Clustering




Clustering

What?
 Given some input data, partition the data in multiple groups

Why?
* Approximate large/infinite/continuous set of objects with finite set of
representatives
* Eg. Vector quantization, codebook learning, dictionary learning
e applications: HOG features for computer vision

* Find meaningful groups in data

* In exploratory data analysis, gives a good understanding and summary of
your input data

* applications: life sciences

So how do we formally do clustering?




Clustering: the problem setup

Given a set of objects X, how do we compare objects?
need a way to compare objects

 We need a comparison function (via distances or similarities)

d needs to have
some sensible
structure

Given: a set X and a function p: XxX —> R

* (X,p) is a metric space iff for all x;, x, x, € X
Perhaps we can
make d a metric!

* plx, x) >0 (equality iff x; = x))
° ,O(X,-, Xj) =P (le Xi)
¢ plx, xj) < p (X, X ) + o (X Xj)

A useful notation: given aset Tc X p(s,T) = tiél%ﬂ(sa t)



Examples of metric spaces

+ L,L,L,inRd




Covering of a metric space

e Covering, e-covering, covering number

Given a set X
* Cc(X), ie the powerset of X, is called a cover of S — X iff

UeecC2S

* if Xis endowed with a metric p, then C < X'is an e-cover of S — X iff

Vs e S,dce C: p(s,c) <e

e sup p(s, C) < e
SES

e g-covering number N(g, S) of a set S — X, is the cardinality of the
smallest g-cover of S.



Examples of e-covers of a metric space

e jsSan e-cover of S?

Yes! Foralle>0

* Let S be the vertices of a d-cube, ie, {-1,+1}9 with L_ distance
e Give a 1-cover?

C={09} N(1,S5)=1

e How about a )2-cover?

N(%, S) = 24

* 0.9 cover?
e 0.999 cover? N(0.999, S) = 2¢ How do you prove this?



Examples of e-covers of a metric space

* Consider S =[-1,1]° with L_ distance
 whatis a good 1-cover? Y:-cover? %-cover?

What is the growth rate of
N(g,S) as a function of € ?

 What about S =[-1,1]¢9?

What is the growth rate of N(g,S) as a
function of the dimension of S?



The k-center problem

Consider the following optimization problem on a metric space (X, 0)

Input: n points x,, ..., X, € X; a positive integer k

Output: T X, such that |T| =k

Goal: minimize the “cost” of T, define as

cost(T) := max p(x;,T)

xl ..... mn

How do we get the optimal solution?



A solution to the k-center problem

e Run k-means?
No... we are not in a Euclidean space (not even a vector space!)

* Why not try testing selecting k points from the given n points?
Takes time... ®(n*) time, does not give the optimal solution!!

equidistant points

——— —— > ——
@ @ @ @ X = Rl
X1 X2 X3 X4 k=2

e Exhaustive search
Try all partitionings of the given n datapoints in k buckets
Takes very long time... ®(k") time,
unless the space is structured, unclear how to get the centers

 Can we do polynomial in both k and n?
A greedy approach...  farthest-first traversal algorithm



Farthest-First Traversal for k-centers

Let S:={x,, ..., X, }

e arbitrarily pickze SandletT={z}
* solongas |T| <k

* Zz:=argmax,. olx T)

e T« TU{z}
* returnT

runtime? solution quality?



Properties of Farthest-First Traversal

The solution returned by farthest-first traversal is not optimal

equidistant points

@ @ @ @ X = Rl
X, X, X3 X,
k=2
Optimal solution?
o———@——=0
_ How does
Farthest first solution? cost(OPT) vs cost(FF)
Compare?




Properties of Farthest-First Traversal

For the previous example we know,

cost(FF) = 2 cost(OPT) [regardless of the initialization!]

But how about for a data in a general metric space?

Theorem: Farthest-First Traversal is 2-optimal for the k-center problem!

ie, cost(FF) < 2 cost(OPT) for all datasets and all k!!



