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Abstract

Suppose the random vectorX ∈ R
D has mean zero and finite second moments. We show that there is apre-

cise sense in which almost all linear projections ofX into R
d (for d < D) look like a scale-mixture of spherical

Gaussians—specifically, a mixture of distributionsN(0, σ2Id) where theσ values follow the same distribution as
‖X‖/

√
D. The extent of this effect depends upon the ratio ofd to D, and upon a particular coefficient of eccentricity

of X ’s distribution.

1 Introduction

Let X ∈ R
D be a random vector with mean zero and finite second moments.1 In this paper, we examine the behavior

of “typical” linear projections ofX into R
d, d < D.

The first step is to specify a distributionγ over linear projections fromRD to R
d. Suppose ad×D random matrix

Θ has entries which are i.i.d. standard normals. It is well-known that with high probability, the rows of this matrix are
approximately orthogonal and have length approximately

√
D; for more details and proof techniques see, for instance,

Dasgupta and Gupta (2003). The projection we will use is thus:

X 7→ 1√
D

ΘX.

An alternative distribution over projection matrices would be to take the firstd basis vectors of a random orthonormal
basis ofRD. The distribution we use is quite close to this, and is more convenient to work with analytically and
algorithmically.

For any specific projectionθ, let fθ denote the distribution of the projection ofX , a probability measure onRd.
As we shall see, for any (measurable)S ⊂ R

d, the expected probability mass of that set under a random choice ofΘ
is

EΘfΘ(S) =

∫
fθ(S) γ(dθ) =

∫
νσ(S)µ(dσ)

△
= f(S)

whereνσ is a shorthand for density of the spherical GaussianN(0, σ2Id), andµ is the distribution of‖X‖/
√

D
(a probability measure onR).2 In other words, the average projected distribution is a scale-mixture of spherical
Gaussians,f =

∫
νσ µ(dσ).

Given the lack of assumptions onX , the individual projected distributionsfθ could all, for instance, have discrete
support. We will show, however, that with high probability over the choice ofθ, the distributionfθ is close tof in the
following sense: it assigns roughly the same probability mass to every ballB ⊂ R

d as doesf . The precise statement
is in Theorem 13 but reads approximately like this: for almost all θ,

sup
ballsB in R

d

|fθ(B) − f(B)| ≤ Õ

(
ecc(X)d2

D

)1/4

,

1The spaces we consider areR
k for variousk, under the corresponding Borelσ-algebras. The symbolS always denotes a Borel set, and by

“ball” we always mean open ball. We use the notationPY to generically denote the distribution of random variableY and likewiseEY to denote
expectation overY .

2Takeν0 to be a point mass at the origin.
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Figure 1: For each coordinate in the MNIST dataset of handwritten “1” digits, this plot shows the fraction of its
variance unaccounted for by the best affine combination of the preceding coordinates. The ordering of the coordinates
is chosen greedily, by least variance accounted-for.

where ecc(X) is a specific measure of how eccentric the distribution ofX is (λmax/σ2
ǫ in the theorem statement) and

theÕ notation hides some lower-order terms. We’ll see examples of the eccentricity value in the next section.

Implications

Apart from its general insights into data distributions andthe enterprise of projection pursuit, we have sought this
result for two rather specific reasons.

The first is curiosity about a widely-observed empirical fact, that a Gaussian distribution is often an accurate density
model for one-, two-, or three-dimensional data, but very rarely for high-dimensional data. From the birth weight of
babies (Clemens and Pagano, 1999) to the calendar dates of hail and thunder occurrences (Hey and Waylen, 1986),
many natural phenomena follow a normal distribution. And yet high-dimensional data is unlikely to be Gaussian,
in part because of the high degree of independence this demands (after all, a Gaussian is merely a rotation of a
distribution with completely independent coordinates). In a typical application, it might be possible to find a few
features that are roughly independent, but as more featuresare added, the dependencies between them will inevitably
grow. See Figure 1 for an illustration of this effect.

The result we prove gives a plausible explanation for how high-dimensional distributions that are very far from
Gaussian can have low-dimensional projections which are almost Gaussian; and moreover, we quantify the rate at
which this effect drops off with increasingd.

Our second motivation has to do with the analysis of statistical procedures, and it also explains the particular
notion of closeness in distribution. Many learning algorithms do not look too closely at the data but, rather, look only
at low-order statistics of the data distribution restricted to simple geometric regions in space. For instance, consider
thek-means clustering algorithm, whose updates depend only on the zero- and first-order statistics of Voronoi regions
determined by the current centers. Its behavior on general data sets is hard to characterize, but its performance on
data with Gaussian clusters is much better understood (e.g., Dasgupta and Schulman, 2000). Likewise, there has been
a recent spate of clustering algorithms which are specifically geared towards data whose clusters look approximately
Gaussian in terms of their zero-order statistics on balls inspace; and which can be rigorously analyzed in this case
(e.g., Dasgupta, 1999; Arora and Kannan, 2001).

