
Linear Dimension Reduction (in L2)



Linear Dimension Reduction: RD → Rd

Goal: Find a low-dim. linear map that preserves the relevant information

ie find a d x D matrix M • Application dependent
• Different definitions yield 

different techniques
Some canonical techniques…

• RP (Random Projections)
• PCA (Principal Component Analysis)
• LDA (Linear Discriminate Analysis)
• MDS (Multi-dimensional Scaling)
• ICA/BSS (Independent Component Analysis/Blind Source Separation)
• CCA (Canonical Correlation Analysis)
• DML (Distance Metric Learning)
• DL (Dictionary Learning)
• FA (Factor Analysis)
• NMF/MF ((Non-negative) Matrix Factorization)



Random Projections (RP)

Goal: Find a low-dim. linear map that preserves… 
the worst case interpoint Euclidean distances by a factor of (1  )

Solution: M with each entry N(0,1/d)

Reasoning: JL lemma.

Given  > 0, pick any d = (log n / 2)
Given some d, we have  = O(log n / d)1/2 )



Principal Component Analysis (PCA)

Goal: Find a low-dim. subspace that minimizes… 
the average squared residuals of the given datapoints

Define

minimize

d-dimensional orthogonal 
linear projector

The problem is equivalent to

Solution: Basically is the top d eigenvectors of the matrix XXT !



Fisher’s Linear Discriminant Analysis (LDA)

Goal: Find a low-dim. map that improves… 
classification accuracy!

Motivation: 
PCA minimizes reconstruction error     good classification accuracy 
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Classification direction

How can we get classification direction?

Simple idea:  pick the direction w that separates 
the class conditional means as much as possible!



Linear Discriminant Analysis (LDA)

So, the direction induced by class conditional means solves simple issues but 
may still not be the best direction
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Class conditional mean direction

Intended classification direction

Class conditional mean direction

Fix:  need to take the projected class 
conditional spread into account!



Linear Discriminant Analysis (LDA)

So how can we get this intended classification direction?

Want:
• Projected class means as far as possible
• Projected class variance as small possible 

Class conditional mean dir.

Let’s study this optimization 
in more detail…



Linear Discriminant Analysis (LDA)

Consider the terms in the denominator…

ie, scatter in class “a”

So

=: SW (within class scatter)



Linear Discriminant Analysis (LDA)

Consider the terms in the numerator…

ie, scatter across classes

=: SB (between class scatter)



Linear Discriminant Analysis (LDA)

So, how do we 
optimize?

Divide by

= L(w)

So, at optima

Therefore, optimal w is the 
maximum eigenvalue of SBSW

-1

Multiclass case (for j classes):



Distance Metric Learning 

Goal: Find a linear map that improves… classification accuracy!

Idea: Find a linear map L that brings data from same class closer 
together than different class (this would help improve classification 
via distance-based methods!)

If L is applied to the input data, what would be the resulting distance?

So, what L would be good for 
distance-based classification?

also called Mahalanobis
metric learning



Distance Metric Learning

Want:

Distance metric:  

such that:    data samples from same class yield small values

data samples from different class yield large values

One way to solve it mathematically: 

Create two sets:   Similar set   

Dissimilar set

Define a cost function:

Minimize        w.r.t. L

i, j = 1,…, n

Several convex variants exist in the 
literature (e.g. MMC, LMNN, ITML) 



Distance Metric Learning

Mahalanobis Metric for Clustering (MMC):

maximizeM

s.t.

(define M = LTL)

[Xing et al. ’02]

conic constraint L0-type non-convex constraint
can relax it to tr(M)  k



Distance Metric Learning

Large Margin Nearest Neighbor (LMNN): [Weinberger and Saul ’09]

point

true neighbor

imposter



LMNN Performance

Query 

Original

metric

After 

learning



Multi-Dimensional Scaling (MDS)

Goal: Find a Euclidean representation of data given only interpoint distances

Given distances ij between (total n) objects, find a vectors x1,…,xn  RD s.t.

Classical MDS    
Deals with the case when an isometric embedding does exist.

Metric MDS
Deals with the case when an isometric embedding does not exist.

Non-metric MDS
Deals with the case when one only wants to preserve distance order.



Classical MDS

Let D be an n x n matrix s.t. Dij = ij

If an isometric embedding exists, then 
• One can show that 

is PSD

• Which can then be factorized to construct a Euclidean embedding!

How? See hwk☺



Metric and non-metric MDS

Metric MDS – (when an isometric embedding does not exist)

There is no direct way; one can solve for the following optimization

Non-Metric MDS – (only want to preserve distance order)

Stress function

Just do standard 
constrained optimization

Can do isotonic regression 
for monotonic g



Blind Source Separation (BSS)

Often the collected data is a mix from multiple sources and a practitioners 
are interested in extracting the clean signal of the individual sources.

