
Clustering

Clustering

What?

• Given some input data, partition the data in multiple groups

Why?

• Approximate large/infinite/continuous set of objects with finite set of
representatives

• Eg. Vector quantization, codebook learning, dictionary learning

• applications: HOG features for computer vision

• Find meaningful groups in data

• In exploratory data analysis, gives a good understanding and summary of
your input data

• applications: life sciences

So how do we formally do clustering?

Clustering: the problem setup

Given a set of objects X, how do we compare objects?

• We need a comparison function (via distances or similarities)

Given: a set X and a function  : X x X → R

• (X,) is a metric space iff for all xi, xj, xk  X

• (xi, xj)  0 (equality iff xi = xj)

• (xi, xj) =  (xj, xi)

• (xi, xj)   (xi, xk) +  (xk, xj)

A useful notation: given a set T  X

need a way to compare objects

d needs to have
some sensible

structure

Perhaps we can
make d a metric!

Examples of metric spaces

• L2, L1, L in Rd

• (shortest) geodesics on manifolds;

• shortest paths on (unweighted) graphs

Covering of a metric space

• Covering, -covering, covering number

Given a set X

• C (X), ie the powerset of X, is called a cover of S  X iff

𝑐∈𝐶ڂ 𝑐 ⊇ 𝑆

• if X is endowed with a metric , then C  X is an -cover of S  X iff

ie

• -covering number N(, S) of a set S  X, is the cardinality of the
smallest -cover of S.

Examples of -covers of a metric space

• is S an -cover of S?

• Let S be the vertices of a d-cube, ie, {-1,+1}d with L distance

• Give a 1-cover?

• How about a ½-cover?

• 0.9 cover?

• 0.999 cover?

Yes! For all   0

C = { 0d } N(1, S) = 1

N(½, S) = 2d

N(0.999, S) = 2d How do you prove this?

Examples of -covers of a metric space

• Consider S = [-1,1]2 with L distance

• what is a good 1-cover? ½-cover? ¼-cover?

• What about S = [-1,1]d?

What is the growth rate of
N(,S) as a function of  ?

What is the growth rate of N(,S) as a
function of the dimension of S?

The k-center problem

Consider the following optimization problem on a metric space (X,)

Input: n points x1, … , xn  X; a positive integer k

Output: T  X, such that |T| = k

Goal: minimize the “cost” of T, define as

How do we get the optimal solution?

A solution to the k-center problem

• Run k-means?

No… we are not in a Euclidean space (not even a vector space!)

• Why not try testing selecting k points from the given n points?

Takes time… (nk) time, does not give the optimal solution!!

• Exhaustive search

Try all partitionings of the given n datapoints in k buckets

Takes very long time… (kn) time,

unless the space is structured, unclear how to get the centers

• Can we do polynomial in both k and n?

A greedy approach… farthest-first traversal algorithm

X = R1

x1 x2 x3 x4

equidistant points

k = 2

Farthest-First Traversal for k-centers

Let S := { x1, … , xn }

• arbitrarily pick z  S and let T = { z }

• so long as |T| < k

• z := argmaxxS (x, T)

• T  T U { z }

• return T

runtime? solution quality?

Properties of Farthest-First Traversal

• The solution returned by farthest-first traversal is not optimal

• Optimal solution?

• Farthest first solution?

X = R1

x1 x2 x3 x4

equidistant points

k = 2

x x

x x

How does
cost(OPT) vs cost(FF)

Compare?

Properties of Farthest-First Traversal

For the previous example we know,

cost(FF) = 2 cost(OPT) [regardless of the initialization!]

But how about for a data in a general metric space?

Theorem: Farthest-First Traversal is 2-optimal for the k-center problem!

ie, cost(FF)  2 cost(OPT) for all datasets and all k!!