Properties of Farthest-First Traversal

Theorem: Let T* be an optimal solution to a given k-center problem, and let T be
the solution returned by the farthest first procedure. Then,

cost(T*) < cost(T) < 2 cost(T*)

Proof Visual Sketch:

say k=3
®
e o L]
. ® oy ° imal
Let’s pick . e . P o!ot °
. @ o ® %% o, assignment
another point o o Q Y % |
" et o’ *oem Spe
° & ®e 30,0048 o .
° °, °. oS’ farthest first
T34 .'. o ®°% assighment
° .& . ® qo 9%
L “.’q ® o
@]
If we can ensure that 3}’. “ e’
optimal must incur a large » ° the goal is to compare
cost in covering this point @

worst case cover of

then we are good optimal to farthest first



Properties of Farthest-First Traversal

Theorem: Let T* be an optimal solution to a given k-center problem, and let T be
the solution returned by the farthest first procedure. Then,

cost(T*) < cost(T) < 2 cost(T*)

Proof:
Let r := cost(T) = max,_; olx, T), letx, be the point which attains the max
Let T" :=T U {Xx,}
Observation:
o foralldistinctt,t’inT, p(t, t') > r
e |T*|=kand |T'| =k+1
* must exists t*eT%, that covers at least two elements t,, t, of T’
Thus,
since p(t,, t,) >, it must be that either p(t,, t*) or p(t,, t*) > r/2

Therefore: cost(T*) >r/2.




Doing better than Farthest-First Traversal

can you do better than Farthest First traversal for the k-center problem?

e k-centers problem is NP-hard!
proof: see hwl ©

* infact, even (2- €)-poly approximation is not possible for general metric
spaces (unless P = NP) [Hochbaum ’97]



k-center open problems

Some related open problems:

 Hardness in Euclidean spaces (for dimensions d > 2)?
* |s k-center problem hard in Euclidean spaces?
e Can we get a better than 2-approximation in Euclidean spaces?
 How about hardness of approximation?

* Isthere an algorithm that works better in practice than the farthest-first
traversal algorithm for Euclidean spaces?

Interesting extensions:
e asymmetric k-centers problem, best approx. O(log*(k)) [Archer 2001]
 How about average case?

* Under “perturbation stability”, you can do better [Balcan et al. 2016]



The k-medians problem

* Avariant of k-centers where the cost is the aggregate distance
(instead of worst-case distance)

Input: n points x,, ..., X, € X; a positive integer k
Output: T X, such that |T| =k
Goal: minimize the “cost” of T, define as

cost(T) := Z p(x;, T)

remark: since it considers the aggregate, it is somewhat robust to outliers
(a single outlier does not necessarily dominate the cost)



An LP-Solution to k-medians

Observation: the objective function is linear in the choice of the centers
perhaps it would be amenable to a linear programming (LP) solution

LetS:={x,, ..., X, }

Define two sets of binary variables y; and x;
© Y= is jth datapoint one of the centers? j=1,...,n
* X;:i=lis it datapoint assigned to cluster centered at jt" point ij=1,...,n

Example: S=1{0,2,3}, T={0,2}
datapoint “0” is assigned to cluster “0”
datapoint “2” and “3” are assigned to cluster “2”
X11 = Xy, = X3, = 1 (the rest of x; are zero); y; =y, =1andy; =0



k-medians as an (l)LP

y; :=is jone of the centers
X; := is i assigned to cluster j

[ Tally up the cost of all the
min Z 2iip(xi, 25) distances between points and
(@i5:95)i5emm their corresponding centers
such that
§ < Z ri; = 1 Vi € [n] Each point is assigned to
=5 F exactly on cluster
Z y; =k Vi € [n] There are exactly k clusters
J
ith T : ith
\ zii <y Vi, j € [n] i da'tapomt '|s.aSTS|gned toj
point only if it is a center

Discrete

/ Binary z;; €{0,1},y; € {0,1} Vi, j € [n] The variables are binary



Properties of an ILP

Any NP-complete problem can be written down as an ILP Why?

Can be relaxed into an LP.
 How?

