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The goal of this week’s lecture is to prove the `2 version of Bourgain’s Theorem:

Theorem 1 (Bourgain)
Every n-point metric embeds into `2 with distortion O(lg n).

The proof will depend on the partitioning idea from Fakcharoenphol, Rao and Talwar (2003). The
idea is similar to the proof of Bourgain’s Theorem for `1 from Lecture 3. For each length scale s,
we define a partition Ps by the following algorithm:

1. Pick uniformly at random a number R ∈ [2s−1, 2s).

2. Pick uniformly at random an order σ on the elements of X.

3. Partition the items of X into at most n = |X| blocks as follows.

(a) Proceed with the elements of X according to the order σ.

(b) For each element x ∈ X, pick all non-assigned elements within
distance R from it, and form a new block.

We call Ps the partition created above, and denote by Ps(x) the block
in which x was placed.

Just as in the `1 case, we can apply the Padded Decomposition Property.

Theorem 2 (Padded Decomposition Property)
Let Ps be a partition of X, and let x ∈ X. If

τ ≤ 2s−3

lg

∣∣B(x, 2s+1)
∣∣

|B(x, 2s−3)|

, (1)

then Prσ,R[B(x, τ) ⊆ Ps(x)] ≥ 1
2 .

Proof: We proved this theorem in lecture 3. 2

We also have a corollary; since the growth ratio is less than the number of nodes, that is,∣∣B(x, 2s+1)
∣∣

|B(x, 2s−3)|
≤ n, (2)

the corollary follows:

Corollary 3 (Corollary to the Padded Decomposition Property)
Let Ps be a partition of X. For all x ∈ X and any constant c ∈ R, we have

Prσ,R

[
B

(
x,

2s

|c lg n|

)
⊆ Ps(x)

]
≥ 1

2
. (3)
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Before proving Bourgain’s Theorem, we first establish a simpler result, embedding an n-point

metric into `2 with distortion O

(
(lg n)

3
2

)
.

1 Simpler Embedding into `2 with distortion O
(
(lg n)(3/2)

)
.

First, we construct “zero sets,” so named because they will have coordinate 0 in the embedding.

Definition 1 (Zero sets) To construct the zero set Zs, merge nodes whose distance is less than
2s

10n .1 Then, pick each block in Ps independently with probability 1
2 , and take the union.

Now, we proceed to construct the embedding into `2. First, scale the distance function so that
the minimum distance is 1, and let ∆ be the maximum distance.

Then, since the radius R of a block for Zs is at least 2s−1, there are lg ∆ nontrivial zero sets:
Z1, . . . , Zlg ∆. Then, we construct the embedding f by Frechet’s technique:

Definition 2 Let f be the function from X into Rlg ∆ as follows:

f : x 7→ (d(x,Z1), d(x,Z2), . . . , d(x, Zlg ∆)) (4)

We claim that this embedding f has O
(
(lg n)(3/2)

)
distortion, that is,

d(x, y) ≤ E[|f(x)− f(y)|] ≤ (lg n)(3/2)d(x, y). (5)

This is immediate from the following theorem:

Theorem 4
If (X, d) is an n-point metric space and f is an embedding as described above, then for all x, y ∈ X,
we have:

d(x, y)2

(lg n)2
≤ (E[|f(x)− f(y)|])2 ≤ (lg n)d(x, y)2. (6)

Proof: The trivial upper bound follows from the triangle inequality:

|f(x)− f(y)| =

√√√√lg ∆∑
s=1

|d(x,Zs)− d(y, Zs)|2 (7)

≤

√√√√lg ∆∑
s=1

|d(x, y)|2 (8)

≤ d(x, y)
√

lg ∆ (9)

so (E[|f(x)− f(y)|])2 ≤
(
d(x, y)

√
lg ∆

)2 ≤ d(x, y)2(lg ∆).
We improve this bound by observing that only lg n terms contribute to the summation in

Equation 7. Nodes x and y are merged if 2s ≥ 10n(d(x, y)), so the contribution is zero. On the

1That is, if d(x, y) < 2s

10n
, then merge them into one node z. The metric on the new set is is the shortest path

metric d′, where for any u,v, d′(u, z) = min(d(u, x), d(u, y)) and d′(u, v) = min(d′(u, z) + d′(z, v), d(u, v)).
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other hand, when 2s ≤ d(x, y), the distance d(x, Zs) and d(y, Zs) will tend to be less than 2s, so this
contribution falls off geometrically. Thus, the terms matter only for the lg n values of s satisfying
d(x, y)) ≤ 2s ≤ 10n(d(x, y)). We conclude that (E[|f(x)− f(y)|])2 ≤ d(x, y)2(lg n).