Properties of Farthest-First Traversal

Theorem: Let T* be an optimal solution to a given k-center problem, and let T be
the solution returned by the farthest first procedure. Then,

cost(T*)  cost(T)  2 cost(T*)

Proof Visual Sketch:

say k = 3

optimal
assignment

farthest first
assignment

the goal is to compare
worst case cover of

optimal to farthest first

Let’s pick
another point

If we can ensure that
optimal must incur a large
cost in covering this point

then we are good

Properties of Farthest-First Traversal

Theorem: Let T* be an optimal solution to a given k-center problem, and let T be
the solution returned by the farthest first procedure. Then,

cost(T*)  cost(T)  2 cost(T*)

Proof:

Let r := cost(T) = maxxS (x, T), let x0 be the point which attains the max

Let T’ := T U {x0}

Observation:

• for all distinct t,t’ in T’, (t, t’)  r

• |T*| = k and |T’| = k+1

• must exists t*T*, that covers at least two elements t1, t2 of T’

Thus,

since (t1, t2)  r, it must be that either (t1, t*) or (t2, t*)  r/2

Therefore: cost(T*)  r/2.

Doing better than Farthest-First Traversal

• k-centers problem is NP-hard!

proof: see hw1 ☺

• in fact, even (2- )-poly approximation is not possible for general metric
spaces (unless P = NP) [Hochbaum ’97]

can you do better than Farthest First traversal for the k-center problem?

k-center open problems

Some related open problems:

• Hardness in Euclidean spaces (for dimensions d  2)?

• Is k-center problem hard in Euclidean spaces?

• Can we get a better than 2-approximation in Euclidean spaces?

• How about hardness of approximation?

• Is there an algorithm that works better in practice than the farthest-first
traversal algorithm for Euclidean spaces?

Interesting extensions:

• asymmetric k-centers problem, best approx. O(log*(k)) [Archer 2001]

• How about average case?

• Under “perturbation stability”, you can do better [Balcan et al. 2016]

The k-medians problem

• A variant of k-centers where the cost is the aggregate distance

(instead of worst-case distance)

Input: n points x1, … , xn  X; a positive integer k

Output: T  X, such that |T| = k

Goal: minimize the “cost” of T, define as

remark: since it considers the aggregate, it is somewhat robust to outliers

(a single outlier does not necessarily dominate the cost)

An LP-Solution to k-medians

Observation: the objective function is linear in the choice of the centers

perhaps it would be amenable to a linear programming (LP) solution

Let S := { x1, … , xn }

Define two sets of binary variables yj and xij

• yj := is jth datapoint one of the centers? j = 1,…,n

• xij := is ith datapoint assigned to cluster centered at jth point i,j = 1,...,n

Example: S = {0,2,3}, T = {0,2}

datapoint “0” is assigned to cluster “0”

datapoint “2” and “3” are assigned to cluster “2”

x11 = x22 = x32 = 1 (the rest of xij are zero); y1 = y2 = 1 and y3 = 0

k-medians as an (I)LP

such that

Each point is assigned to
exactly on cluster

There are exactly k clusters

The variables are binary

ith datapoint is assigned to jth

point only if it is a center

Tally up the cost of all the
distances between points and
their corresponding centers

Li
n

ea
r

Discrete
/ Binary

yj := is j one of the centers
xij := is i assigned to cluster j

Properties of an ILP

Any NP-complete problem can be written down as an ILP

Can be relaxed into an LP.

• How?

Make the integer constraint into a ‘box’ constraint…

• Advantages

• Efficiently solvable.

• Can be solved by off-the-shelf LP solvers

• Simplex method (exp time in worst case but usually very good)

• Ellipsoid method (proposed by von Neumann, O(n6))

• Interior point method (Karmarkar’s algorithm ’84, O(n3.5))

• Cutting plane method

• Criss-cross method

• Primal-dual method

Why?

Properties of an ILP

Any NP-complete problem can be written down as an ILP

Can be relaxed into an LP.

• Advantages – Efficiently solvable

• Disadvantages

• Gives a fractional solution (so not an exact solution to the ILP)

• Conventional fixes – do some sort of rounding mechanism

Deterministic rounding

• Can be shown to have arbitrarily bad approximation.

Randomized rounding

• Can be sometimes have good average case or with high probability!

• Sometimes the solution is not even in the desired solution set!