One of the motivations of the present paper is to give arandomized reductionfrom data distributions with fairly
general clusters to distributions with better-behaved clusters, and thereby generalize results about the performance of
learning algorithms which previously applied only to approximately-Gaussian data. This can be thought of in two
ways. Either: the initial process of feature selection can be modeled as being itself a sort of random projection,
and thus yielding data whose clusters resemble scale-mixtures of Gaussians in their low-order statistics. Or: random
projection can be used as an explicit preprocessing step to specifically produce well-behaved data.
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Figure 2: The three-dimensional discrete simplex, cross-polytope, and cube.

Previous work

Our work follows a string of previous results, and draws heavily upon them. The seminal work of Diaconis and
Freedman (1984) established this same effect in the case whereX has independent coordinates and the projection is to
d = 1 dimension; in such cases, the projected distribution is close to a single Gaussian (as opposed to a scale-mixture).
They also gave asymptotic results (ford = 1 andD ↑ ∞) for a variety of other cases, including general distributions
in which most pairs of data points are approximately orthogonal and most data points have approximately unit length.

Sudakov (1978), von Weisäcker (1997), Bobkov (2003), and Naor and Romik (2003) have studied the problem for
more general distributions ofX . These works focus upond = 1 (except for Naor and Romik, who consider generald
but define a notion of closeness in distribution which makes the problem essentially one-dimensional), and are based
upon various different assumptions onX . We closely follow Bobkov’s method, and also use ideas from von Weisäcker
and Sudakov. Our result is more general than the union of these earlier works in two ways, both of which are crucial
for the algorithmic applications mentioned above: (1) we have no constraints, other than finiteness, on the second
moments ofX (this particular generalization is straightforward), and(2) we accommodate the cased > 1 (this takes
some doing).

2 Examples

Our main result says that most linear projections ofX ∈ R
D are close tof , a scale-mixture of Gaussians which is

determined only by the distribution of‖X‖/
√

D. We will call this latter distribution theprofileof X .

2.1 Three discrete distributions

We start with three particular examples: uniform distributions over the vertices of a simplex, a cross-polytope, and a
cube inR

D (Figure 2). In each case, almost all linear projections are near-Gaussian.

The simplex

This is perhaps the most surprising of the three examples: a discrete distribution inRD whose support is of size just
D + 1, the smallest possible full-dimensional support.

For concreteness, let the vertices be{x0, x1, . . . , xD}, where

x0 =
1 −

√
D + 1√
D

· 1D and xi =
√

Dei for i = 1, . . . , D.

Here,1D is the all-ones vector inRD andei is theith coordinate basis vector.
The crucial fact is that each vertex has the same squared distanceD2/(D + 1) to the mean of the distribution

and thus the profileµ puts all of its mass at a single point (Figure 3). This means most linear projections will look
Gaussian, rather than a more general scale-mixture.
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Figure 3: The profileµ for the uniform distributions over the discrete simplex (σ′ = D/(D + 1)), cross-polytope and
cube (σ′ = 1).
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Figure 4: One is the plot of a 2-d projection of the vertices ofa 1000-dimensional simplex; the other is the plot of
1001 points sampled fromN(0, I2). Which is which?1

Specifically, the covariance matrix of the high-dimensional distribution is(D/(D + 1)) ID, and the coefficient of
eccentricity is 1. A direct application of Theorem 13 reveals that most projections are close to a single Gaussian, in
the sense that the discrepancy on any ball isÕ((d2/D)1/4). Figure 4 illustrates this effect.

Notice that the projected distribution has a discrete support of size at mostD + 1. Yet it is almost Gaussian, in the
sense that a random sample from this distribution looks justlike a random sample from a Gaussian, if you count the
number of points in any ball.

In this specific case, we can tighten the bound on the discrepancy. A random projection of the verticesx1, x2, . . . , xD

(ignorex0 for now) is distributed asD independent draws fromN(0, Id): the projection ofxi is

1√
D

Θ
(√

Dei

)
= Θi,

the ith column ofΘ, which has aN(0, Id) distribution. A standard VC-dimension argument then implies that the
fraction of theseD projected vertices which fall in any ball is withinO(

√
d(log D)/D) of the probability mass

assigned to that ball byN(0, Id); we use the fact that the class of balls inR
d has VC dimensiond + 1 (Dudley, 1979).

The projection of the remaining vertexx0 can only increase the error byO(1/D).

The cross-polytope and cube

The uniform distributions over the discrete cross-polytope {±
√

Dei : i = 1, . . . , D} and discrete cube{±1}D are
similar: each has covarianceID and vertices at squared distanceD from the center. Again, the profile has mass only
at a single point,1 in these cases (Figure 3). And again the coefficient of eccentricity is 1, so Theorem 13 shows that
most projections are close to a single Gaussian, with the discrepancy on any ball beingO((d2/D)1/4).

As with the simplex, a tighter bound for discrepancy can be given in the case of the cross-polytope. We can think
of a random projection of the vertices

√
Dei asD independent draws fromN(0, Id), call them{θ1, . . . , θD}; the

projections of the remainingD vertices are the negations{−θ1, . . . ,−θD}. With high probability, each half taken

1The second plot shows the Gaussian samples.
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Figure 5: The profileµ for the power-exponential distributions inR100, parameterized byβ. The Gaussian hasβ = 1,
while heavier-tailed distributions haveβ < 1.

separately is close to Gaussian in the sense of being withinǫ = O(
√

d(log D)/D) on any ball. So the two halves
together are within2ǫ on any ball.

