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Abstract

Mixtures of Gaussians are among the most fundamental
and widely used statistical models. Current techniques for
learning such mixtures from data are local search heuris-
tics with weak performance guarantees. We present the first
provably correct algorithm for learning a mixture of Gaus-
sians. This algorithm is very simple and returns the true
centers of the Gaussians to within the precision specified by
the user, with high probability. It runs in time only linear in
the dimension of the data and polynomial in the number of
Gaussians.

1 Introduction

The mixture of Gaussians is among the most enduring, well-
weathered models of applied statistics. A widespread be-
lief in its fundamental importance has made it the object
of close theoretical and experimental study for over a cen-
tury. In a typical application, sample data are thought of
as originating from various possible sources, and the data
from each particular source is modelled by a Gaussian. This
choice of distribution is common in the physical sciences
and finds theoretical corroboration in the central limit the-
orem. Given mixed and unlabelled data from a weighted
combination of these sources, the goal is to identify the
generating mixture of Gaussians, that is, the nature of each
Gaussian source – its mean and covariance – and also the
ratio in which each source is present, known as its ‘mixing
weight’.

A brief history of the many uses of mixtures of Gaus-
sians, spanning fields as varied as psychology, geology, and
astrophysics, has been compiled by Titterington, Smith, and
Makov (1985). Their authoritative book outlines some of
the fascinating and idiosyncratic techniques that have been
applied to the problem, harking back to days of sharpened
pencils and slide rules. Modern methods delegate the bulk
of the work to computers, and amongst them the most popu-
lar appears to be the EM algorithm formalized by Dempster,
Laird, and Rubin (1977). EM is a local search heuristic of
appealing simplicity. Its principal goal is convergence toa

local maximum in the space of Gaussian mixtures ranked
by likelihood. An explanation of this algorithm, along with
helpful remarks about its performance in learning mixtures
of univariate Gaussians, can be found in an excellent survey
article by Redner and Walker (1984) and in a recent mono-
graph by Lindsay (1995).

This paper describes a very simple algorithm for learn-
ing an unknown mixture of Gaussians with an arbitrary
common covariance matrix and arbitrary mixing weights,
in time which scales only linearly with dimension and poly-
nomially with the number of Gaussians. We show that with
high probability, it will learn the true centers of the Gaus-
sians to within the precision specified by the user. Previous
heuristics have been unable to offer any such performance
guarantee, even for highly restricted subcases like mixtures
of two spherical Gaussians.

The new algorithm works in three phases. First we
prove that it is possible to project the data into a very small
subspace without significantly increasing the overlap of the
clusters. The dimension of this subspace is independent of
the number of data points and of the original dimension of
the data. We show, moreover, that after projection general
ellipsoidal Gaussians become more spherical and thereby
more manageable. In the second phase, the modes of the
low-dimensional distribution are found using a simple new
clustering algorithm whose performance we rigorously an-
alyze. Finally, the low-dimensional modes are used to re-
construct the original centers. Each of these stages invokes
new technical tools of more general applicability.

2 Overview

2.1 Background

An n-dimensional GaussianN(µ; Σ) has density function

p(x) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Although the density is highest atµ, it turns out that for
large n most of the probability mass lies far away from



this center. This is the first of many surprises that high-
dimensional space will spring upon us. A pointx ∈ R

n

chosen randomly from a spherical GaussianN(0;σ2In) has
expected squared Euclidean normE(‖x−µ‖2) = nσ2. The
law of large numbers forces the distribution of this squared
length to be tightly concentrated around its expected value
for big enoughn. That is to say, almost the entire distribu-
tion lies in a thin shell at distanceσ

√
n from the center of

the Gaussian! Thus the natural scale of this Gaussian is in
units ofσ

√
n.

The more general GaussianN(0; Σ) has ellipsoidal
contours of equal density. Each such ellipsoid is of the form
{x : xTΣ−1x = r2}, corresponding to points at a fixedMa-
halanobis distance‖x‖Σ =

√
xTΣ−1x from the center of

the Gaussian. As in the spherical case, in high dimension
the distribution is concentrated around an ellipsoidal shell
‖x‖Σ ≈ √

n. The reader should try to reconcile this with
the fact that the distribution is also concentrated (perhaps
less tightly) around a spherical shell‖x‖ ≈

√
trace(Σ).