• Derandomization procedures exist!

flip a coin with the bias as per the fractional cost and
assign the value as per the outcome of the coin flip

Back to k-medians… with LP relaxation

such that

Each point is assigned to
exactly on cluster

There are exactly k clusters

RELAXATION to box
constraints

ith datapoint is assigned to jth

point only if it is a center

Tally up the cost of all the
distances between points and
their corresponding centers

Li
n

ea
r

Also
LINEAR!

yj := is j one of the centers
xij := is i assigned to cluster j

note: cost(OPTLP)  cost(OPT)

A Deterministic procedure for k-medians LP

S := { x1, … , xn }, data from a metric space (X,); k = # centers

yj := is jth datapoint one of the centers?

xij := is ith datapoint assigned to cluster centered at jth point? i,j  [n]

The Algorithm [Lin and Vitter ’92]

Run the LP for k-medians problem on input S, with k centers

Define ci := j xij (xi, xj) i  [n]

T  

while S  

pick xi  S with smallest ci

T  T U { xi }

Ai := { xi’ : B(xi, 2ci)  B(xi’, 2ci’)   }

S  S \ Ai

return T

note: i ci = cost(OPTLP)

how good the output set T ? cost(T) ? |T| ?

Properties of the deterministic procedure

Theorem 1: cost(T)  4 cost(OPTLP)

 cost(T)  4 cost(OPT)

Theorem 2: |T|  2k

Remark: The result can be generalized to

cost(T)  2(1+1/) cost(OPTLP), with |T|  (1+)k

[when Ai := { xi’ : B(xi, (1+1/)ci)  B(xi’, (1+1/)ci’) }]

Got an approx. good solution in
(deterministic) poly time!

umm… not exactly k centers…
but close enough ☺

Properties of the deterministic procedure

Theorem 1: cost(T)  4 cost(OPTLP)

Proof:

Pick any xq  S and let xi is the

first point in T for which xq  Ai, then

• ci  cq

• (xq, xi)  4 cq

why?

 xp  S s.t. (xq, xi)  (xq, xp) + (xp, xi)  2cq + 2ci  4 cq

sum over all points q, we get…. cost(T)  4 cost(OPTLP) !

Run the LP

Define ci := j xij (xi, xj) i  [n]

T  

while S  

pick xi with smallest ci

T  T U { xi }

Ai := {xi’: B(xi, 2ci)B(xi’, 2ci’) }

S  S \ Ai

return T

Properties of the deterministic procedure

Theorem 2: |T|  2k

Proof:

Pick any xi T, then

jB(Xi,2Ci) yj  jB(Xi,2Ci) xij  ½

s.t.

LP

via Markov’s Ineq!

Markov: for Z non-neg
P[Z  a]  E[Z]/a

Recall i : (i) j xij = 1 (ii) ci := j xij (xi,xj) = Ex (xi,xj)

Define: random variable Zi takes value (xi,xj) with probability xij

So: (i) Zi = ci

(ii) jB(Xi,2Ci) xij = P[Zi  2ci] = P[Zi  2 Zi]  1 - P[Zi  2 Zi]  ½

Properties of the deterministic procedure

Theorem 2: |T|  2k

Proof:

Pick any xi T, then

jB(Xi,2Ci) yj  jB(Xi,2Ci) xij  ½

So, k = j yj   XiT jB(Xi,2Ci) yj  XiT jB(Xi,2Ci) xij  |T|/2

s.t.

because the balls are
disjoint by choice of xi in T

via Ai

Related problems to k-medians

• asymmetric k-medians is known to be hard to approximate via factor
O(log*(k)-(1))

The k-means problem

Input: n points x1, … , xn  Rd; a positive integer k

Output: T  X, such that |T| = k

Goal: minimize the “cost” of T, define as

A solution to the k-means problem

• Exhaustive search

Try all partitionings of the given n datapoints in k buckets

Takes very long time… (kn) time,

once we have the partitions, it’s easy to get the centers

• An efficient exact algorithm?

Unfortunately no… unless P = NP, or if k = 1 or d = 1

• Some approximate solutions

Lloyd’s method (most popular method!), Hartigan’s method

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Lloyd’s method to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Properties of Lloyd’s method

The quality of the output/centers returned by the Lloyd’s method can be
arbitrarily bad!

