The function value was computed after the PSD projection.

We chose the number of neighbors (k) as 5. We found

that varying k did not have a significant effect on the per-

formance. We also found that running the optimization of

about four rounds (R) was sufficient.

3.2. Using the learned metrics

We can use the trained set of metrics Q for the example

applications (as discussed in the Introduction) as follows:

1There are several ways to define a CSL. One possibility is to define

the loss as the shortest path distance between the two classes. Another

possibility is to define it using the tree height difference.

Algorithm 1 Hierarchical Metric Learning

Input: The training data (x1, y1), . . . , (xn, yn),
Taxonomy T with total T nodes, and

C is the set of leaf nodes from T .

Parameters: R – max. number of rounds,

k – number of nearest neighbors,

η – gradient step-size.

1: for t = 1 to T do

2: Initialize Qt :=

{

I for t corresponding to leaf node

0 otherwise

3: end for

4: Define Qt :=
∑

i∈At
Qi, for t = 1, . . . , T .

5: for r = 1 to R do

6: for i = 1 to n, and y ∈ C do

7: Compute the set Ny(xi) as the k closest neighbors to the

point xi in the class y using the metric Qy .

8: end for

9: repeat

10: for t = 1 to T do

11: Qt = Qt + η
∂L(Q)
∂Qt

12: Qt = Project to PSD(Qt)
13: end for

14: until convergence

15: end for

Output: The learned metrics Q1, . . . , QT .

Categorizing new data. Given a test example xt, we

can predict its most likely class in a straightforward

way. We simply predict the most likely class as y∗ :=
argmaxy p(y|xt;Q) = argminy f(xt; y).

Placing unseen categories in the taxonomy. Consider a

scenario where one receives a collection of examples from

an unseen category whose location is not known in the tax-

onomy. We assume that this new category is related to the

taxonomy, but its placement is unknown. Our goal is to sys-

tematically identify its correct placement or suggest a likely

set of candidate locations in the taxonomy.

We predict the likely location for the new category via

a simple discrimination centric approach. We predict the

class label for each new example according to the categories

in the current taxonomy. Then, we find the majority class,

and place the new class as a sibling to the majority class.

The basic intuition behind this procedure is that our met-

rics are tuned towards localizing the discrimination task to-

wards the siblings and parents of a category (see our dis-

cussion in Section 4.2.2). Then, given that the examples

belonging to the new category share similar discriminating

features as its true siblings, our metrics would be able to

pick-up on them.

Local subtree classification. In this example application,

we are considering a scenario where the end goal is to get

good discrimination amongst a subset of categories of all



the categories in a taxonomy. Since, typically, it is hardest

to discriminate amongst the neighboring categories (as the

corresponding images share several features), we focus on

categories that are part of a subtree of the taxonomy. To

get the best possible set of metrics for discrimination, one

should ideally train on the subtree taxonomy. However, this

is cumbersome since one has to train the metrics repeatedly

for each user for their specific subset categorization.

In our experiments, we show that the metrics learned on

the full taxonomy would yield performance similar to the

metrics that have been specifically trained on a subtree in

recognizing the categories from that subtree.

4. Experiments

We now assess the effectiveness of our hierarchical met-

ric model on a wide array of image datasets. We show

that our learned metrics consistently yield better classifica-

tion results compared to several state-of-the-art classifica-

tion techniques across all datasets. An empirical analysis of

our learned metrics elucidates several interesting observa-

tions. Lastly, we demonstrate that our metrics are useful for

the taxonomy specific applications as well.

4.1. Setup

4.1.1 Datasets

ImageNet subtrees. ImageNet consists of images collected

from the Web that are organized according to the WordNet

hierarchy [6]. We report results on nine subtrees of Ima-

geNet that are mentioned in [6]. The following subtrees

were used: Amphibian, Fish, Fruit, Furniture, Geo (ge-

ological formation), Music (musical instrument), Reptile,

Tool and Vehicle. The training, validation and test sets for

these subtrees were taken from the 2010 ImageNet Large

Scale Visual Recognition Challenge dataset2, which is a

subset of the ImageNet database. The subtrees vary in train-

ing set sizes (8,800 to 54,000), height (3 to 6), and the num-

ber of classes (8 to 40).

