Linear Dimension Reduction (in L,)




Linear Dimension Reduction: RP — R

Goal: Find alow-dim. Iinea@that preserves the(relevant information

ie find a d x D matrix M e Application dependent
* Different definitions yield

. . different techniques
Some canonical techniques...

 RP (Random Projections)

* PCA (Principal Component Analysis)

e LDA (Linear Discriminate Analysis)

 MDS (Multi-dimensional Scaling)

e |CA/BSS (Independent Component Analysis/Blind Source Separation)
 CCA (Canonical Correlation Analysis)

DML (Distance Metric Learning)

e DL (Dictionary Learning)

* FA (Factor Analysis)

 NMF/MF ((Non-negative) Matrix Factorization)



Random Projections (RP)

Goal: Find a low-dim. linear map that preserves...
the worst case interpoint Euclidean distances by a factor of (1 £ ¢)

Given £ >0, pick any d = Q(log n / £?)
Given some d, we have ¢ = O(log n / d)¥/2)

Solution: M with each entry N(0,1/d)

Reasoning: JL lemma.



Principal Component Analysis (PCA)

Goal: Find a low-dim. subspace that minimizes...
the average squared residuals of the given datapoints

Define II¢:RP

linear projector

| 0 o

\

. RP d-dimensional orthogonal \ \ .

7, — O4Z;)

. . . n
minimize 1 S
114 n 4

1=1

The problem is equivalent to

1 « 1
arg min — 3" |17 - QQTE ||* =arg_max u(QT(-xXT)Q)
QGRDXd n Pt QERDXd n
QTQ=I B Q'Q=I

Solution: Basically is the top d eigenvectors of the matrix XX !



Fisher’s Linear Discriminant Analysis (LDA)

Goal: Find a low-dim. map that improves...
classification accuracy!

Motivation
PCA minimizes reconstruction error @good classification accuracy
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Linear Discriminant Analysis (LDA)

So, the direction induced by class conditional means solves simple issues but
may still not be the best direction
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Fix: need to take the projected class
conditional spread into account!



Linear Discriminant Analysis (LDA)

Want:
* Projected class means as far as possible %% e
* Projected class variance as small possible /i“ .l;l ’q Ho
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Let’s study this optimization
in more detalil...



Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

max L('w) — (Nb _ Ua) _w SBw So, how do we
w 6§24 G2  wTS optimize?
a b w ww

0= 8wL( w) = (w' Syw)(2Spw) — (w' Spw)(2Sww)

Divide by ZwTSWw So, at optima
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Distance Metric Learning

Goal: Find a linear map that improves... classification accuracy!

|Idea: Find a linear map L that brings data from same class closer
together than different class (this would help improve classification

via distance-based methods!)
also called Mahalanobis

metric learning

If L is applied to the input data, what would be the resulting distance?

1/2
plwi, x5 L) = ||La; — Laj || = |(ws — 2;) LT L(x; — ;)]

So, what L would be good for
distance-based classification?



Distance Metric Learning

Want:
Distance metric: p(x;,z;; L)
such that: data samples from same class yield small values
data samples from different class yield large values

One way to solve it mathematically:
Create two sets: Similar set Si={(xi,z;) | ¥i =y}
Lj=1,..,n

Dissimilar set D = {(Ii,ﬂfj) | Yi 75 yj}
Define a cost function:

U(L) := A Z p*(xi, x5 L) — (1= N) Z p?(xi, 25, L)

(a:i,wj)ES (wiaxj)ED

Minimize ¥ w.r.t. L Several convex variants exist in the
literature (e.g. MMC, LMNN, ITML)



Distance Metric Learning

Mahalanobis Metric for Clustering (MMC): [Xing et al. '02]
maximize,, > Pul,a) (define M = L'L)
(z,x")ED
(x,xz")eS
conic constraint Lo- type non-convex constraint

can relax it to tr(M) <k
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Distance Metric Learning

Large Margin Nearest Neighbor (LMNN): [Weinberger and Saul '09]
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LMNN Performance
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Multi-Dimensional Scaling (MDS)

Goal: Find a Euclidean representation of data given only interpoint distances

Given distances P between (total n) objects, find a vectors x,,...,.x, € RP s.t.

|z — 25| = pij

Classical MDS
Deals with the case when an isometric embedding does exist.

Metric MDS
Deals with the case when an isometric embedding does not exist.

Non-metric MDS
Deals with the case when one only wants to preserve distance order.



Classical MDS

Let D be an n x n matrix s.t. D,-j = P

If an isometric embedding exists, then
 One can show that

1
G =—5H'DH H=I-111"
is PSD

 Which can then be factorized to construct a Euclidean embedding!

