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Result (informally)

Suppose X € RP has mean zero and finite second mo-
ments. Choose d < D.

Then: under all but an e ) fraction of linear pro-
jections from R”, the projected distribution of X is very
nearly the scale mixture of spherical Gaussians

where v(+) is the distribution of || X||*/D.

The extent of this effect depends on a coefficient of ec-
centricity of X'’s distribution.
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Example

Simplex in R”: uniform distribution over D + 1 points.

Distribution of || X||?/D is:

T - |X|1?/D
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Result (formally)

Suppose X € R” has mean zero and finite second mo-
ments. Choose d < D.

For any linear projection © : R” — RY, let Fg be the
projected distribution, and let

F - / N(0, 021,)v(do)

where v(-) is the distribution of | X||*/D.

Then: for any 0 < e < 1,

[Fo(B) — FI(B)| > ¢

Po sup
 balls B C R

where ecc(X) is a measure of the eccentricity of X'’s
distribution.

Implications

Gaussians and dimensionality

Low dimension (D = 1,2, 3): many naturally occuring data

look Gaussian.

: < exp {—Q (625 | eCCtX)>}

Previous results

Diaconis and Freedman (1984): Let X = (X4,...,Xp)
have a product distribution (i.e. independent coordi-

nates). Then, under all but an e=*P) fraction of linear
projections from R” to R, the projected distrubtion of
X 1is nearly Gaussian.

Different approach: Projections of more general distri-
butions to R! studied by:

Sudakov (1978)
Von Weisacker (1997)
Bobkov (2002)

Analyses not based on CLT'; use “concentration of mea-
sure” bounds. We build upon all these results.

Our contribution: how to handle (1) general distribu-
tions and (2) d > 1.

Concentration of measure

Contrast:

e Chernofl-bound application:
Let X1,...,Xp be independent tosses of a coin
with bias p. Then
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D

p| > 6) < % €D,

e Modern concentration of measure result:
Let f be a Lipschitz function on a sphere in R”.
Then f is within € of its median value on all but
an exp(—Q(e*D)) fraction of the sphere.

smooth increase

f=41

1 — exp(—Q(e?D)) of
the sphere’s mass

f is within € of its median value.

What special feature makes the concentration property
of the average hold in the Chernoff bound?
Answer: the average is Lipschitz!

In fact, for any Lipschitz f (under certain mea-
sures),

P(|f —Ef| >¢) < e D),
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Mixture modeling

A randomized reduction to “well-behaved” data.

High dimension: too much independence required to be true!
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Number of coordinates

Nevertheless, most low-dimensional projections appear
(Gaussian, at least in terms of low-order statistics.

For each coordinate in the MINIST 1’s
dataset, the plot shows the fraction of
variance unaccounted for by the best
affine combination of preceding coor-
dinates. The ordering of coordinates
is chosen greedily, by least VAF.

Linear projection
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Proof outline
Sources of randommness

Two random objects:

e X € R”, high dimensional distribution
e Projection © : RP — R? d x D matrix

Random choice of ©: pick each entry i.i.d. from N(0, 1).

X = PX =
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Approach
We’'ll show: for almost all ©, the projected distribution

—ox R F = / N(0, 021,)v(do).

In particular, for all balls B C R%: the projected distri-
bution and F' assign roughly the same mass to 5.

Distribution of projected points

Fixed z € R”. As O varies, the distribution of the
projection of x is Gaussian, since O is (Gaussian.
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Now pick both X and © at random. Resulting distri-
bution is

F = /N(O,O'Qld)y(d()').
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Part I: a single ball

Fix a ball B C R%. Let Fg(0) be the probability mass
that falls in B under projection O.
Claim: For this ball B, for almost all ©, Fg(0) =~ F(B).

1. Eo[FB(O)] = F(B).

2. Want to conclude that Fg(©) =~ F(B) for almost
all ©, but doesn’t tollowing from concentration of
measure bounds since Fg(-) is not Lipschitz.

3. Consider a Lipschitz approximation Gpg of F.
We show:

a. Gp(0) =~ Eg|Gp(0)] for almost all © (by

concentration of measure).

b. G g is not too different from Fp.

Part 1I: all balls

Determine a collection of balls By,..., By € R? with
the following property: if the projected distribution as-
signs mass I'(B;) + € to every B;, then it assigns mass
F(B) £ 2¢ to every ball B C R%. (M depends only on
d, not D.)

Then take a union bound over B,;, and we’re done.

For any 0 < e < 1

[Fo(B) — F(B)| > 6} = exp {_Q (EZ? | ec;X)) }

Po sup
balls B C R¢