The uniform distribution over the vertices of the cube{−1, +1}D is different from the previous two examples in
that it is a product distribution: its coordinates are independent. Such cases permit special arguments (Diaconis and
Freedman, 1984) which show that for 1-d projections, the discrepancy from Gaussian isO(1/

√
D) on any interval of

the real line.

2.2 Spherically symmetric distributions

Next, we consider the general class of spherically symmetric distributions. This class includes distributions such asthe
Gaussian, the power-exponential distribution, and Hotelling’s T-square distribution. Practitioners in the sciences and
engineering often prefer this class over the specific case ofthe Gaussian because it allows for tails that are “heavier”
than that of the Gaussian (e.g. Gales and Olson, 1999; Lindsey and Jones, 2000; and see Figure 5).

If X has a spherically symmetric distribution centered at the origin, then it can also be written in the formX = UT ,
whereU is a random vector uniformly drawn from the surface of theD-dimensional sphereSD−1, andT is a scalar
random variable whose distribution is the profile ofX (scaled appropriately). We’ve seen that a random projection will
preserve the profile (and therefore the heavy tail) ofX . This raises an interesting question: canany linear projection
can alter the tailT of X? No, because a linear projection (with orthonormal rows)Φ : R

D → R
d merely sends

X 7→ ΦX
d
= (ΦU)T

whereΦU is uniformly distributed overSd−1, so the tailT is preserved exactly.

2.3 Other examples

OCR, text, and speech data

Next, we look at low-dimensional projections of three data sets well-known in the machine learning literature: the
MNIST database of handwritten digits, the Reuters databaseof news articles and Mel-frequency cepstral coefficients
of the TIMIT data set. Restricting attention to just one cluster from each dataset, we note that projecting the data onto
its top principal components suggests the existence of non-Gaussian projections, even though most random projections
still look like scale-mixtures of Gaussians (see Figure 6).

Clustered data

A distribution with well-separated clusters is unlikely tolook like a single scale-mixture upon projection; indeed,
its high coefficient of eccentricity renders the bound on thediscrepancy for a particular ball effectively meaningless
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Figure 6: Above: “Typical” two-dimensional projections ofhandwritten1’s images, word counts of Reuters news
articles about Canada, and Mel-frequency cepstral coefficients of the spoken phoneme ‘s’. Below: The corresponding
two-dimensional PCA projections.
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Figure 7: A typical linear projection of a two-cluster (highly eccentric) distribution.

(Figure 7). In many such cases, the Johnson-Lindenstrauss theorem (1984) dictates that a typical projection will keep
the clusters apart, and the result of this paper can more usefully be applied to the individual clusters.

3 Proof

3.1 Preliminaries

We assume the random vectorX ∈ R
D has mean zero and finite second moments. Letµ denote the distribution of

‖X‖/
√

D. Writing νσ for the density of thed-dimensional spherical GaussianN(0, σ2Id), let f be the scale-mixture

f =

∫
νσ µ(dσ).

For any fixedd × D matrixθ, let fθ denote the distribution of the projection1√
D

θX . And letfθ(B) (which we’ll

sometimes writef(θ, B)) be the probability mass thatfθ assigns to an open ballB ⊂ R
d.

We will consistently use‖ · ‖ to denote Euclidean norm:

‖A‖2 =

{ ∑
i A2

i if A is a vector∑
i,j A2

ij if A is a matrix

One last piece of jargon: a functiong : R
N → R is C-Lipschitz if for all x, y ∈ R

N ,

|g(x) − g(y)| ≤ C‖x − y‖.
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3.2 Overview

The first part of our proof, following Bobkov (2003), rests crucially upon recent results on concentration of measure,
so we start with a brief overview of these.

The familiar Chernoff and Hoeffding bounds say that theaverageof n i.i.d. random variablesX1, X2, . . . , Xn is
tightly concentrated around its mean, provided theXi are bounded andn is sufficiently large. But what is so special
about the average; what about other functionsg(X1, . . . , Xn)? It turns out that the relevant feature of the average
yielding tight concentration is that it isLipschitz.

The following concentration bound applies toanyLipschitz function of i.i.d. normal random variables. One good
reference for this is Ledoux (2001, page 41, 2.35).

Theorem 1 (Concentration bound) Let γN denote the distributionN(0, IN ). Suppose the functiong : R
N → R is

C-Lipschitz. Then
γN{z : g(z) ≥ E[g] + r} ≤ e−r2/2C2

.

(To bound the probability thatg(z) ≤ E[g] − r, use−g, which is alsoC-Lipschitz.)

In our case, the random variable with aN(0, IN) distribution is the matrixΘ (soN = dD). Here is an outline of
our argument.

1. Fix a ballB ⊂ R
d. The first observation is thatEΘfΘ(B) = f(B): in expectation, fΘ assigns the desired

probability mass toB.

2. We would like to conclude thatfθ(B) is very close tof(B) for typical θ, but this doesn’t immediately follow
from the concentration bound sincef(θ, B) may not be Lipschitz inθ.

3. So instead, as was done for one-dimensional projections in Bobkov (2003), we introduce a smoothed version of
fθ. We call it f̃θ, and we show thatit is concentrated around its expected value.