. . . . 1 e 1
Make the integer constraint into a ‘box’ constraint... Zii €40-=y7=10, 1}

Ti; € [O, 1],yj ~ [0, 1}
 Advantages

e Efficiently solvable.

e (Can be solved by off-the-shelf LP solvers
* Simplex method (exp time in worst case but usually very good)
* Ellipsoid method (proposed by von Neumann, O(n®))
* Interior point method (Karmarkar’s algorithm 84, O(n3~))
e Cutting plane method
* Criss-cross method
e Primal-dual method



Properties of an ILP

Any NP-complete problem can be written down as an ILP

Can be relaxed into an LP.
 Advantages — Efficiently solvable
 Disadvantages
* Gives a fractional solution (so not an exact solution to the ILP)
e Conventional fixes — do some sort of rounding mechanism
Deterministic rounding
* Can be shown to have arbitrarily bad approximation.

Randomized rounding flip a coin with the bias as per the fractional cost and
assign the value as per the outcome of the coin flip

* (Can be sometimes have good average case or with high probability!
 Sometimes the solution is not even in the desired solution set!
 Derandomization procedures exist!



Back to k-medians... with LP relaxation

note: cost(OPT,;) < cost(OPT)

.

y; :=is jone of the centers
X; := is i assigned to cluster j

Tally up the cost of all the

min 2iip(xi, 25) distances between points and
(@393 )i5em) their corresponding centers
such that
- | o
@ < me —1 Vi € [n] Each point is assigned to
= F exactly on cluster
Z Y = Vi € [n] There are exactly k clusters
7
- ith datapoint is assigned to j"
Tii < Yj Vi, 7 € |n :
\ i =Y g€ [n) peitanly if it is a center
Also 4. €0,1],y; € [0,1] Vi, j € [n] RELAXATION to box

LINEAR!

constraints




A Deterministic procedure for k-medians LP

S:={x, ..., x,}, datafrom a metric space (X,p); k=# centers
y;=1is jth datapoint one of the centers?
X; 1= is ith datapoint assigned to cluster centered at jt" point? i,j € [n]

The Algorithm [Lin and Vitter '92]
Run the LP for k-medians problem on input S, with k centers

Define ¢;:= X, x; plx;, x) i€ [n] note: X, c; = cost(OPT ;)
T< ¢
while S # ¢
pick x; € S with smallest c;
T« TU{x} O
A :={x.:B(x, 2c;) " B(x;, 2¢c;) = ¢}
S< S\A
return T l

all such X;'s should be removed

how good the output set T ? cost(T) ? |T| ?



Properties of the deterministic procedure

Theorem 1: cost(T) <4 cost(OPT )

= cost(T) < 4 cost(OPT) Got an approx. good solution in
- (deterministic) poly time!

umm... not exactly k centers...
but close enough ©

Theorem 2: |T| < 2k

Remark: The result can be generalized to
cost(T) < 2(1+1/¢) cost(OPT ), with |T| < (1+e)k
[when A, :={x. : B(x, (1+1/¢)c}) N B(x,, (1+1/g)c;) } ]



Properties of the deterministic procedure

Run the LP
Define ¢; := 2, x; plx, x;) i€ [n]
Theorem 1: cost(T) <4 cost(OPT,,) T< ¢
Proof: while S # ¢
.. . pick x; with smallest c;
Pick any x, € S and let x; is the TeTU{x}
first point in T for which X, € A, then A. = {x.: B(x, 2¢)MB(x;, 2¢,) %}
* G=(, S« S\ A
° p(qu X[) S 4 Cq return T

why?
dx,e$S st plx, x) < plx, x,) + plx, x;) < 2c,+2¢c; <4c,

sum over all points g, we get.... cost(T) <4 cost(OPT ;) !



Properties of the deterministic procedure

Theorem 2: |T| < 2k (@idyi)isetn)
Proof: st ) @i = > yi=k
j J
Pick any x; €T, then ’
LP I’L] S yj Lij S [Oa 1]7yj € [Oa 1]
A
Val N
1
ZJeB(XI 2Ci) yj = Z/eB xi,2¢i) Xij > 7 Markov: for Z non-neg
Rf—/ P[Z>a] <E[Z]/a

via Markov’s Ineq!
Recall Vi: (i) Z;x;=1 (i) ¢; := 2, x; plx;x;) = E, plx;,x;)
Define: random variable Z; takes value p(x;x;) with probability x;

So: (i) EZ =c;
(i) jesiach Xi = P[Z <2c] = P[Z<2EZ] > 1-P[Z=22EZ] = %



Properties of the deterministic procedure

min injp(a:i,xj)
1,j

Theorem 2: |T| < 2k CARIES
Proof: st ) @i = > yi=k
J J

Pick any x; €T, then

Lij < Y Lij S [Oa 1]7yj S [Oa 1]