We used the SIFT-based bag-of-words representation

given as part of the Challenge dataset. The vocabulary size

is 1000, so each image is represented as a 1000 dimensional

word count vector. We reduced the dimensionality to 250

with PCA, and normalized each vector to unit L2-norm.

Animals with Attributes (AwA)3. This dataset contains

images of 50 animal classes, but without a taxonomy. 17 of

the 50 classes in AwA are present in the Mammals subtree

of ImageNet. We use the part of the Mammals subtree that

contains the AwA classes as the hierarchy for the 17 classes,

as shown in Figure 4. We use the bag-of-words representa-

tion based on color-SIFT features supplied with the dataset.

2www.image-net.org/challenges/LSVRC/2010/
3http://attributes.kyb.tuebingen.mpg.de/

The original dimensionality of this representation is 2000,

which we reduced to 500 dimensions with PCA, and then

normalize to unit L2-norm. The dataset is split into approx.

6,700 training, 1,000 validation, and 2,600 test cases.

4.1.2 Methods for comparison

We compare the performance of our method with state-of-

the-art distance metric learning methods for classification.

We take Large Margin Nearest Neighbor (LMNN) [22] and

Taxonomy Embedding (TAXEMB) [21] methods for com-

parison. In LMNN, a linear transformation is learned such

that the k nearest neighbor classification in the embedded

space is improved. It does not use a taxonomy to learn the

embedding. At test time, the class label of a new point is

predicted using k nearest neighbor classification. In TAX-

EMB, two sets of parameters are learned: (i) a prototype

vector for each class such that classes that are nearby in

the taxonomy have similar prototypes, and (ii) a linear em-

bedding such that examples belonging to the same class are

placed close to its prototype. At test time, the classifica-

tion is done by embedding the test point and selecting the

nearest prototype’s label.

Since SVMs are widely used for classification, we

also compared with non-linear support vector machines

(NLSVM). We fixed the degree of the polynomial kernel

from the range [4, 9] and the regularization constant from

the range [10−4, 104], using the validation data.

As a baseline, we took the untrained version of our

model with trivial initialization: Euclidean metric for the

root node (i.e., the identity matrix) and the zero metric for

rest of the nodes (i.e., the zero matrix). This is equivalent to

representing the data in the standard Euclidean space. We

used a simple variant of nearest neighbor classifier, where

instead of picking the majority class of k closest neigh-

bors, we pick k closest neighbors from each class. We sum

these distances and pick the class with the smallest total dis-

tance. We call this variant as the aggregate nearest neighbor

(AGGKNN)4. Since this baseline uses the Euclidean metric,

it would help demonstrate the importance of learning the

metrics.

We used two main variants of our hierarchical distance

metrics learning method. The first method directly opti-

mizes Eq. (2); we refer to this method as AGGKNN-L. The

second optimizes the CSL variant of Eq. (2) (details below);

we refer to this method as AGGKNN-L-CSL.

4.1.3 Evaluation metrics

We report the classification accuracy in the categoriza-

tion experiments. The accuracy function is defined as:

1− 1
mH

∑m

t=1 ∆(yt, ŷt) where yt and ŷt denote the true

4We found that this simple variant consistently yields better perfor-

mance over regular k-NN.

www.image-net.org/challenges/LSVRC/2010/
http://attributes.kyb.tuebingen.mpg.de/
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Figure 2. Classification accuracy for the various datasets. The horizontal axis shows the dataset name along with the absolute accuracy

achieved by AGGKNN method. The vertical axis shows the absolute improvement gained over AGGKNN. Left: The standard 0-1 classifi-

cation accuracy. Right: Context sensitive accuracy using the common ancestor CSL.

and predicted class labels of the tth test example; m denotes

the total number of test examples. Each correct prediction

has zero loss (i.e., ∆(yt, ŷt) = 0 when ŷt = yt).

We evaluate the performance on two measures of accu-

racy (each measure treats the misclassification differently):

1. The conventional accuracy measure (also referred to as

0-1 accuracy) treats each misclassification equally (so

∆(yt, ŷt) = 1 when ŷt 6= yt and H = 1).