For the lower bound, we show that just one coordinate’s contribution makes the required con-
tribution. Fix x ∈ X and y ∈ X. Consider the coordinate s where 2s ≈ d(x,y)

4 .
Since the diameter of each block in Ps is at most 2s+1 and the distance d(x, y) is 4(2s) = 2s+2,

it must be the case that x and y are in different blocks. Thus, the zero set Zs contains x with
probability 1

2 , and it contains y with independent probability 1
2 . By Corollary 3 to the Padded

Decomposition Property, we have that B(x, 2s

10 lg n) ⊆ P (x) with probability at least 1
2 . So, with

probability 1
8 , the zero set Zs contains x but not y, and d(y, Zs) ≥ 2s

10 lg n . Since d(x, y) ≈ 2s+2, we

have d(y, Zs) ≥ d(x,y)
40 lg n with probability 1

8 . It follows that

(E[|f(x)− f(y)|])2 ≥ d(x,y)2

8(40 lg n)2
. (10)

2

Remark 1 To show this property without the expectation, we simply repeat the process and
concatenate the embeddings from each iteration. Chernoff bounds show that this process will bring
the embedding arbitrarily close (1 + ε) to the expectation.

Remark 2 The scale where 2s ≈ d(x, y) is important because it is the only scale where the dis-
tances are large enough to make a real contribution, but small enough that x and y are in different
blocks.

2 Bourgain’s `2 Theorem (full)

We will now prove Bourgain’s theorem: any n-point metric can be embedded into `2 with O(lg n)
distortion. This will be immediate from the following theorem:

Theorem 5
If (X, d) is an n-point metric space and f is an embedding as described below, then for all x, y ∈ X,
we have:

d(x, y)2

lg n
≤ (E[|f(x)− f(y)|])2 ≤ (lg n)d(x, y)2. (11)

To prove this theorem, we first apply a technique due to KLMN 2004; we “glue” the lg ∆ scales
into lg n coordinates.

Definition 3 Let R(x, t) be the maximum radius R for which |B(x, R)| ≤ 2t.

Definition 4 Let K(x, t) = dlg R(x, t)e.

We now define a growth ratio that reflects how quickly the density of vertices changes around x.

Definition 5 For any small natural numbers c and c′, we let GR = lg

�
�
�B(x,2m+c′ )

�
�
�

|B(x,2m−c)| .

This definition is ambiguous, but we will fix this later.
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Remark 3 Observe that if lg |B(x, 2m)| � lg
∣∣B(x, 2m−3)

∣∣, then R(x, t) stays around 2m for many
values of t. More precisely, R(x, t) ≈ 2m (and K(x, t) ≈ m) for about lg |B(x,2m)|

|B(x,2m−3)| = lg(GR) values
of t.

We have Zs as before, except that we do not need to merge nodes before constructing Zs. The Zs

will not be the zero sets for this theorem, however. Instead, we will now define the zero sets Wt

as follows, by “gluing” the Zs together. In order to decide whether or not to join Wt, each node x
“sniffs” around its neighborhood to determine K(x, t) and then checks if it lies in ZK(x,t). If so, it
joins Wt.

Definition 6 Wt =
{
x : x ∈ ZK(x,t)

}
.

This is not the precise definition we will finally use, but it will convey the general idea of the proof.
We will define Wt more precisely later.

Remark 4 Observe that when t = lg n, the maximum radius R for which |B(x,R)| ≤ 2t is the
maximum distance ∆. Thus, t goes from 1 to lg n, the function R(x, t) goes to ∆, the function
K(x, t) goes to lg ∆, and ZK(x,t) goes to Zlg ∆, as we would expect.

Again, we define the embedding function f in Frechet’s style:

Definition 7 Let f be the function from X into Rlg ∆ as follows:

f : x 7→ (d(x,W1), d(x,W2), . . . , d(x,Wlg n)) (12)

We now present the proof of Theorem 5.
Proof: The upper bound follows trivially from the triangle inequality:

|f(x)− f(y)|2 =
lg n∑
t=1

|d(x,Wt)− d(y, Wt)|2 (13)

≤
lg n∑
t=1

|d(x, y)|2 (14)

≤ (lg n)d(x, y)2 (15)

For the lower bound, we consider the scale m where 2m ≈ d(x, y). This is the important scale
that we noted in Remark 2; however, in contrast to the O((lg n)3/2) embedding, the “gluing” now
gives us multiple coordinates that involve this scale. In the previous embedding, there was just one
zero set, Zm, that involved this scale; now, since Remark 3 gives us lg(GR) values of t for which
K(x, t) ≈ m, we have lg(GR) zero sets Wt =

{
x : x ∈ ZK(x,t)

}
that involve Zm = ZK(x,t).