4. Then we need to relatẽfθ to fθ; this is the main technical portion of the proof.

5. So for a fixed ballB, for almost allθ, fθ(B) ≈ f(B). But we want to show thatfθ(B) ≈ f(B) for all balls
B ⊂ R

d simultaneously. To do so, we explicitly construct a finite set of ballsB1, . . . , BM with the property
that if fθ is close tof on these balls, then it is close tof on all balls. We finish by taking a union bound over the
Bi.

3.3 The expectation of fΘ

Let Θ be ad × D matrix with i.i.d.N(0, 1) entries; we will denote this distribution over matrices byγ. Recallfθ is
the distribution of the projected random variable

X 7→ 1√
D

θX.

Lemma 2 Fix anyx ∈ R
D. The distribution of 1√

D
Θx (for Θ chosen at random according toγ) is N(0, ‖x‖2

D Id).

Proof. Any linear transformation of a Gaussian is Gaussian, so1√
D

Θx has a Gaussian distribution. Its mean and

second moments are easily checked.

For any ballB ⊂ R
d, definefθ(B) to be the probability mass ofB under projectionθ, that is,

fθ(B)
△
= f(θ, B)

△
= PX

[
θX√

D
∈ B

]
= EX

[
11

(
θX√

D
∈ B

)]
,

where11(·) is the indicator function.
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Lemma 3 Fix any ballB ⊂ R
d. ThenEΘfΘ(B) = f(B).

Proof. Applying Fubini’s theorem, and usingP for the distribution ofX ,

EΘf(Θ, B) =

∫ ∫
11

(
θx√
D

∈ B

)
P (dx) γ(dθ) =

∫ ∫
11

(
θx√
D

∈ B

)
γ(dθ)P (dx).

By the previous lemma, the inner expectation isν‖x‖/
√

D(B), a function only of‖x‖. Thus

EΘf(Θ, B) =

∫
ν‖x‖/

√
D(B)P (dx) =

∫
νσ(B)µ(dσ)

under the change of variableσ = ‖x‖/
√

D.

Fix some ballB. We can’t directly apply the concentration bound to show that f(·, B) is tightly concentrated
around its expectation because this function may not be Lipschitz in θ. To see this, suppose thatX is uniformly
distributed overk support points, and that under projectionθ, exactly one of these support points falls inB. Then
f(θ, B) = 1/k. However, if this projected point is right at the boundary ofB, even a tiny perturbationθ → θ′ could
cause it to fall outsideB, whereuponf(θ′, B) = 0. So |f(θ, B) − f(θ′, B)| cannot be upper-bounded in terms of
‖θ − θ′‖.

3.4 A smoothed version of fθ

Fix a ballB ⊂ R
d and a projectionθ. Consider an experiment in which a pointX is randomly drawn and is assigned

a score of1 if its projection happens to fall inB; and a score of0 otherwise. Thenf(θ, B) = EX

[
11( θX√

D
∈ B)

]
is the

expected score achieved. To get a smoother version of this function, we will assign a fractional score if the projected
point doesn’t fall exactly inB but is nonetheless close by.

For some value∆ > 0 to be determined, define the functionhB : R
d → [0, 1] as follows:

hB(z) =





1 if d(z, B) = 0
1 − (d(z, B)/∆) if 0 < d(z, B) ≤ ∆
0 if d(z, B) > ∆

whered(z, B) = infy∈B ‖y − z‖ is the distance from pointz to ballB. ClearlyhB is (1/∆)-Lipschitz.
Now, define the smoothed functioñf(θ, B) as

f̃(θ, B) = EX

[
hB

(
θX√

D

)]
.

A one-dimensional version of the following lemma was used bySudakov (1978).

Claim 4 Fix a ball B ⊂ R
d. Thenf̃(·, B) is

√
λmax/D∆2-Lipschitz, whereλmax is the largest eigenvalue of the

covariance matrixEX

[
XXT

]
.
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Proof. For anyθ, θ′,

|f̃(θ, B) − f̃(θ′, B)| =

∣∣∣∣EX

[
hB

(
θX√

D

)
− hB

(
θ′X√

D

)]∣∣∣∣

≤ EX

∣∣∣∣hB

(
θX√

D

)
− hB

(
θ′X√

D

)∣∣∣∣

≤ 1

∆
· EX

∥∥∥∥
θX√

D
− θ′X√

D

∥∥∥∥ (hB is (1/∆)-Lipschitz)

=
1

∆
√

D
· EX ‖(θ − θ′)X‖

≤ 1

∆
√

D
·
√

EX‖(θ − θ′)X‖2

≤ 1

∆
√

D
·
√

λmax‖θ − θ′‖2 =

√
λmax

∆
√

D
· ‖θ − θ′‖,

as claimed.

The concentration bound (Theorem 1) gives

Claim 5 Fix any ballB ⊂ R
d, and any0 < ǫ < 1. WhenΘ is picked at random according toγ,

PΘ

[
|f̃(Θ, B) − EΘf̃(Θ, B)| ≥ ǫ

]
≤ 2e−ǫ2∆2D/2λmax .