2. The context sensitive accuracy measure treats each

misclassification according to the CSL function. We

use ∆(yt, ŷt) as the height of the lowest common an-

cestor for the pair (yt, ŷt) when ŷt 6= yt. H is set as

the maximum tree height to normalize the misclassifi-

cation error to lie in (0, 1].

4.2. Results

4.2.1 Classification

Figure 2 (Left) shows 0-1 accuracy results for the dif-

ferent datasets using various classification methodologies.

Observe that LMNN performs only slightly better than

our baseline AGGKNN method. Except on Music and

Tool datasets, TAXEMB performs better than LMNN. The

performance improvement on the Geo and Fish datasets

is significant (4%-6%), indicating that using hierarchi-

cal information in training is useful for 0-1 classification.

TAXEMB, however, performs significantly worse than our

AGGKNN-L method, especially on the larger datasets. This

is expected since learning a single prototype per class

may not be sufficient when classifying among large num-

ber of classes. A comparison with NLSVM shows that

our method typically yields better results than a strong

discriminative classifier. Our method outperforms all the

other methods on all the datasets except Vehicle where it

is the second best. The performance difference between

the AGGKNN-L and AGGKNN is significant on all the

datasets, emphasizing the need for learning the metrics.

Figure 2 (Right) shows the context sensitive accuracy

results with our AGGKNN-L-CSL method. Observe that

TAXEMB works well for CSL. We can make similar obser-

vations regarding the benefits of learning hierarchical met-

rics. We also compared our AGGKNN-L and AGGKNN-

L-CSL methods. AGGKNN-L typically performs similar

(sometimes slightly worse) to AGGKNN-L-CSL across the

datasets. We believe that this is because AGGKNN-L al-

ready uses the hierarchical information effectively and does

not need an explicit taxonomy based loss.

4.2.2 Analysis of the learned metrics

We now do a detailed analysis of the learned metrics on two

properties that we believe are the key for their success: (i)

orthogonality, and (ii) localized discrimination.

Orthogonality. We believe that one of the reasons for good

performance of our metrics is: the individual local metrics

share the burden of classification in such a way that differ-

ent metrics focus on classifying amongst different subsets

of categories. We can characterize this by stating that dif-

ferent metrics emphasize on different sets of features for the

discrimination. Equivalently, one can say that top principal

components of different metrics are approximately orthog-

onal to each other.

To verify this empirically, we chose different pairs of

nodes on a path from root to some leaf node. We com-

puted a correlation score for each such pair by averaging
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Figure 3. Analysis of the learned metrics. Left: A plot showing how correlated the top eigenvectors of metrics are. Right: Ancestor path

of some non-sibling pairs of nodes in Music, Vehicle, and Reptile. The metric associated with the lowest common ancestor yields the best

classification result when discriminating between the pairs.

the dot product between the most correlated eigenvectors

from the top 50 eigenvectors. Figure 3 (Left) shows the

cumulative distribution of the correlation score of different

pairs for Music, Vehicle and Reptile datasets. Note that

over 90% of the pairs have correlation less than 0.3. This

shows that eigenvectors, and hence the local metrics of the

nodes along a path, are focused on different sets of features

– thereby sharing the overall classification burden.

Localized discrimination. The second key reason for good

performance of our metrics is that each metric is specialized

to discriminate between categories belonging to its children.

We can see this by measuring the classification accuracy

using an individual metric associated with a node (instead

of aggregating it along a path). Figure 3 (Right) shows the

0-1 classification accuracy on two non-sibling categories

by using individual local metrics along the path for Mu-

sic (Harp and Cello), Vehicle (Limo and Minivan) and

Reptile (Agama and King snake). Observe that the nodes

most helpful in classification are String Instrument, Motor-

vehicle and Diapsid reptile respectively, which also happen

to be the lowest common ancestors for the selected nodes.

There were similar results for other pairs of classes, and

datasets. This shows that the least common ancestor plays a

major role in discriminating between its children categories.

These properties together make our methodology power-

ful: the learned metrics share the classification burden in a

locally consistent manner.