That is, the ratio cost(TLLOYD) / cost(OPT) is unbounded

This is the case for even seemingly ideal inputs…

What about farthest first initialization?

does not work when data has some outliers



k = 3
x

x
x

at (random)
initialization

x
xx

at convergence

cost(OPT) = O(n 2) cost(TLLOYD) = (n2)

Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means…

NAE-3SAT* P Generalized 2-means P 2-means 3SAT P NAE-3SAT P

First, we need a reformulation of k-means
and formally define the generalized k-means problem

[Dasgupta ’08]

k-means reformulation

Input: n points { x1, … , xn } = S  Rd; a positive integer k

Output: T  X, such that |T| = k

Goal: minimize the “cost” of T, define as

Input: n points { x1, … , xn } = S  Rd; a positive integer k

Output: P1,…,Pk  [n], ⨆ Pi = [n], 1,…, k  Rd

Goal: minimize the “cost” of (P1,…,Pk ; 1,…, k)Optimal
j = EiPj xi

Fo
rm

u
la

ti
o

n
 1

Fo
rm

u
latio

n
 2

k-means reformulation

Input: n points { x1, … , xn } = S  Rd; a positive integer k

Output: P1,…,Pk  [n], ⨆ Pi = [n]

Goal: minimize the “cost” of (P1,…,Pk)

Why? Basic algebra…Observation: EX ǁ X – EX ǁ2 = ½ EX,Y ǁ X – Y ǁ2

Fo
rm

u
latio

n
 3

A distance-based generalization of k-means

Input: n points { x1, … , xn } = S  Rd; a positive integer k

Output: P1,…,Pk  [n], ⨆ Pi = [n]

Goal: minimize the “cost” of (P1,…,Pk)

St
an

d
ar

d
k-

m
ea

n
s

Input: n x n symmetric matrix D; a positive integer k

Output: P1,…,Pk  [n], ⨆ Pi = [n]

Goal: minimize the “cost” of (P1,…,Pk)

G
en

eralized
k-m

ean
s

Dij can be viewed
as sq. Euclidean

distances
between xi and xj

A quick review of NP hardness and reductions

• NP-hard problems admit polynomial time reductions from all other
problems in NP

notation: Given two (decision) problems A and B

A P B A reduces to B (in poly-time)

usage: Want to show B “hard”. Pick a known hard problem A.

Assume B can be solved. Show that then A can be solved.

Therefore B is at least as hard as A

• Specifically, how to show a reduction?

• Given an instance  of A, transform (in poly-steps)

into an instance  of B

• Run decision algorithm for B on instance 

• Use the solution of  to get a solution for 

Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means…

NAE-3SAT* P Generalized 2-means P 2-means 3SAT P NAE-3SAT P

[Dasgupta ’08]

known (hard)
problem A

known (hard)
problems

show problem B
is at least as hard

Known hard problems

Input: A 3-CNF Boolean formula over n variables

Output: True iff an assignment exists satisfying the formula3
-S

A
T

3-Conjuncitve Normal Form (CNF)
A Boolean formula expressed as an AND over m

clauses, each of which has exactly 3 literals

Example:
Variables: x1,x2,x3,…,xn each xi {0,1}

Formula (3-CNF):
(x1 v x5 v ¬x32)ꓥ (x26 v ¬x18 v ¬x11) ꓥ (x5 v x33 v x89) …

literal clause

Known hard problems

Input: A 3-CNF Boolean formula over n variables

Output: True iff an assignment exists satisfying the formula3
-S

A
T

NAE-3SAT (or “Not All Equal” 3-SAT)

3SAT with an additional requirement that in each clause there is
at least one literal that is true, and at least one literal that is false.

NAE-3SAT* (a modification on NAE-3SAT)

Each pair (xi, xj) of variables appear in at most 2 clauses.

• once as: either (xi v xj) or (¬xi v ¬xj) , and

• once as: either (¬xi v xj) or (xi v ¬xj)

Generalized 2-means

Input: n x n symmetric matrix D

Output: P1, P2  [n], P1 ⨆ P2 = [n]

Goal: minimize the “cost” of (P1, P2)

will first show… NAE-3SAT* P Generalized 2-means

[Dasgupta ’08]

Hardness of Generalized 2-means

Theorem: NAE-3SAT* P Generalized 2-means

Proof:

Given an instance  of NAE-3SAT* with n variables x1,…,xn & m clauses

We’ll construct an instance of generalized 2-means as follows.

