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Representations

What?

• Given data (in certain representation), produce a representation which 
provides a better understanding of the data

Why?

• Several ML models require data in a specific representation to work well

Usually Rd, sometimes as a similarity function, 

occasionally graphs, rarely as curved spaces

• Enhance the signal in data

Discover underlying structure, suppress noise

• Improve computational efficiency and decrease space usage

Dimensionality reduction, can use simpler models



Dimension Reduction: A Successful Example



Re-Representation Results in Information Loss

Any kind of data processing results in information loss.

Theorem (Data Processing Inequality): Suppose X → Y → Z, then 

I(X;Y)  I(X;Z)

No clever manipulation of the data (deterministic or randomized) can improve 
inference or provide more information about the underlying process X than Y itself

Underlying 
process

Original 
measurements

Any 
processing



Data Processing Inequality

Data Processing Inequality: Suppose X → Y → Z, then I(X;Y)  I(X;Z)

Proof:

Consider    I(X;(Y,Z))  = H(X) – H(X|YZ)

= H(X) – H(X|Z) + H(X|Z) – H(X|YZ)

= I(X;Z) + I(X;Y|Z)

= I(X;Y) + I(X;Z|Y)

The theorem follows.

Recall:  
• I(A;B) = H(A)-H(A|B) = H(B)-H(B|A)
• I(A;B)  0

= 0 
[b/c of the Markovian property X ⊥ Z | Y ]

 0



Data Processing Inequality: Implications

Data Processing Inequality: If X → Y → Z, then I(X;Y)  I(X;Z)

This seems like bad news: 

Any processing/re-representation of data can only result in information loss 
about the underlying process.

Catch:

If we are smart about our processing, we can ensure that we retain 
important aspects of data that are useful for our understanding of the 
underlying process, and loose all the frivolous/uninteresting information. 

Example:

Suppose we want a representation for effective nearest neighbors, then we only 
need to retain ordinal information (a is closer to b than c)



Metric Embeddings



A Motivating Example

Given a data in a ‘dissimilarity between objects’ form

How can we come up a vectoral representation, which respects the relations?

• To gain better understanding of the relationships between data

• If we embed the data in (Rd, L2) we can apply off-the-shelf models.



Metric Embeddings

Goal: Given a metric space (X,) want to embed it in a normed space (Rd, Lp)

Measuring the quality of an embedding:

Given two metric spaces (X,) and (Y,). A mapping f: X→Y is called a 

D-embedding of X into Y (for D  1) if there exists an r > 0 s.t. for all x, x’  X,

r . (x,x’)    (f(x),f(x’))   D . r . (x,x’) 

• D is called the distortion of the embedding f

• If D = 1, then f is distance-preserving and thus called isometric (typically r=1)

• If D  1, and r  (1/D), then f is a contraction

𝐿𝑝
𝑑

Why normed spaces?

• easier to deal with

• we have a better understanding



Embeddings into L

Theorem (Fréchet): An n-point metric space (X,) can be isometrically
embedded into 𝐿∞

𝑛

Proof:

Consider the mapping

Observation:

• f is a contraction, ie  u, v  X, 

Why?    By triangle inequality  u,v, xi  X,

in particular, 

•  u, v  X, i s.t.

Why?

Reminder: ll u – v ll = maxi(|ui-vi|)

For row i corresponding to v



Fréchet Embedding

Theorem (Fréchet): An n-point metric space (X,) can be isometrically
embedded into 𝐿∞

𝑛

Proof:

Consider the mapping

Observation:

•  u, v  X, 

•  u, v  X, i s.t.

L is a universal space!

Reminder: ll u – v ll = maxi(|ui-vi|)



Embeddings into L

Good news: L is a universal space… for finite metric spaces

Some issues:

• The target dimension is huge (d = n). Can it be reduced?

well… we can drop it down to n – 1

(second observation can be refined by one coordinate)

Is it possible to get a significant improvement?