It is reasonable to imagine, and is borne out by expe-
rience with techniques like EM (Duda & Hart; Redner &
Walker), that a mixture of Gaussians is easiest to learn when
the Gaussians do not overlap too much. Taking cue from our
discussion ofN(µ;σ2In), we adopt the following

Definition Two GaussiansN(µ1;σ
2In) andN(µ2;σ

2In)
are consideredc-separatedif ‖µ1 − µ2‖ ≥ cσ

√
n. More

generally, GaussiansN(µ1,Σ1) andN(µ2,Σ2) in R
n are

c-separated if

‖µ1 − µ2‖ ≥ c
√
nmax(λmax(Σ1), λmax(Σ2)),

whereλmax(Σ) is shorthand for the largest eigenvalue of
Σ. A mixture of Gaussians isc-separated if its component
Gaussians are pairwisec-separated.

A 2-separated mixture corresponds roughly to almost
completely separated Gaussians, whereas a mixture that is
1- or 1/2-separated contains Gaussians which overlap sig-
nificantly. We will be able to deal with Gaussians that are
arbitrarily close together; the running time will, however,
inevitably depend upon their radius of separation.

2.2 The problem of dimension

What makes this learning problem difficult? In low dimen-
sion, for instance in the case of univariate Gaussians, it is
often possible to simply plot the data and visually estimate
a solution, provided the Gaussians maintain a respectable
distance from one another. This is because a reasonable
amount of data conveys a fairly accurate idea of the overall
probability density. The high points of this density corre-
spond to centers of Gaussians and to regions of overlap be-
tween neighbouring clusters. If the Gaussians are far apart,

these modes themselves provide good estimates of the cen-
ters.

Easy algorithms of this kind fail dismally in higher di-
mension. Consider again the GaussianN(µ;σ2In). We
must pick2O(n) random points from this distribution in or-
der to get just a few which are at distance≤ 1

2σ
√
n from the

center! The data in any sample of plausible size, if plotted
somehow, would resemble a few scattered specks of dust
in an enormous void. What can we possibly glean from
such a sample? Such gloomy reflections have prompted re-
searchers to try mapping data into spaces of low dimension.

2.3 Dimensionality reduction

The naive algorithm we just considered requires at least
about2d data points to learn a mixture of Gaussians inR

d,
and this holds true of many other simple algorithms that one
might be tempted to concoct. Is it possible to reduce the di-
mension of the data so dramatically that this requirement
actually becomes reasonable?

One popular technique for reducing dimension is prin-
cipal component analysis, or PCA. It is quite easy to sym-
metrically arrange a group ofk spherical Gaussians so that
a PCA projection to any dimensiond < Ω(k) will collapse
many of the Gaussians together, and thereby decisively de-
rail any hope of learning. For instance, place the centers of
the(2j − 1)st and2jth Gaussians along thejth coordinate
axis, at positionsj and−j. The eigenvectors found by PCA
will roughly be coordinate axes, and the discarding of any
eigenvector will collapse together the corresponding pairof
Gaussians. Thus PCA cannot in general be expected to re-
duce the dimension of a mixture ofk Gaussians to below
Ω(k). Moreover, computing eigenvectors in high dimen-
sion is a very time-consuming process.

A much faster technique for dimensionality reduction,
which has received a warm welcome in the theoretical com-
munity, is expressed in the Johnson-Lindenstrauss (1984)
lemma. The gist is that anyM data points in high dimension
can be mapped down tod = O( logM

ǫ2 ) dimensions with-
out distorting their pairwise distances by more than(1+ ǫ).
However, for our purposes this reduced dimension is still far
too high! According to our rough heuristic, we need2d data
points, and this exceedsM by many orders of magnitude.

We will show thatfor the particular case of mixtures
of Gaussians, we can reduce the dimension of the data far
more drastically. By using projection to a randomly chosen
subspace as in the Johnson-Lindenstrauss lemma, we can
map the data into justd = O(log k) dimensions, wherek is
the number of Gaussians. Therefore the amount of data we
will need is only polynomial ink.

This might puzzle readers who are familiar with ran-
dom projection, because the usual motive behind such pro-
jections is to approximately preserve relative distances be-



tween data points. However, in our situation we expressly
do not want this. We want most of the pairwise distances
to contract significantly, so that the fraction of points within
distance∆

√
d of any Gaussian center in the reduced space

R
d is exponentially greater than the fraction of points within

distance∆
√
n of the same center in the original spaceR

n.
At the same time, we do not want the distances between dif-
ferent Gaussians to contract; we must make sure that Gaus-
sians which are well-separated remain so when they are pro-
jected. These conflicting requirements are accommodated
admirably by a projection to justO(log k) dimensions.

