
Proximity-based Clustering



Clustering with no distance information

• What if one wants to cluster objects where only similarity relationships 
are given?

Consider the following visualization of relationships between 9 objects

• Nodes are the objects
• Edges are pairwise relationships

• Not embeddable in Euclidean space
• Not even a metric space! 

So how can we proceed with clustering??



Clustering with no distance information

• Say k = 2 (ie partition the objects in two cluster), what would be a 
reasonable answer?

Which of the three partitions is most preferable? Why?

Since edges indicate similarity, want to 
find a cut that minimizes crossings



Clustering with no distance information

• Say k = 2 (ie partition the objects in two cluster), what would be a 
reasonable answer?

Want a cut which minimizes crossings, but also keep 
cluster/partition sizes large



Clustering by finding “balanced” cut

Let the two partitions be P and P’, then we can 
minimize the following

‘cut’ is the number of edges across a partition

‘vol’ is the number of edges within a partition

In general, for k partitions the optimization generalizes to
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Clustering by finding “balanced” cut

Let the two partitions be P and P’, then we can 
minimize the following

‘cut’ is the number of edges across the partition

So how can we minimize above?

Let’s simplify it further…

1P = indicator vector on P
L = graph Laplacian 



Detour: The (graph) Laplacian

Given an (unweighted) directed graph G = (V, E)

Consider the incidence matrix C representation 
of the graph G

Define Graph Laplacian L as…   L := CTC
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For each edge in the graph:
• +1 on source vertex
• -1 on the destination vertex
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The graph Laplacian
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• diagonals always positive
• off-diagonals always negative

L = D – W  • D degree matrix (diagonal)
• W weight matrix

PSD!



But why is L=D-W called a Laplacian?
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Let’s consider the Laplace operator from calculus…

For a function f : Rd → R, Laplace  of f is defined as

f := divergence of the gradient of f

= . f

L pos, if net gradient flow is OUT (ie pos divergence)
L neg, if net gradient flow is IN (ie neg divergence)

= Trace of the Hessian of f

 (mean) curvature



Relationship of Laplacian to graph Laplacian

Consider a discretization of Rd , ie a regular lattice graph 

The (graph) Laplacian of this graph

Each row/col of L looks as:

For better understanding, consider each coordinate direction

[ 2d  -1  -1  -1  -1  0   0   0 … ]

diagonal 
(degree)

neighbors 
(edges)

rest 0

[ … 0   0   0  -1   2  -1  0   0   0 … ]
This acts like (discretized version of) 
the (negative) second derivative!!



Graph Laplacian of Regular Lattice

Each coordinate looks like

[ … 0   0   0  -1   2  -1  0   0   0 … ]

Consider the finite difference method for derivatives…

• (forward) difference: f ’ = f(x+h) – f(x) / h
• (backward) difference: f ’ = f(x) – f(x–h) / h

So the second order (central) difference:

f ’’ =

This acts like (discretized version of) 
the (negative) second derivative!!

[ +1   -2   +1 ]
That is, -2 on self, +1 on neighbors 



Graph Laplacian Properties

The graph Laplacian captures the second order information about a 
function (on vertices), it can quantify how ‘wiggly’ a (vertex) function is.

Applications:

• Quantify the (average) rate of change of a function (on vertices)
• One can try to minimize the curvature to derive ‘flatter’ representations
• Can be used as a regularizer to penalize the complexity of a function
• Can be used for clustering!!
• …



OK… Back to Clustering

Let the two partitions be P and P’, then we can 
minimize the following

‘cut’ is the number of edges across the partition

So how can we minimize above?

Let’s simplify it further…

1P = indicator vector on P
L = graph Laplacian 



OK… Back to Clustering

So the optimization 

can be re-written as

Since we are minimizing a quadratic form subject to orthogonality constraints, we 
can approximate the solution via a generalized eigenvalue system!

all entries of fi are equal

Generalized eigensystem…     Ax = Dx

Since spectral decomposition in used to 
determine f ie clusters, this methodology is 

called spectral clustering



Spectral Clustering: the Algorithm

Input: S: n x n similarity matrix (on n datapoints), k: # of clusters

• Compute the degree matrix D and adjacency matrix W from the weighted 
graph induced by S

• Compute the graph Laplacian L = D – W 

• Compute the bottom k eigenvectors u1,…,uk of the generalized 
eigensystem: Lu = Du

• Let U be the n x k matrix containing vectors u1,…,uk as columns

• Let yi be the ith row of U; it corresponds to the k dimensional 
representation of the datapoint xi

• Cluster points y1,…,yn into k clusters via a centroid-based alg. like k-means

Output: the partition of n datapoints returned by k-means as the clustering

since the graph is weighted, di = j sij , wij = sij



Spectral Clustering: the Geometry

• The eigenvectors are an approximation to the f partition ‘indicator’ 
vectors in the normalized cut problem.

Rk

Spectral trans-
formation via L 

Data in original space, similar points can be 
located anywhere in the original space

Learned Indicator vectors

Data is easy to cluster in 
the new transformation



Spectral Clustering: Dealing with Similarity

• What if similarity information is unavailable?

If distance information is available, one can usually compute 
similarity as



Spectral Clustering in Action
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