Incompressibility result

Theorem (Incompressibility of general metric spaces): 

If Z is a normed space that D-embeds all n points metric space, then

• dim(Z) = (n) for D < 3

• dim(Z) = (n1/2) for D < 5

• dim(Z) = (n1/3) for D < 7

Proof (very crude sketch):

Consider a collection of n-vertex graphs with large girth (length of the 
shortest cycle). The goal is to embed all such graphs in a normed space Z 
with some dimension dim(Z) without incurring too much distortion. 

Using volume argument, ie each graph must occupy some part of the 
space, by embedding all such graphs we will eventually run out of ‘room’ 
and would require more space (ie dimensions)

More compression 

requires bigger distortion



Embeddings into L (with some distortion)

In light of the incompressibility result, can we get a good low-dimensional 
embedding incurring some distortion?

Theorem (Bourgain): Let D = 3 and (X,) an n-point metric space. There exists 

a D-embedding of X into 𝐿∞
𝑑 with 𝑑 = 48 𝑛 ln 𝑛 = 𝑂( 𝑛 ln 𝑛).

Compare with the lowerbound (Incompressibility result), 

we are almost tight (there is a ln(n) gap)



Bourgain’s Embedding (into L)

Theorem (Bourgain): Let D = 3 and (X,) an n-point metric space. There exists 

a D-embedding of X into 𝐿∞
𝑑 with 𝑑 = 48 𝑛 ln 𝑛 = 𝑂( 𝑛 ln 𝑛).

Proof Idea:

Since we are happy with distortion D = 3, for any pair of point u,v  X, we 
want

Equivalently,  coordinate i, s.t.

Using ideas from Fréchet’s construction, we will have a mapping f as 

each Ai  X is a going to be a set of points 

instead of using just a single point as Ai to create the 
necessary distance, using a set will be more 

economical thus reducing the number of coordinates



Bourgain’s Embedding (into L)

Theorem (Bourgain): Let D = 3 and (X,) an n-point metric space. There exists 

a D-embedding of X into 𝐿∞
𝑑 with 𝑑 = 48 𝑛 ln 𝑛 = 𝑂( 𝑛 ln 𝑛).

Proof sketch cont.:

a picture to keep in mind…

Ai

The goal of the coordinates Ai is to “create” 

distance between pairs of points u,v

Need to ensure that Ai chosen in a way that 
there is some point in Ai close to u and all 

points in Ai are far away from v



Bourgain’s Embedding (into L)

Theorem (Bourgain): Let D = 3 and (X,) an n-point metric space. There exists 

a D-embedding of X into 𝐿∞
𝑑 with 𝑑 = 48 𝑛 ln 𝑛 = 𝑂( 𝑛 ln 𝑛).

Proof:

Let  𝑚 = 24 𝑛 ln 𝑛 , for each i = 1,…,m

• Construct sets Ai as: for each x  X, include it in Ai w.p min(1/2, 1/ 𝑛)
Each choice is independent and all Ai are constructed independently

• Construct sets Āi as: for each x  X, include it in Āi w.p. min(1/2, 1/n)
Each choice is independent and all Āi are constructed independently

We’ll use the map (for each x)

high prob set

low prob set



Proof of Bourgain’s Embedding (into L)

Claim: Pick any distinct u,v  X and any i, then 

• Either 

• or

Proof:

Consider three balls

• B0(u, r = 0)

• B1(v, r = 1/3 (u,v) )

• B2(u, r = 2/3 (u,v) )

The process of randomly creating the sets can be analyzed in two disjoint 
cases…

• |B1  X|  𝑛

• |B1  X| > 𝑛

with probability  1/(12 𝑛) 

over the choice of Ai and Āi

we’ll analyze the effect of Ai

we’ll analyze the effect of Āi



Proof of Bourgain’s Embedding (into L)

Claim: Pick any distinct u,v  X and any i, then 

• Either 

• or

Proof:

If |B1  X|  𝑛, for a given i

Consider the events

• E1 := |B0  Ai |  

• E2 := |B1  Ai | = 

So

P[E1] = P[u is in Ai] = min(1/2, 1/ 𝑛)

P[E2] = [ 1 – min(1/2, 1/ 𝑛) ]|B1  X| 

P[E1 and E2] 

with probability  1/(12 𝑛) 

over the choice of Ai and Āi

• B0(u, r = 0)

• B1(v, r = 1/3 (u,v) )

• B2(u, r = 2/3 (u,v) )

(at least one point of Ai is in 
B0 and no points in B1)



Proof of Bourgain’s Embedding (into L)

Claim: Pick any distinct u,v  X and any i, then 

• Either 

• or

Proof:

If |B1  X| > 𝑛, for a given i

Consider the events

• E3 := |B1  Āi |  

• E4 := |B2  Āi | = 

So

P[E3] =

P[E4] = 

P[E3 and E4] 

with probability  1/(12 𝑛) 

over the choice of Ai and Āi

• B0(u, r = 0)

• B1(v, r = 1/3 (u,v) )

• B2(u, r = 2/3 (u,v) )

(at least one point of Āi is in 
B1 and no points in B2)



Proof of Bourgain’s Embedding (into L)

Claim: Pick any distinct u,v  X and any i, then 

• Either 

• Or

So, the claim is true… BUT only for a fixed u, v

We can now use a union bound over various u, v pairs!

P[ u,v  Ai and Āi ,                                                               ]

< 1

with probability  1/(12 𝑛) 

over the choice of Ai and Āi

(Bad event)

(this means with non-zero probability the 
complement is true, so such an embedding exists!)



Bourgain’s Embeddings

Theorem (Bourgain’s L): Let D = 3 and (X,) an n-point metric space. There 

exists a D-embedding of X into 𝐿∞
𝑑 with 𝑑 = 48 𝑛 ln 𝑛 = 𝑂( 𝑛 ln 𝑛).

Theorem (Bourgain’s L Generalization): For any integer q  2, let D := 2q – 1. 
Then any n-point metric space (X,) can be D-embedded into 𝐿∞

𝑑 with 

𝑑 = 𝑂(𝑞𝑛1/𝑞 ln 𝑛).

Corollary (Bourgain’s L2 Weak form):  Any n-point metric space (X,) can be 
D-embedded into 𝐿2

𝑑 with D = O(log2 n) and d = O(log2 n).

Theorem (Bourgain’s L2): Any n-point metric space (X,) can be D-embedded 

into 𝐿2
𝑑 with D = O(log n) and d = O(log n).

Need to have multiple sets 
and multiple balls to create 

this refinement...

Follows immediately from the L result!



A few thoughts on Bourgain’s Embedding

• There is a log(n) gap between the (normed) incompressibility result and 
Bourgain’s L result. Can this be closed?

• Bourgain’s embedding is an existential result with a probabilistic 
construction. Can we get a deterministic analog of Bourgain’s embedding? 



Other Metric Embedding results

Several positive and negative normed space embeddings (L1, L2, L) exist for 
n-point metric spaces (far too many to list here)

One important result (Negative result in L2)…

Theorem: For all n,  n-point metric spaces that cannot be embedded in L2 for 
any dimension d with distortion less than (c log n / log log n) for an 
appropriate constant c > 0. 



Dimension Reduction in L2

Bad news… in general, it is not possible to isometric embed points in 𝐿2
𝑛 in any 

lower dimensional space

Fact: Consider n+1 points V = {0,e1,…,en} in 𝐿2
𝑛 . Then V cannot be 

isometrically embedded in 𝐿2
𝑛−1. (ie no compression is possible!)

Proof: Let f : 𝐿2
𝑛 → 𝐿2

𝑛−1 is an isometry.  WLOG assume f(0) = 0. 

Now, For any non-zero distinct u, v

Thus, 

We found n vectors f(e1),…, f(en) that are all mutually orthogonal in Rn-1 !!