The problem is that we are interested in the original functionsfθ rather than their smoothed counterparts. To relate the
two, we use:

fθ(B) ≤ f̃θ(B) ≤ fθ(B∆)

whereB∆ is a shorthand for the Minkowski sumB +B(0, ∆) (to put it simply, grow the radius ofB by ∆). By abuse
of notation, letB−∆ be the ball with the same center asB but whose radius is smaller by∆ (this might be the empty
set). Then:

Corollary 6 Fix any ballB ⊂ R
d, and any0 < ǫ < 1. WhenΘ is picked at random according toγ,

PΘ

[
f(B−∆) − ǫ ≤ f(Θ, B) ≤ f(B∆) + ǫ

]
≥ 1 − 2e−ǫ2∆2D/2λmax .

It is necessary, therefore, to relatef(B) to f(B∆).

3.5 Relating the probability mass of B to that of B∆

Recallf is the scale-mixture

f =

∫
νσ µ(dσ)

whereνσ is the spherical GaussianN(0, σ2Id). As a first step towards relatingf(B) andf(B∆), we relateνσ(B) and
νσ(B∆).

If ∆ is small enough, thenνσ(B∆) will not be too much larger thanνσ(B). But how small exactly does∆ need to
be? There are two effects that come into play.

1. The Gaussianνσ has significant mass at radiusσ
√

d. So it is important to deal properly with balls of radius
approximatelyσ

√
d.

2. If B has radiusr then vol(B∆) = vol(B) ·
(

r+∆
r

)d
. Therefore, if we want the probability mass ofB∆ to be at

most(1 + ǫ) times that ofB, we need∆ = O(rǫ/d).
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These two considerations tell us that we need∆ ≤ ǫσ/
√

d. The second also implies that any value of∆ we choose
will only work for balls of radius> ∆d. To get around this, we make sure that∆ is sufficiently small that any ball of
radius less than∆d has insignificant (less thanǫ) probability mass.

The following key technical lemma is proved in the appendix.Notice that the bound on∆ is roughlyǫσ/
√

d.

Lemma 7 Pick any0 < ǫ < 1 and anyσ > 0. If

∆ ≤ σ√
d
· ln
(
1 +

ǫ

4

)
· 1

2 +
√

2
d ln 4

ǫ

,

thenνσ(B∆) ≤ νσ(B) + ǫ for any ballB.

Finally, we consider the scale-mixture rather than just individual componentsνσ.

Corollary 8 Pick any0 < ǫ < 1 and a thresholdσǫ > 0 such thatµ{σ : σ < σǫ} ≤ ǫ. If

∆ ≤ σǫ√
d
· ln
(
1 +

ǫ

4

)
· 1

2 +
√

2
d ln 4

ǫ

,

thenf(B∆) ≤ f(B) + 2ǫ for any ballB.

Proof. We can rewritef asEσ[νσ], where the expectation is taken overσ drawn according toµ.

f(B∆) − f(B) = Eσ[νσ(B∆)] − Eσ[νσ(B)]

≤ Eσ[νσ(B∆) − νσ(B) | σ ≥ σǫ] + Pσ(σ < σǫ)

≤ 2ǫ,

as claimed.

At this stage, we have shown that for any givenB, almost all projectionsθ havefθ(B) ≈ f(B). Putting together
Corollaries 6 and 8, we get:

Theorem 9 Pick any0 < ǫ < 1/2 andσǫ > 0 such thatµ{σ : σ < σǫ} ≤ ǫ. Pick any ballB ⊂ R
d. Then

PΘ

[
|fΘ(B) − f(B)| > ǫ

]
≤ exp

{
−Ω

(
ǫ4D

d
· σ2

ǫ

λmax
· 1

ln 1/ǫ

)}

It remains to prove this for all ballssimultaneously.

3.6 Uniform convergence for all balls

We follow a standard method for proving uniform convergence: we carefully choose a small finite set of balls
B0, . . . , BM ⊂ R

d such that if the concentration property (Theorem 9) holds ontheseBi’s, then it holds forall
balls inR

d. Specifically, ourBi’s have the following property:

For any ballB ⊂ R
d there existBi, Bj such thatBi ⊂ B ⊂ Bj andf(Bj) − f(Bi) ≤ 2ǫ.

It follows that if fθ(Bi) ≈ f(Bi) for the finite set of ballsBi, thenfθ(B) ≈ f(B) for all ballsB ⊂ R
d.

Actually, things are just slightly more complicated than this. There is no finite collection ofBi’s that can possibly
satisfy this criterion given that the ballsB can be arbitrarily far from the origin. The saving grace is that almost all the
probability mass off lies within B(0, c

√
d) for some suitable constantc, and so we need only make sure that for all

ballsB ⊂ R
d, there existBi ⊂ Bj such that:

• Bi ⊂ B andB ∩ B(0, c
√

d) ⊂ Bj .

10



• f(Bj) − f(Bi) ≤ 2ǫ.

The ballsBi will be centered at grid points in[−C
√

d, C
√

d]d, for someC > c.

Here’s the construction ofB1, . . . , BM , for some parametersC, ǫo to be determined:

1. Place a grid with resolution (spacing)2ǫo on [−C
√

d, C
√

d]d.

2. At each point on the grid, create a set of balls centered at that point, with radiiǫo

√
d, 2ǫo

√
d, . . . , (2C +2ǫo)

√
d.