4.2.3 Placing unseen categories in taxonomy

We conducted systematic experiments with Music, Furni-

ture and Reptile, wherein (i) we removed data belonging

to a category from the taxonomy, (ii) learn the metrics, and

(iii) find the “class” placement using the learned metrics in

the taxonomy. We did this experiment with four different

classes (removing them one at a time) for each dataset. Our

method identified the correct location in 50% cases, and

one level up in 25% cases. For the remaining cases (one

per dataset) the confusion was with semantically similar ob-

jects: Wardrobe got confused with Chinese cabinet in Fur-

niture, or visually similar objects: Snake got confused with

Lizard in Reptile.

As an example application, we mapped the categories

available in Animals with Attribute (AwA) dataset [13] (a

dataset that does not have a pre-specified taxonomy) to

the taxonomy structure available for Mammals from Im-

ageNet. Note that only some (17 of 50) categories of

AwA can be easily mapped, others do not have a clear place-

ment. Figure 4 (Left) depicts the 17 classes along with the

derived taxonomy structure in solid lines. We trained our

metrics on these 17 classes. We then used our proposed pro-

cedure to place six new classes: Bobcat, German Shepherd,

Siamese Cat, Squirrel, Chihuahua, and Persian Cat (these

were chosen due to their semantic or visual similarity to the

existing nodes at different parts of the taxonomy).

Figure 4 (Left) shows the proposed locations of these

previously unseen categories in dashed lines. The green

dashed lines show the categories there were placed correctly

– Bobcat, German Shepherd, Chihuahua and Squirrel. The

class Squirrel was assigned to root due to its visual similar-

ity with Rabbit and background mostly consisting of gar-

dens and parks. See Figure 4 (Right).

The red dashed lines show the categories that were

placed incorrectly – Persian Cat and Siamese Cat. These

categories seemed to be placed under the Dog node as they

resemble more with Collie than Leopard, Tiger or Lion. See

Figure 4 (Right). These results suggest that our learned met-

rics do a reasonable job in predicting the locations for un-

seen categories and can assist an expert in enriching existing

taxonomies with new categories.

4.2.4 Local subtree classification

To demonstrate the effectiveness of our learned set of met-

rics for a specialized task, we considered two subtrees each

from Music and Tool taxonomies. The subtrees for the Mu-

sic dataset are rooted at Stringed Instrument (with depth 3,

and 6 leaf nodes) and Wood-wind Instrument (with depth
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Figure 4. Left: The 17 categories of AwA dataset mapped onto the Mammals taxonomy. The original 17 categories are connected with

solid lines. The nodes connected with dashed lines show the predicted locations of entirely new categories in the taxonomy. Nodes shaded

in green indicate the correct placement of the corresponding categories, while the nodes shaded in red indicate an incorrect placement.

Right: Example images from Squirrel (top) and Persian cat (bottom). The Squirrel category is visually similar to the Rabbit category. The

Persian cat is visually similar to Collie than to the categories that are part of Big cat.

4, and 4 leaf nodes). Similarly, the subtrees chosen for

Tool dataset were Cutting Tool (with depth 3, and 8 leaf

nodes), and Opener (with depth 3, and 3 leaf nodes).

Metric String Wood-wind Opener Cutting

Used Instrument Instrument Tool

Specialized 62.70 58.66 63.20 57.10

General 60.40 55.00 59.60 55.30

Table 1. Local classification accuracy (%) results on subtrees of

Music and Tool datasets.

Table 1 shows how well our learned metrics (on the full

taxonomy) fare when compared with learning a separate

special set for each subtree. We show the 0-1 classification

accuracy achieved when classifying amongst the categories

local to the subtrees. Note that in each case, there was only

a small degradation in accuracy (2.8% on average) when

using the general set of metrics.

5. Conclusion

We presented a novel framework that leverages the tax-

onomy to learn a set of hierarchical similarity metrics. Our

metrics yield improved classification performance over sev-

eral methods available in the literature. Since our metrics

are taxonomy centric, they also benefit some interesting tax-

onomy specific applications. A fruitful future direction is to

incorporate unlabelled data for metric learning and taxon-

omy enrichment.
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