Dimension Reduction in L2

So isometric low-dimensional embeddings are not possible

BUT, if we are allowed to even a small amount of distortion, we can 
significantly compress the space!!!

Theorem (Johnson and Lindenstrauss ’84):

For any n and 0 <  < ½ , let 𝑑 ≥
4

𝜀2
2 ln 𝑛 + ln 3 = Ω

1

𝜀2
ln 𝑛 . Then for 

any X  RD s.t. |X| = n, there exists a mapping f : RD →Rd, s.t. for all x, y X

• log(n) compressibility with just (1) distortion !

approx. isometry of sq. distances 
implies approx. isometry of distances

• a LINEAR f (ie a linear projection) can achieve this !!

• a RANDOM d-dim subspace can achieve this w.h.p. !!!



Johnson-Lindenstrauss “flattening” Lemma

Theorem (Johnson and Lindenstrauss ’84):

For any n and 0 <  < ½ , let 𝑑 ≥
4

𝜀2
2 ln 𝑛 + ln 3 = Ω

1

𝜀2
ln 𝑛 . Then for 

any X  RD s.t. |X| = n, there exists a mapping f : RD →Rd, s.t. for all x,y  X

Proof idea:

Consider a fixed vector v  RD;

for any d x D matrix L (entries mean 0, variance 1/d iid)

so, by smartly selecting L we 
can ensure (sq) length 

preservation in expectation 



JL Proof Cont.

We can preserve lengths on avg., what about for a particular realization of L?

Idea: 

• choose a distribution that is concentrated around its mean value (ie 0). 

• Then we expect that a specific realization of L acts like the average case!

Suppose we have a d x D matrix L such that:

Then:    for any fixed pair x, y of points in RD we have (set v = x – y above)

bad event (L distorts v too much)

ie the chance of bad 
event occurring is 

exponentially bounded

ie the chance that L distorts the interpoint distance between x 
and y by more than (1) is exponentially small!



JL Proof Cont.

Now suppose we want to approx. preserve lengths of all points in X  RD

Then want:

PL [  pair x,y X s.t. ]

So, we can pick d =  ( (log |X|) / 2 ) to ensure that the bad event above < 1

All what is left to show… 

there are distributions which generate L with the property

(Bad event, needs 
to be bounded)

(this means by picking d sufficiently large, with non-zero probability 
the complement is true, so such a linear map exists!)



JL Proof Cont.

Let each entry of dxD of L be i.i.d N(0,1/d), then:

This can be proved by applying an exponential 

concentration inequality, such as the Chernoff bound!

Recall: choose a distribution 
that is concentrated around 

its mean value (ie 0). 



Significance and Applications of JL Lemma

• Dimensionality Reduction

Random Projections

• Data compression (Compressed Sensing)

Single pixel camera

• Approximate Linear algebra (Sketching methods)

• Fast Approximate nearest neighbors 

Locality Sensitive Hashing (LSH), Random projection trees (RPTrees)

• Fast Provable Clusterings



Thoughts on JL Lemma

JL Lemma is a very powerful result that has found 

numerous applications throughout CS

• Can you use other ‘concentrated’ distributions?

Yes, any subguassian distribution work do

• What about the amount of randomness?

Derandomized versions exist

• What about optimality, can we compress the space further?

Negative results exists stating you cannot compress down further for 
linear and even non-linear maps (Alon ’03, Larson and Nelson ’16, ’17) 



Extensions of JL Lemma

JL only guarantees approximate preservation of finite pairs of interpoint 
distances.

What if we want to preserve an infinite set of pairs? 

• Subspace extension

• Sparse extension (Devenport et al. ’08)

• Manifolds extension  (Baraniuk/Wakin ’ 08, Clarkson ’09 and Verma ’11)

The key idea is to do a clever application of the covering argument

In general it cannot be done… unless the 
set is structured in some way