The total number of balls is thenM =
(

C
√

d
ǫo

+ 1
)d

· 2C+2ǫo

ǫo

. For good measure, add in two final balls:∅ andR
d.

The first step is to confirm that most off indeed lies close to the origin.

Lemma 10 Supposec ≥
√

λavg/ǫ, whereλavg is the average eigenvalue ofE[XXT ]. Thenf(B(0, c
√

d)) ≥ 1 − ǫ.

Proof. Let Z be a random draw fromf =
∫

νσµ(dσ).

E‖Z‖2 =

∫
σ2d µ(dσ) =

d

D
E‖X‖2 = dλavg .

Sincec2 ≥ λavg/ǫ, by Markov’s inequality

P

[
‖Z‖ ≥ c

√
d
]

≤ E‖Z‖2

c2d
≤ ǫ

and sof(B(0, c
√

d)) = 1 − P[‖Z‖ ≥ c
√

d] ≥ 1 − ǫ.

Now we show that all ballsB ⊂ R
d centered inB(0, C

√
d) are well approximated by theBi.

Lemma 11 Supposec ≥
√

λavg/ǫ andǫo ≤ ∆/(4
√

d). Pick any ballB ⊂ R
d centered inB(0, C

√
d). Then there

existBi, Bj such that
Bi ⊂ B ⊂ Bj

andf(Bj) − f(Bi) ≤ 2ǫ.

Proof. SayB = B(x, r), with x ∈ B(0, C
√

d). There are two cases to consider.

Case 1:r ≤ 2C
√

d.
By construction, there is a grid pointx̃ which differs fromx by at mostǫo on each coordinate, so‖x− x̃‖ ≤ ǫo

√
d.

Let Bin = B(x̃, r1) be the largest of theBi’s centered at̃x andcontained insideB (if necessary taker1 = 0 so
thatBin = ∅). Likewise letBout = B(x̃, r2) be the smallest of theBi’s centered at̃x andcontainingB. Again by
construction,

r1 ≥ r − ‖x − x̃‖ − ǫo

√
d ≥ r − 2ǫo

√
d

r2 ≤ r + ‖x − x̃‖ + ǫo

√
d ≤ r + 2ǫo

√
d

Sinceǫo ≤ ∆/(4
√

d), we haveBout ⊂ Bin
∆ and thus, by corollary 8,f(Bout) − f(Bin) ≤ 2ǫ.

Case 2:r > 2C
√

d.
In this case,B is contained inRd and contains the ballBi which is centered at the origin and has radiusC

√
d. The

previous lemma shows thatf(Bi) ≥ 1 − ǫ.

Finally, we handle balls centered outsideB(0, C
√

d).

11



Lemma 12 Suppose thatc ≥
√

λavg/ǫ, ǫo ≤ ∆/(5
√

d), andC ≥ c + (c2/2ǫo). For any ballB centered outside
B(0, C

√
d), there existBi ⊂ Bj such that

Bi ⊂ B and B ∩ B(0, c
√

d) ⊂ Bj

andf(Bj) − f(Bi) ≤ 2ǫ.

Proof. SupposeB = B(x, r) for ‖x‖ > C
√

d. If B either containsB(0, c
√

d) or doesn’t intersect it at all, then we’re
done: in the first case, takeBi = B(0, c

√
d), Bj = R

d, and in the second case, takeBi = Bj = ∅.
So assumeB intersectsB(0, c

√
d) but doesn’t contain it. This means−c

√
d < ‖x‖−r < c

√
d. We’ll approximate

B by a ballB(x′, r′) centered on the surface ofB(0, C
√

d). To this end, letx′ = C
√

d
‖x‖ x andr′ = r − ‖x − x′‖. In

particular,‖x′‖ = C
√

d andr′ = r − ‖x‖ + ‖x′‖ ∈ ((C − c)
√

d, (C + c)
√

d).
To see thatB(x′, r′) is a close approximation toB(x, r), notice first thatB(x′, r′) ⊂ B(x, r) because for any

z ∈ B(x′, r′),
‖z − x‖ ≤ ‖z − x′‖ + ‖x − x′‖ ≤ r′ + ‖x − x′‖ = r.

In the other direction,B(x, r) ∩ B(0, c
√

d) ⊂ B(x′, r′ + ǫo

√
d). To see this, pick anyz ∈ B(x, r) ∩ B(0, c

√
d), and

examine the components ofz − x′ in the direction ofx and perpendicular tox. Letting x̂ be the unit vector in the
direction ofx,

(x′ − z) · x̂ = (x′ − x) · x̂ + (x − z) · x̂ ≤ ‖x′‖ − ‖x‖ + ‖x − z‖ ≤ r′ − r + r = r′.

And the component ofz−x′ perpendicular tôx is the same as the component ofz perpendicular tôx, which is in turn
at most‖z‖ ≤ c

√
d. Combining both components, we get

‖z − x′‖ ≤
√

(r′)2 + c2d = r′

√
1 +

c2d

(r′)2
≤ r′

(
1 +

c2d

2(r′)2

)
≤ r′ +

c2d

2(C − c)
√

d
≤ r′ + ǫo

√
d.