Let 2n x 2n distance matrix D(), each row/col corresponds to the
variables x1,…,xn ,¬x1,…,¬xn. Defined as

   means that either variable
 and  or ¬ and ¬ occurred

together in a clause in 

observations

Proof Contd.

A quick example:

Let NAE-3SAT* instance be: (x1 v ¬x2 v x3)

Agenda: the instance  of NAE-3SAT* is satisfiable iff D() admits
generalized 2-means cost of n – 1 + (2m/n).

Proof Contd.

Lemma: If the instance  of NAE-3SAT* is satisfiable, then D() admits
generalized 2-means cost of n – 1 + (2m/n) =: c () .

Consider any satisfiable assignment of , and partition all the (2n) literals into
those assigned true (partition P1) and those assigned false (partition P2).

|P1| = |P2| = n

By defn of NAE-3SAT*, each clause contributes one pair to P1 and one to P2

xi in P1 iff ¬xi in P2

all pairs contribute 1 unit,
m pairs contribute 1+

Proof Contd.

Lemma: For any partition P1, P2 which contains a variable and its negation,
then cost(P1,P2)  n – 1 + /(2n) > c()

Let n’ = |P1|, then

>

Since  > 4 m, cost(P1,P2) > c()

C() = n – 1 + (2m/n)

all pairs contribute at least 1 unit

Proof Contd.

Lemma: If D() admits to a 2-clustering of cost  c(), then  is a satisfiable
instance of NAE-3SAT*

Let P1,P2 be a 2-clustering with cost  c(), then P1 & P2 cannot contain a
variable and its negation (see previous lemma) |P1|=|P2|=n

Then the clustering cost is

since this is  c(), it must be that each clause is split across.

Therefore it is a satisfiable instance of NAE-3SAT*!

C() = n – 1 + (2m/n)

Generalized 2-means is hard

Hence, NAE-3SAT* P Generalized 2-means

Hardness of k-means

Theorem: k-means optimization is NP-hard

We’ll show a reduction from a known hard problem to 2-means…

NAE-3SAT* P Generalized 2-means P 2-means 3SAT P NAE-3SAT P

[Dasgupta ’08]

Hardness of 2-means

Theorem: Generalized 2-means P 2-means

Need to show generalized 2-means in embeddable in Rd so that we can
run a 2-means to solve it.

Claim: Any n x n symmetric matrix D() can be embedded in squared L2 iff
uTDu  0 for all u in Rn s.t. i ui = 0.

proof… see hw2 ☺

Hardness of k-means… thoughts

We have shown that 2-means is hard in d = (n) dimensions

What about when d = 2?

• There are elegant reductions available when k = 2 and d = 2.
[Vattani ’09, Aloise et al. ’09, Mahajan et al. ’09]

Approximating k-means with guarantees

Given: data , and number of centers k

Alternating optimization algorithm:

• Initialize cluster centers

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition)

• Find the optimal centers (for the partition)

Ll
o

yd
’s

 m
et

h
o

d

Heavily depends on initialization

• Random initialization doesn’t work

• Farthest first is sensitive to outliers

• Can something else be done?

• We explore probabilistic farthest first initialization!

Probabilistic farthest first for k-means

Probabilistic farthest first initialization (kmeans++) [Arthur and Vassilvitskii’07]

• Initialize C by picking a point xi uniform at random from the dataset S

• Pick a new center cj as the point xi from S with probability

Pi := 2(xi,C) / xkS 2(xk,C)

• C  C U {cj}

• Repeat till |C| = k

Theorem: Let C be the initialization via kmeans++

[cost(C)]  O(log(k)) cost(OPT)

Approximation guarantee for kmeans++

Theorem: Let C be the initialization via kmeans++ [Arthur and Vassilvitskii’07]

[cost(C)]  8(log(k)+2) cost(OPT)

Proof Idea:

Consider the partition induced by
the optimal clustering and analyze
how the probabilistic sampling
covers these cells.

If a sample hits a cell, then its relative
cost would be small.

Ideally want to show that all/most cells
are hit.

–– cells of the optimal partition
• optimal centers
• sampled centers

•

•

•

•

•

•

•

Approximation guarantee for kmeans++

Observation: For a set of points S = {x1,…, xn} and any z

xS ǁ x – z ǁ2 = xS ǁ x – Sǁ
2 + |S| ǁ x – Sǁ

2.

