Proximity-based Clustering




Clustering with no distance information

 What if one wants to cluster objects where only similarity relationships
are given?

Consider the following visualization of relationships between 9 objects

* Nodes are the objects * Not embeddable in Euclidean space
* Edges are pairwise relationships * Not even a metric space! ®

So how can we proceed with clustering??



Clustering with no distance information

* Say k =2 (ie partition the objects in two cluster), what would be a
reasonable answer?

Since edges indicate similarity, want to
find a cut that minimizes crossings

Which of the three partitions is most preferable? Why?



Clustering with no distance information

* Say k =2 (ie partition the objects in two cluster), what would be a
reasonable answer? \
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Want a cut which minimizes crossings, but also keep
cluster/partition sizes large



Clustering by finding “balanced” cut

Let the two partitions be P and P’, then we can
minimize the following

. cut(P, P") cut(P,P) /
min +
P,P’  vol(P) vol(P’)

‘cut’ is the number of edges across a partition
‘vol’ is the number of edges within a partition [Shiand Malik “00]

In general, for k partitions the optimization generalizes to




Clustering by finding “balanced” cut

I
Let the two partitions be P and P’, then we can /
minimize the following 7
7
. cut(P, P") cut(P,P) /
min +
P,P’  vol(P) vol(P’)
‘cut’ is the number of edges across the partition
So how can we minimize above?
Let’s simplify it further...
cut(P,P")  (1p)'L(1p) 1, = indicator vector on P
vol(P)  vol(P) L = graph Laplacian

B 1p TL 1p
vol(P) vol(P)



Detour: The (graph) Laplacian

Given an (unweighted) directed graph G = (V, E) o o
Consider the incidence matrix C representation o °

of the graph G
Vertices e

e, 1 1
nw e 1 -1 )
A 2 For each edge in the graph:
o) 1 1 * +1 on source vertex
e -1 on the destination vertex
e, 1 -1

Define Graph Laplacian Las... L:=C'C



The graph Laplacian
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e diagonals always positive
« off-diagonals always negative

L=D-W ° D degree matrix (diagonal)
* W weight matrix



But why is L=D-W called a Laplacian?

Let’s consider the Laplace operator from calculus...
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For a function f: RY — R, Laplace A of fis defined as

Af := divergence of the gradient of f

=V. Vf
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=2, 0%f/ 0 x?
= Trace of the Hessian of f

X
L pos, if net gradient flow is OUT (ie pos divergence)

~ (mean) curvature L neg, if net gradient flow is IN (ie neg divergence)



Relationship of Laplacian to graph Laplacian

Consider a discretization of R?, ie a regular lattice graph

The (graph) Laplacian of this graph

Each row/col of L looks as:

(2411100 0 0..]

diagonal neighbors
(degree) (edges)

N
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For better understanding, consider each coordinate direction

[ 000-12-1000 ] This acts like (discretized version of)

the (negative) second derivative!!



Graph Laplacian of Regular Lattice

Each coordinate looks like

[..0 0 0-1 2-10 0 0..]

This acts like (discretized version of)
the (negative) second derivative!!

Consider the finite difference method for derivatives...

e (forward) difference: f’=flx+h)=f(x) / h
» (backward) difference: f'=f(x)—f(x=h) /h

So the second order (central) difference: [+1 -2 +1]

flz+h)—f(z) f(z)—f(z—h) That is, -2 on self, +1 on neighbors
r+n)—Jflx ) — f(x—
ho T h ~ flz+h)=2f(z) + f(z — h)

h h2

f” -



Graph Laplacian Properties

The graph Laplacian captures the second order information about a
function (on vertices), it can quantify how ‘wiggly’ a (vertex) function is.

Applications:

* Quantify the (average) rate of change of a function (on vertices)

* One can try to minimize the curvature to derive ‘flatter’ representations
* Can be used as a regularizer to penalize the complexity of a function

e Can be used for clustering!!



OK... Back to Clustering

I
Let the two partitions be P and P’, then we can /
minimize the following 7
7
. cut(P, P") cut(P,P) /
min +
P,P’  vol(P) vol(P’)
‘cut’ is the number of edges across the partition
So how can we minimize above?
Let’s simplify it further...
cut(P,P")  (1p)'L(1p) 1, = indicator vector on P
vol(P)  vol(P) L = graph Laplacian
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OK... Back to Clustering

o th o . cut(P, P") N cut(P’, P) l
min
o the optimization PP vol(P) vol(P’) /
/
can be re-written as 4
, 4
. T
min . L f;
fi.fa ; Jitd

st. fiDfi=1  flf;=0

all entries of f; are equal

Since we are minimizing a quadratic form subject to orthogonality constraints, we
can approximate the solution via a generalized eigenvalue system!

Since spectral decomposition in used to

Generalized eigensystem... Ax = ADx determine f ie clusters, this methodology is
called spectral clustering



Spectral Clustering: the Algorithm

Input: S: n x n similarity matrix (on n datapoints), k: # of clusters

 Compute the degree matrix D and adjacency matrix W from the weighted

graph induced by S since the graph is weighted, d; = X.s;, w; = s;

 Compute the graph LaplacianL=D-W

* Compute the bottom k eigenvectors u,,...,u, of the generalized
eigensystem: Lu = ADu

* Let U be the n x k matrix containing vectors ug,...,u, as columns

 Lety, be the it row of U; it corresponds to the k dimensional
representation of the datapoint x.

* Cluster points y,,...,y, into k clusters via a centroid-based alg. like k-means

Output: the partition of n datapoints returned by k-means as the clustering



Spectral Clustering: the Geometry

 The eigenvectors are an approximation to the f partition ‘indicator’
vectors in the normalized cut problem.

| «—— Learned Indicator vectors

. / Spectral trans-

- formation via L

Data in original space, similar points can be
located anywhere in the original space

u,

Data is easy to cluster in
the new transformation




Spectral Clustering: Dealing with Similarity

* What if similarity information is unavailable?

If distance information is available, one can usually compute
similarity as

e—dis’52/02



Spectral Clustering in Action
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(a) K-means (b) Speciral Clustering



Spectral Clustering in Action




Spectral Clustering in Action
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K-means Spectral Clustering



Spectral Clustering in Action