Since‖x′‖ ≤ C
√

d andr′ ≤ (C + c)
√

d < 2C
√

d, we can proceed as in case 1 of the previous lemma. This gives
us a grid point̃x and radiir1, r2 which are multiples ofǫo

√
d such that

B(x̃, r1) ⊂ B(x′, r′) ⊂ B(x′, r′ + ǫo

√
d) ⊂ B(x̃, r2)

andr2 − r1 ≤ 5ǫo

√
d. Sinceǫo ≤ ∆/(5

√
d), we have from Corollary 8 thatf(B(x̃, r2)) − f(B(x̃, r1)) ≤ 2ǫ.

All the pieces are now in place. We apply Theorem 9 to each of the ballsBi, taking an union bound over the error
probabilities. And then, using the last three lemmas, we conclude uniform convergence for all ballsB ⊂ R

d.

Theorem 13 SupposeX has mean zero and finite second moments. Definefθ, µ, f as above. Pick any0 < ǫ < 1/2
andσǫ > 0 such thatµ{σ : σ < σǫ} ≤ ǫ. Then

PΘ

[
sup

balls B ⊂ R
d

|fΘ(B) − f(B)| > ǫ

]
≤
(

O

(
d2

ǫ3
λavg

σ2
ǫ

ln
1

ǫ

))d

exp

{
−Ω

(
ǫ4D

d
· σ2

ǫ

λmax
· 1

ln 1/ǫ

)}

whereλavg andλmax are the average and maximum eigenvalues of the covarianceE[XXT ].
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4 Appendix: proof of Lemma 7

Let B = B(x, r), so thatB∆ = B(x, r + ∆), and fix anyσ > 0. We will compareνσ(B) with νσ(B∆). First, note
that

νσ(B∆) =

∫

B(0,r+∆)

νσ(x + z) dz

≤
∫

z∈B(0,r+∆)
‖x+z‖≤C

νσ(x + z) dz + νσ(Rd \ B(0, C))

=

∫

y∈B(0,r)
‖x+y+(∆/r)y‖≤C

νσ

(
x + y +

∆y

r

)(
r + ∆

r

)d

dy + νσ(Rd \ B(0, C))

under the change of variabley = z · r
r+∆ . This integral can be upper-bounded in terms ofνσ(B).

Lemma 14 If ‖y‖ ≤ r and‖x + y + ∆
r y‖ ≤ C thenνσ(x + y + ∆

r y) ≤ νσ(x + y) · e(C+∆)∆/σ2

.

Proof. The length bounds tell us that‖∆
r y‖ ≤ ∆ and that‖x + y‖ ≤ ‖x + y + ∆

r y‖ + ‖∆
r y‖ ≤ C + ∆. Therefore,

‖x + y + ∆
r y‖2 ≥ ‖x + y‖2 − 2‖x + y‖‖∆

r y‖
≥ ‖x + y‖2 − 2(C + ∆)∆

whereupon

νσ(x + y + ∆
r y) =

1

σd(2π)d/2
e−‖x+y+(∆/r)y‖2/2σ2

≤ 1

σd(2π)d/2
e−‖x+y‖2/2σ2

e(C+∆)∆/σ2

,

as claimed.

We also need to bound the termνσ(Rd \ B(0, C)).

Lemma 15 If the random variableZ is distributed asN(0, Id), then for anyc > 0,

P[‖Z‖ ≥ c
√

d] ≤ e−(c−1)2d/2.

Proof. This is just a chi-squared tail bound, but can also be quicklyderived from Theorem 1, since‖ · ‖ is 1-Lipschitz
andE‖Z‖ ≤

√
E‖Z‖2 =

√
d.

Lemma 16 For any0 < ǫ < 1, choose

∆ ≤ σ√
d
· ln(1 + ǫ) · 1

1 + 1
d +

√
2
d ln 1

ǫ

.

Then for allx ∈ R
d and allr > 0, we haveνσ(B(x, r + ∆)) ≤ (1 + ǫ)

(
r+∆

r

)d
νσ(B(x, r)) + ǫ.
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Proof. Continuing from our earlier expression forνσ(B(x, r + ∆)),

νσ(B(x, r + ∆)) ≤
∫

y∈B(0,r)
‖x+y+(∆/r)y‖≤C

νσ

(
x + y +

∆y

r

)(
r + ∆

r

)d

dy + νσ(Rd \ B(0, C))

≤ e(C+∆)∆/σ2

(
r + ∆

r

)d ∫

y∈B(0,r)
‖x+y+(∆/r)y‖≤C

νσ(x + y) dy + νσ(Rd \ B(0, C))

≤ e(C+∆)∆/σ2

(
r + ∆

r

)d

νσ(B(x, r)) + e−((C/σ
√

d)−1)2d/2,

where the last two inequalities follow from Lemmas 14 and 15,respectively. Now setC = (1 +
√

2
d ln 1

ǫ )σ
√

d.

This bound is reasonable ifr is large. On the other hand, ifr is tiny, thenνσ(B(x, r + ∆)) is less thanǫ and the
whole point is moot anyway. We now establish this formally.

Lemma 17 For anyr > 0 andσ > 0,

νσ(B(0, r)) ≤
(

2r

σ
√

d

)d

.

