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A concentration theorem for projections

Result (informally)
Suppose X ∈ RD has mean zero and finite second mo-
ments. Choose d " D.
Then: under all but an e−Ω(D/d2) fraction of linear pro-
jections from RD, the projected distribution of X is very
nearly the scale mixture of spherical Gaussians

∫
N(0,σ2Id)ν(dσ)

where ν(·) is the distribution of ‖X‖2/D.
The extent of this effect depends on a coefficient of ec-
centricity of X’s distribution.

Example
Simplex in RD: uniform distribution over D +1 points.

Distribution of ‖X‖2/D is:

‖X‖2/D
c2
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Projection of the simplex in R1000
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1001 points drawn from a Gaussian

Result (formally)

PΘ

[
sup

balls B ⊆ Rd

|FΘ(B)− F (B)| > ε

]
≤ exp

{
−Ω̃

(
ε4D

d2
· 1
ecc(X)

)}

where ecc(X) is a measure of the eccentricity of X’s
distribution.

Implications

For any linear projection Θ : RD → Rd, let FΘ be the
projected distribution, and let

F =
∫

N(0,σ2Id)ν(dσ)

where ν(·) is the distribution of ‖X‖2/D.
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Previous results

Then: for any 0 < ε < 1,

Different approach: Projections of more general distri-
butions to R1 studied by:

Sudakov (1978)
Von Weisacker (1997)
Bobkov (2002)

Analyses not based on CLT; use “concentration of mea-
sure” bounds. We build upon all these results.

Diaconis and Freedman (1984): Let X = (X1, . . . , XD)
have a product distribution (i.e. independent coordi-
nates). Then, under all but an e−Ω(D) fraction of linear
projections from RD to R, the projected distrubtion of
X is nearly Gaussian.

Our contribution: how to handle (1) general distribu-
tions and (2) d > 1.

Concentration of measure
Contrast:

• Chernoff-bound application:
Let X1, . . . , XD be independent tosses of a coin
with bias p. Then

P
(∣∣∣∣

X1 + . . . + XD

D
− p

∣∣∣∣ > ε

)
≤ 2e−ε2D.

• Modern concentration of measure result:
Let f be a Lipschitz function on a sphere in RD.
Then f is within ε of its median value on all but
an exp(−Ω(ε2D)) fraction of the sphere.

f = −1 f = +1

f is within ε of its median value.

smooth increase

1− exp(−Ω(ε2D)) of
the sphere’s mass

Proof outline
Sources of randomness
Two random objects:

• X ∈ RD, high dimensional distribution
• Projection Θ : RD → Rd, d×D matrix

Random choice of Θ: pick each entry i.i.d. from N(0, 1).

X !→ 1√
D

ΘX =
1√
D

Θ X ∈ Rd

Approach
We’ll show: for almost all Θ, the projected distribution

1√
D

ΘX
dist≈ F =

∫
N(0,σ2Id)ν(dσ).

In particular, for all balls B ⊆ Rd: the projected distri-
bution and F assign roughly the same mass to B.

Distribution of projected points
Fixed x ∈ RD. As Θ varies, the distribution of the
projection of x is Gaussian, since Θ is Gaussian.

x "→ 1√
D

Θx
dist= N

(
0,
‖x‖2

D
Id

)
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Now pick both X and Θ at random. Resulting distri-
bution is

F =
∫

N(0,σ2Id)ν(dσ).

Part I: a single ball
Fix a ball B ⊆ Rd. Let FB(Θ) be the probability mass
that falls in B under projection Θ.
Claim: For this ball B, for almost all Θ, FB(Θ) ≈ F (B).

1. EΘ[FB(Θ)] = F (B).

2. Want to conclude that FB(Θ) ≈ F (B) for almost
all Θ, but doesn’t following from concentration of
measure bounds since FB(·) is not Lipschitz.

3. Consider a Lipschitz approximation GB of FB .
We show:

a. GB(Θ) ≈ EΘ[GB(Θ)] for almost all Θ (by
concentration of measure).

b. GB is not too different from FB .

Part II: all balls
Determine a collection of balls B1, . . . , BM ⊆ Rd with
the following property: if the projected distribution as-
signs mass F (Bi)± ε to every Bi, then it assigns mass
F (B) ± 2ε to every ball B ⊆ Rd. (M depends only on
d, not D.)
Then take a union bound over Bi, and we’re done.

PΘ

[
sup

balls B ⊆ Rd

|FΘ(B)− F (B)| > ε

]
≤ exp

{
−Ω̃

(
ε4D

d2
· 1
ecc(X)

)}
For any 0 < ε < 1

What special feature makes the concentration property
of the average hold in the Chernoff bound?
Answer: the average is Lipschitz!

In fact, for any Lipschitz f (under certain mea-
sures),

P (|f − Ef | > ε) ≤ e−Ω(ε2D).

Gaussians and dimensionality

Nevertheless, most low-dimensional projections appear
Gaussian, at least in terms of low-order statistics.

For each coordinate in the MNIST 1’s
dataset, the plot shows the fraction of
variance unaccounted for by the best
affine combination of preceding coor-
dinates. The ordering of coordinates
is chosen greedily, by least VAF.

A randomized reduction to “well-behaved” data.

RD Rd

Mixture modeling

Linear projection

Low dimension (D = 1, 2, 3): many naturally occuring data
look Gaussian.
High dimension: too much independence required to be true!

Suppose X ∈ RD has mean zero and finite second mo-
ments. Choose d" D.
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