How? See hwk ©



Metric and non-metric MDS

Metric MDS — (when an isometric embedding does not exist)

There is no direct way; one can solve for the following optimization

Stress function

Just do standard
constrained optimization

Non-Metric MDS — (only want to preserve distance order)

min " (g2 - a5]) - piy)°

L1geesn - g
g monotonic 1<

Can do isotonic regression
s.t. x; =0 )
‘ for monotonic g
7



Blind Source Separation (BSS)

Often the collected data is a mix from multiple sources and a practitioners
are interested in extracting the clean signal of the individual sources.

Motivating examples: s
The cocktail party problem
 Multiple conversations are happeningin a
crowded room
 Microphones record a mix of conversations
 Goalis to separate out the conversations

EEG recordings

* Non-invasive way of capturing brain activity
* Sensors pick up a mix of activity signals

* |solate the activity signals




Blind Source Separation (BSS)

The Data Model:

t k t
< > — < >
A A .
K signal
. data - . mix (S)
(X) (M)
! clean source signal
\ 4
Observed (mixed) data unknown/hidden
mixing
X=MS

* Goal: given X, recover S (without knowing M)

issue: under-constrained problem, ie multiple
plausible solutions. Which one is “correct”?



Blind Source Separation (BSS)

Independent component analysis (ICA) X=MS
Assumption:

 The source signals S (rows) are@ted independent@each other

The matrix M simply mixes these independent signals linearly to generate X

Then, what can we say about X (compared to S)?

Recall: Central Limit Theorem — a linear combination of independent
random variables (under mild conditions) essentially looks like a Gaussian!

 Xis more gaussian-like than S
 Modified goal: Find entries of S that are least gaussian-like

How to check how Gaussian-
like is a distribution?



Blind Source Separation (BSS)

How to measure how “Gaussian-like” a distribution is?

e Kurtosis-based Methods
kurtosis: fourth (standardized) moment of a distribution

Kurt(X) = E[ ((X-n)/c)* ]

For a gaussian Sub-gaussian (‘light’ tailed), kurtosis < 3 platykurtic
distribution, kurtosis =3  Super-gaussian (‘heavy’ tailed), kurtosis > 3 leptokurtic

if we model the it signal S, = W.T X

max,,; Kurt(W.T X)
s.t. Var[W,"X] =1; E[WTX]=0



Blind Source Separation (BSS)

How to measure how “Gaussian-like” a distribution is?

* Entropy-based Methods
Entropy: measure of uncertainty in a distribution

H(X) = —E, [ log(p(x)) ]

Fact: among all distributions with a fixed variance, Gaussian distribution has
the highest entropy!

if we model the it signal S, = W.T X

max,,; —H(W.,"X)
s.t. Var[W,"X] =1; E[WTX]=0



Blind Source Separation (BSS)

Can we make source signals “independent” directly?

e Mutual Information-based Methods
Mutual info: amount of info a variable contains about the other

IX;Y) = E,, [ log( p(x,y) / p(x)p(y)) ]

if we model the it" signal S, = W.T X

min 2 (WX W, X)



Blind Source Separation (BSS)

Application (cocktail party problem)

* Audio clip
mic 1 mic 2
<G <G
unmixed source 1 unmixed source 2

< <



Matrix Factorization

Motivation: the Netflix problem

Given n users and m movies, with some users have rated some of the
movies; the goal is to predict the ratings for all movies for all the users.

Data Model:
m k m
< > — < >
A A .
k movies
ratings _ n users (V)
n =
(R) (U)
Movies genres
v v
(partially) observed Users preferences

ratings



Matrix Factorization

i _ 2
minyy ZRij observed (Rij U,.V, )
We can optimize using
alternating minimization

Equivalent to the probabilistic model where the ratings are generated as

It is possible to add priors to U and V, which
would be helpful for certain applications
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Canonical Correlations Analysis (CCA)

What can be done when the data comes in “multiple views”
Same observation — different set of measurements are made

Examples:
Social interaction between individuals
e Video recording of the interaction
* Audio recording of the interaction
* Brain activity recording of the interaction

Ecology — want to study how abundance of special relates to
environmental variables

* Data on how species are distributed in various sites

e Data on what environmental variables are there for the same sites

How can we combine multiple
views for effective learning?



Canonical Correlations Analysis (CCA)

Canonical correlation analysis (CCA):

* A way of measuring the linear relationship between two variables.

* Finds a projection (linear map) with maximizes the relationship between
the variables, which can then be used for data analysis

Let X and Y be the data in two different “views”, want to find W, and W,
which maximally aligns (correlates) the data

Let a=X"W,;b=Y"W, then maximize the correlation between a and b

o Bab) B EWIXYTW,)
Vel VECIEWT B WIXXTWLEW Y YT,
E(W, CoyW,y)

Can be solved via

eigendecomposition \/ E [WJ C:-L!_x Ww]E [WJ nyWy]



Canonical Correlations Analysis (CCA)

CCA Map /| Symmetric
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