This method of projection has another tremendous
benefit: we show that even if the original Gaussians are
highly skewed (have ellipsoidal contours of high eccentric-
ity), their projected counterparts will be more spherical and
thereby easier to learn! The low-dimensional portion of
our algorithm is able to take advantage of this; it works
for Gaussians of arbitrary eccentricity, but affords the best
guarantees for spherical Gaussians.

2.4 The algorithm

We are now in a position to present the algorithm. The user
furnishes:ǫ, the accuracy within which the centers are to be
learned;δ, a confidence parameter;k, the number of Gaus-
sians; andwmin, the smallest mixing weight that will be
considered. These values will be discussed in full detail in
the next section. The parametersM,d, l, p, andq depend
upon the inputs, and will be determined later.

SampleS consists ofM data points inRn.

1. Select a randomd-dimensional subspace of the original
spaceRn, and project the data into this space. This takes
time onlyO(Mdn).

2. In the projected space:

• Forx ∈ S, let rx be the smallest radius such that there
are≥ p points within distancerx of x.

• Start withS′ = S.

• For i = 1 . . . k:

– Let estimatêµ∗

i be the pointx ∈ S′ with the low-
estrx.

– Find theq closest points to this estimated center.

– Remove these points fromS′.

• For eachi, let Si denote thel points inS which are
closest tôµ∗

i .

3. Let the (high-dimensional) estimatêµi be the mean ofSi in
R

n.

This algorithm is very simple to implement.

2.5 Spherical density estimates

The data get projected fromRn to R
d via a linear map.

Since any linear transformation of a Gaussian conveniently
remains a Gaussian, we can pretend that the projected data
themselves come from a mixture of low-dimensional Gaus-
sians.

The second step of the algorithm is concerned with es-
timating the means of these projected Gaussians. Regions
of higher density will tend to contain more points, and we
can roughly imagine the density around any data pointx to
be inversely related to radiusrx. In particular, the data point
with lowestrx will be near the center of some (projected)
Gaussian. If the Gaussians all share the same covariance,
then this data point will be close to the center of that Gaus-
sian which has the highest mixing weight.

Once we have a good estimate for the center of one
Gaussian, how do we handle the rest of them? The prob-
lem is that one Gaussian may be responsible for the bulk
of the data if it has a particularly high mixing weight. All
the data points with lowrx might come from this one over-
represented Gaussian, and need to be eliminated from con-
sideration somehow.

This is done by growing a wide region around the esti-
mated center, and removing from contention all the points
in it. The region should be large enough to remove all
high-density points in that particular Gaussian, but should at
the same time leave intact the high-density points of other
Gaussians. The reader may wonder, how can we possibly
know how large this region should be if we have no idea of
either the covariance or the mixing weights? First, we pick
theq points closest to the estimated center rather than using
a preset radius; this accomplishes a natural scaling. Second,
the probability of encountering a data point at a distance
≤ r from the center of the Gaussian grows exponentially
with r, and this rapid growth tends to eclipse discrepancies
of mixing weight and directional variance.

Both the techniques described – that of choosing the
point with next lowestrx as a center estimate, and then
“subtracting” the points close to it – rely heavily on the ac-
curacy of spherical density estimates. That is, they assume
that for any sphere inRd, the number of data points which
fall within that sphere is close to its expected value under
the mixture distribution. That this is in fact the case fol-
lows from the happy circumstance that the concept class of
spheres inRd has VC-dimension onlyd+ 1.

2.6 Mapping back to the original space

At this stage, projected centers in hand, we recall that our
actual task was to find the Gaussian means in the origi-
nal high-dimensional space. Well, this is not too difficult,
at least conceptually. For each low-dimensional estimated



centerµ̂∗
i , we pick thel data points closest to it inRd, call

themSi, and then average these same points inR
n. We

expectSi to be relatively uncontaminated with points from
other Gaussians (although we cannot of course avoid the
odd straggler), and thus its mean should closely approxi-
mateµi.

The chief technical problem in the reconstruction is to
show that small errors in the estimatêµ∗

i are not grossly
magnified when carried back intoRn. The core question
can be stated quite simply. Given that an unknown point
x ∈ R

n drawn from GaussianN(0; Σ) gets projected to
somey ∈ R

d, what is the conditional distribution of‖x‖
given‖y‖? A bit of matrix analysis yields the answer.

We complete our overview with one last clarification.
How exactly did the projection help us? It enabled us to
find, for each Gaussian, a set of data points drawn mostly
from that Gaussian.