We apply the Padded Decomposition Property to show that B(x, 2m

lg GR) ⊆ Pm(x) with proba-
bility at least 1

2 . Then, we apply the same logic from the previous proof to each coordinate: with
probability 1

8 , the zero set Wt contains x but not y, and d(y, Wt) ≥ 2s

lg(GR) ≈
d(x,y)
lg(GR) . Thus, it follows

that for each t for which K(x, t) ≈ m, we have:

E[|d(x,Wt)− d(y, Wt)|] ≥
d(x, y)
lg(GR)

. (16)
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This allows us to conclude the proof of the upper bound:

(E[|f(x)− f(y)|])2 ≥ E[|f(x)− f(y)|2] (17)

≥
lg n∑
t=1

E[|d(x,Wt)− d(y, Wt)|2] (18)

≥
∑

t:K(x,t)≈m

E[|d(x,Wt)− d(y, Wt)|2] (19)

By the padding property from Equation (16):

≥
∑

t:K(x,t)≈m

d(x, y)2

(lg(GR))2
(20)

Since there are log(GR) such coordinates:

≥ (lg(GR))
d(x, y)2

(lg(GR))2
(21)

≥ d(x, y)2

lg(GR)
(22)

Since the growth ratio is at most n:

≥ d(x, y)2

lg n
(23)

This proves the theorem. 2

There are two subtleties that we overlooked in the proof of the theorem. We consider them
here.
subtlety 1: The Padded Decomposition Property does not strictly apply to Wt. A point x is not
in Wt because it is not in Zm, where m = K(x, t). The point x hopes that, with good probability,
it is a distance at least 2m/ log GR from Wt, so that it will be far away from a distant point y,
d(x, y) > 2m+1 that lands in Wt. This hope is jeopardized by the possibility that a point z in
B(x, τ) might be in Wt because it is deciding “looking” at a different Zm′ , where m′ = K(z, t) and
m is not necessarily the same as m′. We deal with this by showing that the K(·, ·) has a certain
“smoothness” property which implies that m is necessarily close to m′.

Lemma 6 (Smoothness Lemma)
Let x ∈ X and m = K(x, t). Let z ∈ B(x, τ), where τ ≤ 2m

10 . Finally, let m′ = K(z, t). Then

m′ ∈ {m− 4,m− 3,m− 2,m− 1,m, m + 1} .

Proof: We know that B(x, 2m) contains roughly 2t points. Since d(x, z) ≤ 2m, we know that
B(x, 2m) ⊂ B(z, 2m + 2m) = B(z, 2m+1), and there must be 2t points in B(z, 2m+1). Thus,
m′ ≤ m + 1.
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For the lower bound, we know that B(z, 2m′
) contains roughly 2t points. Since d(x, z) ≤ 2m

10 ,
we know that B(z, 2m′

) ⊂ B(x, 2m′
+ 2m

10 ). 2

So, the concern is warranted, but there are only 6 different scales to worry about. Thus, we
simply assert that with probability 2−6, we have

d(x,Zm′) ≥ 2m′

lg

∣∣∣B(x, 2m′+1)
∣∣∣

|B(x, 2m′−3)|

(24)

for all m′ between m − 4 and m + 1. This simply reduces the constant factor in our padding for
Wt in Equation 16.

subtlety 2: The growth ratio GR stands for all of the different growth ratios

�
�
�B(x,2m+c′ )

�
�
�

|B(x,2m−c)| with
different constants c and c′. Most notably, in the size of the paddings (Equation 24), we have various
m′, and in the number of coordinates (Remark 3), the growth ratios have different constants.

We resolve this by picking a large constant c. Then, we expand the number of coordinates by
a factor of 2c + 1 by defining the zero sets:

Wi,t = x : x ∈ ZK(x,t)−i,

where i ranges from −c to c and t ranges from 1 to lg n.
Since K(x, t)− i ≈ m when K(x, t) ∈ [m− c,m + c], the summation in Equation 19 includes

lg |B(x,2m+c)|
|B(x,2m−c)|

values of (i, t). By making c sufficiently large, we can add more and more coordinates into the sum,
until we cancel a lg(GR) in the denominator in Equation 21:

(E[|f(x)− f(y)|])2 ≥
∑

t:K(x,t)−i≈m

d(x, y)2

(lg(GR))2
(25)

≥
(

lg |B(x,2m+c)|
|B(x,2m−c)|

)
d(x, y)2

(lg(GR))2
(26)

≥ d(x, y)2

lg(GR)
(27)

≥ d(x, y)2

lg n
(28)