1
ZjeB(XIZCi)yj < Z/eBxlzc/')Xij > %

So, k= ijj 2 ineszeB(Xi,ZCi)yj 2 ZXieTZjeB(Xi,ZCi) Xj 2 |T]/2
" v
——

because the balls are
disjoint by choice of x;in T
via A,




Related problems to k-medians

* asymmetric k-medians is known to be hard to approximate via factor
O(log*(k)-€2(1))



The k-means problem

Input: n points x4, ..., xn positive integer k

Output: T X, such that |T| =

Goal: minimize the “cost” of T, define as

T
cost(T Z mm (e



A solution to the k-means problem

* Exhaustive search
Try all partitionings of the given n datapoints in k buckets
Takes very long time... ®(k") time,
once we have the partitions, it’s easy to get the centers

* An efficient exact algorithm?
Unfortunately no... unlessP=NP, orifk=1ord=1

 Some approximate solutions
Lloyd’s method (most popular method!), Hartigan’s method



Lloyd’s method to approximate k-means

Given: data &1, s, ... %, € R?, and intended number of groupings k

Alternating optimization algorithm:
* |nitialize cluster centers ¢1,¢2,...Ck (say randomly)
* Repeat till no more changes occur
* Assign data to its closest center (this creates a partition) (assume centers are fixed)

* Find the optimal centers ¢i, o, ... Cr (assuming the data partition is fixed)

Demo:
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Properties of Lloyd’s method

The quality of the output/centers returned by the Lloyd’s method can be
arbitrarily bad!

That is, the ratio  cost(T,,oyp) / cOSt(OPT) is unbounded

This is the case for even seemingly ideal inputs...

k=3
O X @ at (random)

initialization
R A at convergence
cost(OPT) = O(no?) cost(T . ovp) = C2(nA?)

What about farthest first initialization?

does not work when data has some outliers



Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means...

3SAT <, NAE-3SAT <, NAE-3SAT* <, Generalized 2-means <, 2-means
[Dasgupta '08]

First, we need a reformulation of k-means
and formally define the generalized k-means problem



k-means reformulation

— |[Input: n points { x,, ..., x. } =S < RY a positive integer k
_5 Output: T X, such that |T| =k
H . . . .
L3° Goal: minimize the “cost” of T, define as
E mn
S cost(1') := min ||x; — ;]
5 (1) = 3 min s = ]
Input: n points { x, ..., X, } =S < RY a positive integer k -
Output: P,,..,P, = [n], UP =[n], uy,.., 1, € R? %
Optimal Goal: minimize the “cost” of (Py,...,P; Ly, L) c
Q
W = Eicpy X, a =
COSt(Plv"ka;ﬂ’la"'auk) :ZZ”:UZ_IMJHQ g
j=14i€P; N




k-means reformulation

Observation: E, | X—EX[[2= %2 E,\ || XY []? Why? Basic algebra...

Input: n points { x,, ..., X, } =S < R a positive integer k
Output: P,,...P, < [n], LU P,=[n]
Goal: minimize the “cost” of (Pl, +Py)

cost(Pr,..., P Z Z i — oo ||

1,v' €P;

¢ uole|nwJo4




A distance-based generalization of k-means

Standard
k-means

Input: n points { x, ..., X, } =S < RY a positive integer k
Output: P,,...P,. = [n], UP,=[n]
Goal: minimize the “cost” of (Pl, 2Py)

cost(Py, ..., P Z

Z @i — @i H

1,7 € P;

D;; can be viewed
as sq. Euclidean
distances

between x; and x;

Input: n x n symmetric matrix D; a positive integer k
Output: P,,...,P, < [n], L P,=[n]
Goal: minimize the “cost” of (Pl, 2Py)

cost(Py, ..., P Z Z D; i

1,0 €EP;

sueaw-y

pazi|eJauas



A quick review of NP hardness and reductions

* NP-hard problems admit polynomial time reductions from all other
problems in NP

notation: Given two (decision) problems A and B

A<, B A reduces to B (in poly-time)

usage:  Want to show B “hard”. Pick a known hard problem A.
Assume B can be solved. Show that then A can be solved.
Therefore B is at least as hard as A