Proof. This is surely known, but as we haven’t been able to find a reference, we are including a quick proof. Without
loss of generalityσ = 1, soνσ isN(0, Id). The squared length of a random point from this distributionhas chi-squared
density withd degrees of freedom,

p(z) =
z(d/2)−1e−z/2

2d/2Γ(d/2)
.

Therefore,

ν1(B(0, r)) =

∫ r2

0

z(d/2)−1e−z/2

2d/2Γ(d/2)
dz

≤ 1

2d/2Γ(d/2)

∫ r2

0

z(d/2)−1dz

=
(2/d)rd

2d/2Γ(d/2)

=
rd

2d/2Γ((d/2) + 1)

≤ rd

2d/2(d/8)d/2
=

(
2r√
d

)d

,

where the last inequality is a consequence of the following fact.

Fact.Γ((d/2) + 1) ≥ (d/8)d/2 for any integerd ≥ 1.

One way to see this is by induction. The base casesd = 1, 2 are trivially checked, and ford > 2,

Γ

(
d

2
+ 1

)
=

d

2
Γ

(
d

2

)
≥ d

2

(
d − 2

8

)(d−2)/2

= 4 ·
(

d

8

)d/2

·
(

d − 2

d

)(d/2)−1

≥ 4

e

(
d

8

)d/2

≥
(

d

8

)d/2

,
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where the second-last inequality relies on one last fact.

Fact.
(
1 − 2

d

)(d/2)−1 ≥ 1/e for anyd > 2.

This comes from rewriting the familiarex ≥ 1 + x usingx = 2/(d − 2):

e2/(d−2) ≥ 1 +
2

d − 2
=

d

d − 2
.

Flipping this,e−2/(d−2) ≤ 1 − 2
d , and so

(
1 − 2

d

)(d/2)−1 ≥
(
e−2/(d−2)

)(d/2)−1
= e−1.

As mentioned earlier, the cases whenr is very large or very small are easy to handle. The more involved case is
whenr is of intermediate size. Together, they complete the proof of lemma 7.

Lemma 7 Pick any0 < ǫ < 1 and anyσ > 0. If

∆ ≤ σ√
d
· ln
(
1 +

ǫ

4

)
· 1

2 +
√

2
d ln 4

ǫ

,

thenνσ(B∆) ≤ νσ(B) + ǫ for any ballB.

Proof. Pick anyB = B(x, r). By Lemma 16, the choice of∆ implies that

νσ(B(x, r + ∆)) ≤ (1 + ǫ/4)

(
r + ∆

r

)d

νσ(B(x, r)) + ǫ/4.

We’ll look at three cases for the value ofr.

Case 1 (large values):r ≥ 1
2σ

√
d.

The lower bound onr implies∆d ≤ r ln(1 + ǫ/4), and thus that

(
r + ∆

r

)d

≤
(

1 +
ln(1 + ǫ/4)

d

)d

≤ 1 + ǫ/4,

whereuponνσ(B∆) ≤ (1 + ǫ/4)2νσ(B) + ǫ/4 ≤ νσ(B) + ǫ.

Case 2 (small values):r + ∆ ≤ 1
2ǫσ

√
d.

From Lemma 17:

νσ(B∆) ≤ νσ(B(0, r + ∆)) ≤
(

2(r + ∆)

σ
√

d

)d

≤ ǫ ≤ νσ(B) + ǫ.

Case 3 (intermediate values):1
2σ

√
d ≥ r ≥ 1

2ǫσ
√

d − ∆.
First observe that∆ ≤ ǫσ/(8

√
d). This means

r ≥ 1

2
ǫσ

√
d − ǫσ

8
√

d
≥ 3

8
ǫσ

√
d,

and so (
r + ∆

r

)d

≤
(

1 +
ǫσ/(8

√
d)

(3/8)ǫσ
√

d

)d

=

(
1 +

1

3d

)d

≤ e1/3 ≤ 7

5
.
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Using the inequality(1 + x)d ≤ 1 + dx(1 + x)d for integersd ≥ 1 and0 < x < 1/d (see Lemma 18 below), we can
also write (

r + ∆

r

)d

≤ 1 +
∆d

r

(
r + ∆

r

)d

≤ 1 +
7∆d

5r
.

Thus

νσ(B∆) − νσ(B) ≤
(
1 +

ǫ

4

)(r + ∆

r

)d

νσ(B) +
ǫ

4
− νσ(B)

≤
((

r + ∆

r

)d

− 1

)
νσ(B) +

(
r + ∆

r

)d
ǫ

4
+

ǫ

4

≤ 7∆d

5r

(
2r

σ
√

d

)d

+
7

5
· ǫ

4
+

ǫ

4

=
14∆

√
d

5σ

(
2r

σ
√

d

)d−1

+
3ǫ

5

≤ 14

5
· ǫ

8
· 1 +

3ǫ

5
< ǫ.

There is one last technical detail to tie up.

Lemma 18 For any integerd ≥ 1 and any0 < x < 1/d,

(1 + x)d ≤ 1

1 − dx
.

Proof. This is immediate from the series expansions of both sides:

(1 + x)d = 1 + dx +

(
d

2

)
x2 +

(
d

3

)
x3 + · · · +

(
d

d

)
xd

≤ 1 + dx + (dx)2 + (dx)3 + · · ·

=
1

1 − dx
.
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