2.7 The main result

In the next section we will prove a dimensionality reduction
lemma, the first step towards our main

TheoremSuppose data is drawn from a mixture ofk Gaus-
sians inRn which is c-separated, forc > 1/2; has small-
est mixing weightΩ( 1k ); and has (unknown) common co-
variance matrixΣ with maximum and minimum eigenval-
uesσ2

max, σ
2
min and eccentricityε = σmax/σmin. Then

with probability> 1 − δ, the center estimates returned by
the algorithm are accurate withinL2 distanceǫσmax

√
n.

If the eccentricityε ≤ O( n1/2

log k/ǫδ ), then the reduced di-

mension isd = O(log k
ǫδ ) and the number of data points

needed isM = kO(log2 1/(ǫδ)). The algorithm runs in time
O(M2d+Mdn).

Our algorithm can in fact handle Gaussians which are
arbitrarily close together. It is only to curtail the prolifer-
ation of symbols that we insist upon1/2-separation in this
theorem. The mixing weights and eccentricity are similarly
unrestricted.

A word about the inputs: in addition to the number of
Gaussiansk and the usualǫ (accuracy) andδ (confidence)
parameters, the user is expected to supply a lower bound
wmin on the mixing weights which will be considered.

In the last section of this paper, we will discuss how the
mixing weights and covariance matrix may be estimated, if
these are needed. We will also suggest ideas for reducing
the sample complexity tokO(log 1/δ)/ǫ2, and for handling
more general families of distributions.

3 Reducing dimension

3.1 Maintaining intercluster distances

We start by showing that the dimension of the data can
be reduced drastically without significantly increasing the
overlap of the clusters.

Definition For a positive definite matrixΣ, let λmax(Σ)
andλmin(Σ) refer to its largest and smallest eigenvalues,
respectively, and denote byε(Σ) theeccentricityof the ma-
trix, that is,

√
λmax(Σ)/λmin(Σ).

The following dimensionality reduction lemma applies
to arbitrary mixtures of Gaussians, which we parametrize
by mixing weightswi, meansµi and covariance matrices
Σi, one per Gaussian. Its statement refers to the notion of
separation introduced in the overview.

Lemma 1 (Dimensionality Reduction)For anyc > 0, let
{(wi, µi,Σi)} denote ac-separated mixture ofk Gaussians
in R

n, and letδ > 0 andǫ > 0 designate confidence and
accuracy parameters, respectively. With probability> 1−δ,
the projection of this mixture of Gaussians onto a randomd-
dimensional subspace yields a(c

√
1− ǫ)-separated mixture

of Gaussians{(wi, µ
∗
i ,Σ

∗
i )} in R

d, providedd ≥ 4
ǫ2 ln

k2

δ .

Moreover, λmax(Σ
∗
i ) ≤ λmax(Σi) and λmin(Σ

∗
i ) ≥

λmin(Σi). In particular therefore,ε(Σ∗
i ) ≤ ε(Σi).

Proof sketch. Consider a single line segment inRn, of
squared lengthL. If the original space is projected onto
a randomd-dimensional subspace, the squared length of
this line segment becomes someL∗, of expected value
EL∗ = Ld/n. It was shown by Johnson and Linden-
strauss (1984) thatP(L∗ < (1−ǫ)Ld/n) ≤ e−dǫ2/4. Their
proof has been simplified by Frankl and Maehara (1988)
and most recently by the author and Gupta (1998).

Apply this lemma to theO(k2) line segments joining
pairs of Gaussian centers in the original space. This keeps
the centers far apart; to satisfy our definition of separated-
ness, we must also check that the original Gaussians do not
spread out when projected, that is,λmax(Σ

∗
i ) ≤ λmax(Σi).

Remarks (1) If two of the Gaussians in the original mix-
ture are particularly far apart, saycf -separated for some
f ≥ 1, then in the projected space they will be(cf

√
1− ǫ)-

separated. This will be useful to us later. (2) A projection
onto a random lower-dimensional subspace will in fact dra-
matically reduce the eccentricity of Gaussians, as demon-
strated in the next section.

Corollary If c > 1/2, then in order to ensure that the
projected mixture is at least1/2-separated with probability
> 1− δ, it is enough to choosed ≥ 4c4

(c2− 1

4
)2
ln k2

δ .



3.2 Bounding the eccentricity of projected ellip-
soids

The low-dimensional phase of our algorithm works best
when the projected Gaussians have eccentricity close to
one. We will now see that random projection makes Gaus-
sians more spherical.