* Specifically, how to show a reduction?
e Given an instance a of A, transform (in poly-steps)
into an instance 3 of B
* Run decision algorithm for B on instance 3
* Use the solution of 3 to get a solution for o,



Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means...

known (hard) show problem B
problem A is at least as hard
3SAT <, NAE-3SAT Sp@ized 2—@,, 2-means
[Dasgupta '08]
N J

v

known (hard)
problems



Known hard problems

3-SAT

Input: A 3-CNF Boolean formula over n variables
Output: True iff an assignment exists satisfying the formula

3-Conjuncitve Normal Form (CNF)
A Boolean formula expressed as an AND over m
clauses, each of which has exactly 3 literals

Example:

Variables: x,,x,,x;,...,x, eachx, €{0,1}

n

Formula (3-CNF):
(Xq V Xc v@ NXpg V =X1g V =X DA (X V X353 V Xgg) ...

literal clause




Known hard problems

Input: A 3-CNF Boolean formula over n variables

3-SAT

Output: True iff an assignment exists satisfying the formula

NAE-3SAT (or “Not All Equal” 3-SAT)

3SAT with an additional requirement that in each clause there is
at least one literal that is true, and at least one literal that is false.

NAE-3SAT* (a modification on NAE-3SAT)
Each pair (x;, x;) of variables appear in at most 2 clauses.
* once as: either (x; v x;) or (-x; v -x;) , and
* once as: either (-x; v x;) or (x; v -x;)



Generalized 2-means

Input: n x n symmetric matrix D
Output: P, P, < [n], P, LU P, =[n]
Goal: minimize the “cost” of (P,, P,)

2
cost( Py, P») : Z 2P Z il
j=1 i'eP

will first show... NAE-3SAT* <, Generalized 2-means
[Dasgupta '08]



Hardness of Generalized 2-means

Theorem: NAE-3SAT* <, Generalized 2-means
Proof:
Given an instance ¢ of NAE-3SAT* with n variables x,...,x,, & m clauses

We’ll construct an instance of generalized 2-means as follows.

Let 2n x 2n distance matrix D(¢), each row/col corresponds to the
variables xy,...,X,, ,=Xy,...,mX,. Defined as

0 if a = E a~ 3 means that either variable
Do — l+A ifa=p aand for -aand -foccurred
S R, ifa ~ f3 together in a clause in ¢
1 otherwise.
\ _ 0<i<AKI1
observations
5m 5. 1 46m < A <1—26n

= 5m + 2n " Bm + 2n



Proof Contd.

A quick example:

L1
T2
I3
I
L2

0
1+ A
Let NAE-3SAT* instance be: (x, V=X, V X;) Das =9, 5
T1 T2 T3 T T2 T3 .
0 1 1+ | I+4A | 140 | 1
1 0 1 1+ | 1+A | 1+0
140 | 1 0 1 1+0 | 1+A
I+A | 1+0 | 1 0 1 1+0o
I+6 | 1+A | 146 | 1 0 1
1 1+ | 1+A | 1+0 | 1 0

I3

Agenda: the instance ¢ of NAE-3SAT* is satisfiable iff D(¢) admits

generalized 2-means cost of n—1 + (20m/n).

ifa=p
ifa =05
ifa~f

otherwise.



Proof Contd.

Lemma: If the instance ¢ of NAE-3SAT* is satisfiable, then D(¢) admits
generalized 2-means cost of n—1 + (20m/n) =: c (¢) .

Consider any satisfiable assignment of ¢, and partition all the (2n) literals into
those assigned true (partition P,) and those assigned false (partition P,).

|P1I:|P2|=n [xiinPliffﬂxiinPZJ

By defn of NAE-3SAT*, each clause contributes one pair to P, and one to P,

bo

all pairs contribute 1 unit,
m pairs contribute 1+9




Proof Contd.

