
Proximity-based Clustering

Clustering with no distance information

• What if one wants to cluster objects where only similarity relationships
are given?

Consider the following visualization of relationships between 9 objects

• Nodes are the objects
• Edges are pairwise relationships

• Not embeddable in Euclidean space
• Not even a metric space!

So how can we proceed with clustering??

Clustering with no distance information

• Say k = 2 (ie partition the objects in two cluster), what would be a
reasonable answer?

Which of the three partitions is most preferable? Why?

Since edges indicate similarity, want to
find a cut that minimizes crossings

Clustering with no distance information

• Say k = 2 (ie partition the objects in two cluster), what would be a
reasonable answer?

Want a cut which minimizes crossings, but also keep
cluster/partition sizes large

Clustering by finding “balanced” cut

Let the two partitions be P and P’, then we can
minimize the following

‘cut’ is the number of edges across a partition

‘vol’ is the number of edges within a partition

In general, for k partitions the optimization generalizes to

[Shi and Malik ’00]

Clustering by finding “balanced” cut

Let the two partitions be P and P’, then we can
minimize the following

‘cut’ is the number of edges across the partition

So how can we minimize above?

Let’s simplify it further…

1P = indicator vector on P
L = graph Laplacian

Detour: The (graph) Laplacian

Given an (unweighted) directed graph G = (V, E)

Consider the incidence matrix C representation
of the graph G

Define Graph Laplacian L as… L := CTC

1 -1

1 -1

1 -1

1 -1

For each edge in the graph:
• +1 on source vertex
• -1 on the destination vertex

Vertices

Ed
ge

s

A B C D E

e3

e2

e1

e4

The graph Laplacian

C =

e1
T

e2
T

…
em

T

Hence, L = CTC =
e1

T

e2
T

…
em

T

e1 e2 … em = k ek ek
T

Say ek is an edge (i,j), then

…
1
…
-1
…

i

j
ek =

ek ek
T =

…
1
…
-1
…

i

j

… 1 … -1 …

ji

+

+

-

-

• diagonals always positive
• off-diagonals always negative

L = D – W • D degree matrix (diagonal)
• W weight matrix

PSD!

But why is L=D-W called a Laplacian?

∂/x1

∂/x2

…
∂/xd

∂/x1

∂/x2

…
∂/xd

= . f

= i ∂
2 f / ∂ xi

2

Let’s consider the Laplace operator from calculus…

For a function f : Rd → R, Laplace of f is defined as

f := divergence of the gradient of f

= . f

L pos, if net gradient flow is OUT (ie pos divergence)
L neg, if net gradient flow is IN (ie neg divergence)

= Trace of the Hessian of f

 (mean) curvature

Relationship of Laplacian to graph Laplacian

Consider a discretization of Rd , ie a regular lattice graph

The (graph) Laplacian of this graph

Each row/col of L looks as:

For better understanding, consider each coordinate direction

[2d -1 -1 -1 -1 0 0 0 …]

diagonal
(degree)

neighbors
(edges)

rest 0

[… 0 0 0 -1 2 -1 0 0 0 …]
This acts like (discretized version of)
the (negative) second derivative!!

Graph Laplacian of Regular Lattice

Each coordinate looks like

[… 0 0 0 -1 2 -1 0 0 0 …]

Consider the finite difference method for derivatives…

• (forward) difference: f ’ = f(x+h) – f(x) / h
• (backward) difference: f ’ = f(x) – f(x–h) / h

So the second order (central) difference:

f ’’ =

This acts like (discretized version of)
the (negative) second derivative!!

[+1 -2 +1]
That is, -2 on self, +1 on neighbors

Graph Laplacian Properties

The graph Laplacian captures the second order information about a
function (on vertices), it can quantify how ‘wiggly’ a (vertex) function is.

Applications:

• Quantify the (average) rate of change of a function (on vertices)
• One can try to minimize the curvature to derive ‘flatter’ representations
• Can be used as a regularizer to penalize the complexity of a function
• Can be used for clustering!!
• …

OK… Back to Clustering

Let the two partitions be P and P’, then we can
minimize the following

‘cut’ is the number of edges across the partition

So how can we minimize above?

Let’s simplify it further…

1P = indicator vector on P
L = graph Laplacian

OK… Back to Clustering

So the optimization

can be re-written as

Since we are minimizing a quadratic form subject to orthogonality constraints, we
can approximate the solution via a generalized eigenvalue system!

all entries of fi are equal

Generalized eigensystem… Ax = Dx

Since spectral decomposition in used to
determine f ie clusters, this methodology is

called spectral clustering

Spectral Clustering: the Algorithm

Input: S: n x n similarity matrix (on n datapoints), k: # of clusters

• Compute the degree matrix D and adjacency matrix W from the weighted
graph induced by S

• Compute the graph Laplacian L = D – W

• Compute the bottom k eigenvectors u1,…,uk of the generalized
eigensystem: Lu = Du

• Let U be the n x k matrix containing vectors u1,…,uk as columns

• Let yi be the ith row of U; it corresponds to the k dimensional
representation of the datapoint xi

• Cluster points y1,…,yn into k clusters via a centroid-based alg. like k-means

Output: the partition of n datapoints returned by k-means as the clustering

since the graph is weighted, di = j sij , wij = sij

Spectral Clustering: the Geometry

• The eigenvectors are an approximation to the f partition ‘indicator’
vectors in the normalized cut problem.

Rk

Spectral trans-
formation via L

Data in original space, similar points can be
located anywhere in the original space

Learned Indicator vectors

Data is easy to cluster in
the new transformation

Spectral Clustering: Dealing with Similarity

• What if similarity information is unavailable?

If distance information is available, one can usually compute
similarity as

Spectral Clustering in Action

Spectral Clustering in Action

Spectral Clustering in Action

Spectral Clustering in Action