Motivating examples:
The cocktail party problem 
• Multiple conversations are happening in a 

crowded room
• Microphones record a mix of conversations
• Goal is to separate out the conversations

EEG recordings
• Non-invasive way of capturing brain activity
• Sensors pick up a mix of activity signals
• Isolate the activity signals



Blind Source Separation (BSS)

The Data Model:

X = MS 

• Goal: given X, recover S (without knowing M)

=
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clean source signal

unknown/hidden 
mixing

Observed (mixed) data

issue: under-constrained problem, ie multiple 
plausible solutions. Which one is “correct”?



Blind Source Separation (BSS)

X = MS 
Assumption:
• The source signals S (rows) are generated independently from each other

The matrix M simply mixes these independent signals linearly to generate X

Then, what can we say about X (compared to S)?

Recall: Central Limit Theorem – a linear combination of independent 
random variables (under mild conditions) essentially looks like a Gaussian!

• X is more gaussian-like than S
• Modified goal: Find entries of S that are least gaussian-like

How to check how Gaussian-
like is a distribution?

Independent component analysis (ICA)



Blind Source Separation (BSS)

How to measure how “Gaussian-like” a distribution is?

• Kurtosis-based Methods
kurtosis: fourth (standardized) moment of a distribution

Kurt(X) = E[ ((X-)/)4 ]

if we model the ith signal Si = Wi
T X 

maxWi Kurt(Wi
T X)

s.t. Var[Wi
T X] = 1;    E[Wi

T X] = 0 

For a gaussian 
distribution, kurtosis = 3

Sub-gaussian (‘light’ tailed) , kurtosis < 3 platykurtic
Super-gaussian (‘heavy’ tailed), kurtosis > 3 leptokurtic



Blind Source Separation (BSS)

How to measure how “Gaussian-like” a distribution is?

• Entropy-based Methods
Entropy: measure of uncertainty in a distribution

H(X) =  – Ex [ log(p(x)) ]

if we model the ith signal Si = Wi
T X 

maxWi – H(Wi
T X)

s.t. Var[Wi
T X] = 1;    E[Wi

T X] = 0 

Fact: among all distributions with a fixed variance, Gaussian distribution has 
the highest entropy!



Blind Source Separation (BSS)

Can we make source signals “independent” directly?

• Mutual Information-based Methods
Mutual info: amount of info a variable contains about the other

I(X;Y) =  Ex,y [ log( p(x,y) / p(x)p(y) ) ]

if we model the ith signal Si = Wi
T X 

min     i<j I(Wi
T X; Wj

T X)



Blind Source Separation (BSS)

Application (cocktail party problem)

• Audio clip 
mic 1 mic 2

unmixed source 1 unmixed source 2



Matrix Factorization

Motivation: the Netflix problem

Given n users and m movies, with some users have rated some of the 
movies; the goal is to predict the ratings for all movies for all the users.

Data Model:

Rij = Ui . Vj

=
ratings 

(R)n

m

users 
(U)

n

k

movies 
(V)
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Movies genres 

Users preferences(partially) observed 
ratings



Matrix Factorization

R = UV

minU,V Rij observed (Rij – Ui . Vj )2

Important variations:
Non-negative matrix factorization

Equivalent to the probabilistic model where the ratings are generated as 
Rij = Ui . Vj + ij   N(0,2)

We can optimize using 
alternating minimization

It is possible to add priors to U and V, which 
would be helpful for certain applications



Canonical Correlations Analysis (CCA)

What can be done when the data comes in “multiple views”
Same observation – different set of measurements are made

Examples:
Social interaction between individuals
• Video recording of the interaction
• Audio recording of the interaction
• Brain activity recording of the interaction 

Ecology – want to study how abundance of special relates to 
environmental variables
• Data on how species are distributed in various sites
• Data on what environmental variables are there for the same sites

How can we combine multiple 
views for effective learning?



Canonical Correlations Analysis (CCA)

Canonical correlation analysis (CCA):
• A way of measuring the linear relationship between two variables. 
• Finds a projection (linear map) with maximizes the relationship between 

the variables, which can then be used for data analysis

Let X and Y be the data in two different “views”, want to find Wx and Wy

which maximally aligns (correlates) the data

Let  a = XT Wx ; b = YT Wy then maximize the correlation between a and b

Can be solved via 
eigendecomposition



Canonical Correlations Analysis (CCA)

Ecology application