[ C(¢) =n—1+(20m/n) ]
Lemma: For any partition P, P, which contains a variable and its negation,
then cost(P,,P,) > n—1+ A/(2n) > c(¢)

2
Let n’ = |P,|, then  cost(P1, P») 222 Z i
j=1 i'EP

S 1 n' LA) 4 1 2n —n’ 1+A> 1_|_/_\
— =n — — >n — —
n' 2 2n —n' 2 2n

all pairs contribute at least 1 unit

Since A > 4 om, cost(P,,P,) > c(¢)



Proof Contd.

[ C(¢) =n—1+(20m/n) ]

Lemma: If D(¢) admits to a 2-clustering of cost < c(¢), then ¢ s a satisfiable
instance of NAE-3SAT*

Let P,,P, be a 2-clustering with cost < c(¢), then P, & P, cannot contain a
variable and its negation (see previous lemma) |P,|=|P,|=n

Then the clustering cost is

2 1 if clause is split : s P1 and P
[(E)+5 Z { if clause is split across P and P»

n I —— 3 otherwise

since this is < c(¢), it must be that each clause is split across.
Therefore it is a satisfiable instance of NAE-3SAT*!



Generalized 2-means is hard

Hence, NAE-3SAT* <, Generalized 2-means



Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means...

3SAT <, NAE-3SAT <, NAE-3SAT* <, Generalized 2-means <, 2-means
[Dasgupta '08]



Hardness of 2-means

Theorem: Generalized 2-means <, 2-means

Need to show generalized 2-means in embeddable in R? so that we can
run a 2-means to solve it.

Claim: Any n x n symmetric matrix D(¢) can be embedded in squared L, iff
u'Du<O0foralluinR"s.t. X, u, = 0.

proof... see hw2 ©



Hardness of k-means... thoughts

We have shown that 2-means is hard in d = ®(n) dimensions

What about when d =27

* There are elegant reductions available when k=2 and d = 2.
[Vattani ‘09, Aloise et al. ’09, Mahajan et al. ’09]



Approximating k-means with guarantees

Given: data ¥y, Zs, ... %, € RY and number of centers k

Alternating optimization algorithm:

—

 Initialize cluster centers ¢1, Ca, . .. Ck

* Repeat till no more changes occur

Lloyd’s method

* Assign data to its closest center (this creates a partition)
* Find the optimal centers ¢, ¢, . . . ¢ (for the partition)

Heavily depends on initialization
 Random initialization doesn’t work
* Farthest first is sensitive to outliers
* Can something else be done?
* We explore probabilistic farthest first initialization!



Probabilistic farthest first for k-means

Probabilistic farthest first initialization (kmeans++) [Arthur and Vassilvitskii’07]

Initialize C by picking a point x; uniform at random from the dataset S

Pick a new center c; as the point x; from S with probability

Pi = ,OZ(Xi,C) / zxkeS pz(Xk,C)

C« CU{c;}
Repeat till |[C| =k

Theorem: Let C be the initialization via kmeans++
E[cost(C)] £ O(log(k)) cost(OPT)



Approximation guarantee for kmeans++

Theorem: Let C be the initialization via kmeans++ [Arthur and Vassilvitskii’07]
E[cost(C)] < 8(log(k)+2) cost(OPT)

— cells of the optimal partitior
Proof Idea: e optimal centers
e sampled centers

Consider the partition induced by
the optimal clustering and analyze
how the probabilistic sampling
covers these cells.

If a sample hits a cell, then its relative
cost would be small.

|deally want to show that all/most cells
are hit.




Approximation guarantee for kmeans++

Observation: For a set of points S = {x,,..., x,} and any z

Zyes I x =217 = Zycs | x = psl® + [S] I x = pgl>

Notation:

* ((A) = cost of subset of datapoints A — S wrt centers C

h = (S) = cost(C)

Dopr (A) = cost of subset of datapoints A = S wrt centers OPT
ot = Popr (S) = cost(OPT)

)

)

)

Let's analyze how the probabilistic kmeans++ initialization affects the cost



Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be just one cluster chosen
u.a.r. from A, then E[)(A)] = 205p7(A)

Proof:

BIO(A)] = |i S % fla— aolf
0oEAacA

|A| > (D lla—alP + 4] - lao — pual?)

ap€A acA

=2) fa—pal’

acA




Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be an arbitrary set of
clusters. If we add a random center to C from A (with probabilistic
farthest first weighting), then E[¢(A)] < 8 ¢gpr(A)

