
Beyond Euclidian Embeddings
(Introduction to Hyperbolic Embeddings)



Why Go Beyond Euclidean Embeddings?

• Euclidean Embeddings are great:
• We have great understanding of the Euclidean geometry
• All our prediction models are designed for (and crucially 

depend on!) Euclidean spaces

• So why bother embedding with other geometries?
• Certain types of data (graphs, networks, etc) cannot be 

embedded in Euclidean spaces isometrically but can be 
embedded in other geometries!

• Hold on, what about Nash’s theorem?
• Recall: any (compact) n-manifold can be embedded 

isometrically in Euclidean space of dimension 2n+1. 
• So… if we can embed into another geometry, ie an “abstract” 

manifold, then can’t we embed it in Euclidean space??



Towards Other Interesting Geometries 

• Recall the Euclidian postulates:
• A straight line segment can be drawn joining any two points.
• Any straight line segment can be extended indefinitely in a straight 

line.
• Given any straight line segment, a circle can be drawn having the 

segment as radius and one endpoint as center.
• All right angles are congruent.
• [Parallel Postulate] Given any straight line and a point not on it, 

there "exists one and only one straight line which passes" through 
that point and never intersects the first line, no matter how far 
they are extended.

can we relax the parallel postulate? e.g.
• multiple distinct straight lines (passing through the point) are all parallel?
• no straight line (passing through the point) is parallel?

(this gives rise to other geometries)



Towards Other Interesting Geometries 

Modified parallel postulate:  Given any straight line L and a point p not on it,

• (option 1)   No straight line (passing through p) never intersects L
(ie ALL straight lines through p intersect L)

this gives rise to Elliptical geometry

• (option 2)      Multiple (distinct) straight lines (passing through p) 
never intersect L

this gives rise to Hyperbolic geometry



Resulting Geometries 



Elliptical Geometry

(spherical geometry) Constant positive curvature everywhere
Hold on!

• The point p is not on the line L
• Lines a and b, both passing through p, don’t intersect L

what is going on?

L

p



Hyperbolic Geometry

A saddle at every point in space 
(constant negative curvature everywhere)

difficult to visualize directly…

why cant we just use a hyperboloid?



Advantages of Such Geometries

Consider a unit ball in 2-dim 
• Euclidean space

• Spherical space

• Hyperbolic space

what is the circumference?



Growth Rate of the Circumference

For a full and complete binary tree, number of leaves at level r :
2r

For a Euclidean ball of radius r in Rd, the circumference is:  
~O(r d-1) 

after certain number of levels, we will run out of space to
isometrically embed the nodes at level r!

For a 2-dimension Hyperbolic ball of radius r, the circumference is: 
~sinh(r) = (er – e-r) / 2

The space grows exponentially so 
it has the potential to accommodate trees!



Models for Understanding Hyperbolic Spaces

Hyperboloid model
(using the positive sheet)

Poincare disk model

Need to be careful, we use the 
Minkowski metric to compute 
distances and hence the geodesics 
are not what you expect!



Poincare Disk Model

curves (that are part of a 
circle) that intersect 
perpendicularly with the disk 
boundary are straight lines in 
the hyperbolic space



Poincare Disk Model

A depiction of parallel 
postulate for hyperbolic 
space

pairwise distance in this model:
(distinct) points close to the 
boundary are very far apart 
from each other, and from 

the origin 



(Approximate) Isometric Embeddings of Trees

Sarkar’s Construction [2011]

Surprisingly simple construction:
• Suppose nodes a and b are already embedded 

(where b is a parent of a). Let f(a) and f(b) be 
the corresponding embedding. Let c1,…,ca be 
the children of a

• f(a) and f(b) are reflected across a geodesic s.t.
f(a) is mapped to origin and f(b) is mapped to 
some point z

• Place the children c1,…,ca equally spaced 
around a circle around origin maximally away 
from z

• Reflect all points back across the geodesic!



Machine Learning in Hyperbolic Spaces

• Hyperbolic SVM [Cho, DeMeo, Peng, Berger ’19]



Machine Learning in Hyperbolic Spaces

• Hierarchical Word Embeddings (WordNet) [Nickel, Kiela ’17]

[De Sa, Gu, Re, Sala ’18] 



Machine Learning in Hyperbolic Spaces



Machine Learning in Hyperbolic Spaces

• Hyperbolic Metric Learning [Aalto & Verma ’19]

k-NN accuracy:

Manifold