Notation:

• (A) = cost of subset of datapoints A  S wrt centers C

•  = (S) = cost(C)

• OPT (A) = cost of subset of datapoints A  S wrt centers OPT

• OPT = OPT (S) = cost(OPT)

Let's analyze how the probabilistic kmeans++ initialization affects the cost

Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be just one cluster chosen
u.a.r. from A, then [(A)] = 2OPT(A)

Proof:

[(A)] =

Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be an arbitrary set of
clusters. If we add a random center to C from A (with probabilistic
farthest first weighting), then [(A)]  8 OPT(A)

Proof:

[(A)] =

Observation:

Approximation guarantee for kmeans++

Claim: Let A be a cell in induced by OPT. Let C be an arbitrary set of
clusters. If we add a random center to C from A (with probabilistic
farthest first weighting), then [(A)]  8 OPT(A)

Proof:

[(A)] =

Approximation guarantee for kmeans++

Shown so far:

• Picking the first center (uar) increases the cost by a factor of  2

• Picking subsequent centers (pff) increases the cost by a factor of  8

But… our sampling may not hit each OPT cell!

Approximation guarantee for kmeans++

Claim: Let C be some clustering. Pick u > 0 be uncovered cells from OPT,
and Xu be the corresponding points from these cells. Suppose we add t  u
clusters (with pff sampling). Let C’ be the resulting clustering. Then,

[’]  ((Xc) + 8 OPT(Xu)) . (1+Ht) + (u-t / u) (Xu)

Claim  Theorem

why?

• Consider the clustering after the picking the first center (u.a.r.), let A be
the corresponding partition.

• Using t = u = k – 1 and applying the claim

[’]  ((A) + 8 OPT – 8 OPT(A)) . (1+Ht)

• Hk-1  1 + ln k

Xc := X – Xu

Ht := it (1/i)

[cost(C)]  8(ln(k)+2) cost(OPT)

Approximation guarantee for kmeans++

Claim: Let C be some clustering. Pick u > 0 be uncovered cells from OPT,
and Xu be the corresponding points from these cells. Suppose we add t  u
clusters (with pff sampling). Let C’ be the resulting clustering. Then,

[’]  ((Xc) + 8 OPT(Xu)) . (1+Ht) + (u-t / u) (Xu)

Proof: will show by induction: (t-1,u) and (t-1,u-1)  (t,u)

Base cases:

(t=0,u>0) [’] =  = (Xc) + (Xu)

(t=1,u=1)
If t was picked from the uncovered cell… happens with prob (Xu) / 

[’]  (Xc) + 8 OPT(Xu)
If t was picked from already covered cells… happens with prob (Xc) / 

So, [’]  ((Xu)/) ((Xc) + 8 OPT(Xu)) + ((Xc) / ) 

 2 (Xc) + 8 OPT(Xu)

Xc := X – Xu

Ht := it (1/i)

base cases done

Approximation guarantee for kmeans++

Inductive case:

If the first center (of t) was picked from already covered cells, happens w.p. ((Xc)/)

The center can only reduce , now applying the IH on (t-1,u), its contribution to [’]

((Xc) / ) . [((Xc) + 8 OPT(Xu)).(1+Ht-1) + (u-(t-1) / u) (Xu)]

If the first center “a” (of t) was picked from an uncovered cell A, happens w.p. ((A)/)

Applying the IH on (t-1,u-1) as cell A is added to covered cells… contribution to [’]

((A)/)[a pa((Xc)+(a) + 8OPT(Xu)-8OPT(A))(1+Ht-1) +(u-t)/(u-1))((Xu)-(A))]

 ((A)/) . [((Xc)+ 8OPT(Xu))(1+Ht-1) + (u-t)/(u-1))((Xu)-(A))]

Combining the two cases and with a few approximations, yields the claim.

(t-1,u) and (t-1,u-1)  (t,u)

k-means Approximation

• kmeans++ seeding is log(k) optimal

can also be shown that this analysis is tight

• How about other approximations?

• Constant approximations are available…

• 9 +  via local swap algorithm [Kanungo et al. ’04]

• 1 +  (but runtime exponential dependence on k or d)
[Matousek ’00, Feldman et al. ’07, Friggstad ’16]