Proof:

E[6(A)] Z - af()), e me{ a,C),|la — ao||? }

ag€EA aGA

Observation:

p* (a0, C) = |lag — caq |* < llao = call® < (pla, C) + [la = ao|))?
< 2p*(a,C) +2||a — ag|?

|A|Z’O(G’O ‘A|Z|a’_a0”2

acA acA



Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be an arbitrary set of
clusters. If we add a random center to C from A (with probabilistic
farthest first weighting), then E[¢(A)] < 8 ¢gpr(A)

Proof:

E[6(A)] Z - af()), e me{ a,C),|la — ao||? }

ag€EA aGA

< Laeal”( min § p“(a C)
o X = e
aEA Ha GLOH2 || 2
a — agpl|
|A| G,ZGA ZG,EAP a‘ C G,Ezfl }

4
< X Lla-al? = séorr(a




Approximation guarantee for kmeans++

Shown so far:
e Picking the first center (uar) increases the cost by a factor of <2
e Picking subsequent centers (pff) increases the cost by a factor of <8

But... our sampling may not hit each OPT cell!



Approximation guarantee for kmeans++

Claim: Let C be some clustering. Pick u > 0 be uncovered cells from OPT,
and X, be the corresponding points from these cells. Suppose we add t <u
clusters (with pff sampling). Let C’ be the resulting clustering. Then,

E[9'] < (§(X) + 8 dopr(X,)) . (1+H) + (u-t/ u) o(X,) A
Claim = Theorem E[cost(C)] < 8(In(k)+2) cost(OPT)

why?

» Consider the clustering after the picking the first center (u.a.r.), let A be
the corresponding partition.

e Usingt=u=k-1andapplying the claim

E[¢'] < ( ¢(A) + 8 dopr — 8 dopr(A) ) . (1+H,)
* H.,<1+Ink



Approximation guarantee for kmeans++

Claim: Let C be some clustering. Pick u > 0 be uncovered cells from OPT,
and X, be the corresponding points from these cells. Suppose we add t <u
clusters (with pff sampling). Let C’ be the resulting clustering. Then,

E[9'] < (§(Xc) + 8 dopr(X,)) - (1+H) + (u-t / u) o(X,) s G

Proof: will show by induction: (t-1,u) and (t-1,u-1) = (t,u)
Base cases:

(t=0,u>0) E[¢'] = ¢ = ¢(X.) + ¢(X,)

(t=1,u=1)
If t was picked from the uncovered cell... happens with prob ¢(X,) / ¢

E[¢'] < 0(X,) + 8 dpr(X,)
If t was picked from already covered cells... happens with prob ¢(X.) / ¢

So, E[¢)] < (§(X,)/0) (0(X.) + 8 dopr(X,)) + (D(X) / §) &
<2 (I)(Xc) + 3 d)OPT(Xu) base cases done



Approximation guarantee for kmeans++

Inductive case: (t-1,u) and (t-1,u-1) = (t,u)

If the first center (of t) was picked from already covered cells, happens w.p. (¢(X_)/0)
The center can only reduce ¢, now applying the IH on (t-1,u), its contribution to E[¢’]

(0(X) /&) - [ (0Xe) +8 dopr(X,)).(1+H, ) + (u-(t-1) / u) d(X,) ]

If the first center “a” (of t) was picked from an uncovered cell A, happens w.p. (¢(A)/d)
Applying the IH on (t-1,u-1) as cell A is added to covered cells... contribution to E[¢’]

(OA)/D)Z, P, (X )+0(a) + 8dopr(X,)-8Dopr(A)) (1+H, ) +(u-t)/(u-1))(d(X,)-d(A))]
< (O(A)/D) - [ (DX )+ 8opr(X))(L+H, ;) + (u-t)/(u-1))(d(X,)-d(A)) ]

Combining the two cases and with a few approximations, yields the claim.



k-means Approximation

 kmeans++ seeding is log(k) optimal
can also be shown that this analysis is tight

 How about other approximations?
* Constant approximations are available...
* 9+ ¢vialocal swap algorithm [Kanungo et al. ’04]

1+ ¢ (but runtime exponential dependence on k or d)
[Matousek ‘00, Feldman et al. ’07, Friggstad ’16]