Think of the random projection fromRn toR
d as a ran-

dom rotation inRn, represented by some orthogonal ma-
trix UT , followed by a projectionPT onto the firstd co-
ordinates. The columns ofUT are an orthonormal basis
{u1, . . . , un} of Rn. Denote the restriction of these vec-
tors to their firstd coordinates byu∗

1, . . . , u
∗
n, respectively.

The high-dimensional covariance matrixΣ has eigenvalues
λ1 ≤ · · · ≤ λn, with eccentricityε =

√
λn/λ1 ≥ 1, and

normalized traceλ = 1
n (λ1 + · · ·+ λn). We will show that

the covariance matrix of the projected Gaussians, denoted
Σ∗, is close to the spherical covariance matrixλId.

Pick any unit vectorx ∈ R
d, and defineV (x) to be the

variance of the projected Gaussian in directionx.

Lemma 2 (Variance of projected Gaussians) For any unit
vector x ∈ R

d, V (x) has the same distribution as∑n
i=1 λiv

2
i , wherev is chosen uniformly at random from

the surface of the unit sphere inRn. ThereforeEV (x) = λ,
over the choice of random projection.

Proof. We can write the projected covariance matrixΣ∗ as
(UP )TΣ(UP ), and on account ofU we may assumeΣ is
diagonal, specificallyΣ = diag(λ1, . . . , λn).

Pick any directionx ∈ R
d. The variance of the

projected Gaussian in directionx is V (x) = xTΣ∗x =
(Px)T (UTΣU)(Px). SinceΣ is diagonal,

(UTΣU)ij =
n∑

k=1

λkUkiUkj

whereby

V (x) =

n∑

i,j=1

(Px)i(Px)j(U
TΣU)ij

=
d∑

i,j=1

xixj

n∑

k=1

λkUkiUkj

=

n∑

k=1

λk

d∑

i,j=1

(xiUki)(xjUkj)

=
n∑

k=1

λk(x · u∗
k)

2,

whereu∗
k denotes the firstd coordinates of thekth row of

U .

We can without loss of generality assume thatx lies
along some coordinate axis, say the very first one, in which
case

V (x) =

n∑

i=1

λiu
2
i1.

Since UT is a random orthogonal matrix, its first row
(u11, . . . , un1) is a random unit vector.

We now have a simple formulation of the distribution of
V (x). For any givenx, this value is likely to be close to its
expectation because it is the sum ofn almost-independent
bounded random variables. To demonstrateV (x) ≈ λ si-
multaneously for all vectorsx on the unit sphere inRd, we
will prove uniform convergence for a carefully chosen finite
cover of this sphere.

Lemma 3 (Eccentricity reduction) For any0 < ǫ ≤ 1, if
n > O( ε

2

ǫ2 (log
1
δ +d log d

ǫ )), then with probability> 1− δ,
the eccentricityε∗ of the projected covariance matrix is at
most1+ǫ. In particular, if the high-dimensional eccentricity
ε is at mostO( n1/2

log k/ǫδ ) then with probability at least1− δ,
the projected Gaussians have eccentricityε∗ ≤ 2.

Proof sketch.By considering moment-generating functions
of various gamma distributions, we can show that for any
particularx and anyǫ ∈ (0, 1), P(|V (x) − λ| > ǫλ) ≤
e−Ω(nǫ2/ε2).

Moreover, V (y) cannot differ too much fromV (x)
wheny lies close tox:

|V (x)− V (y)| ≤
n∑

i=1

λi

∣∣(u∗
i · x)2 − (u∗

i · y)2
∣∣

≤
n∑

i=1

λi ‖u∗
i ‖2 · ‖x+ y‖ · ‖x− y‖

≤ 2 ‖x− y‖
(

n∑

i=1

λi‖u∗
i ‖2
)
.

The final parenthesized quantity will with high probability
be close to its expectationdλ (perhaps we should point out
thatE‖u∗

i ‖2 = d
n sinceu∗

i consists of the firstd coordinates
of a random unit vector inRn). Choosing‖x− y‖ ≤ O( ǫd )
will then ensure|V (x)− V (y)| ≤ ǫλ.

Bounding V (x) effectively boundsV (y) for y ∈
B(x;O( ǫd )). How many pointsx must be chosen to cover
the unit sphere in this way? A geometric argument – see, for
instance, Gupta (1999) – shows that(O(dǫ ))

d points will do
the trick, and completes the proof.



4 Low-dimensional clustering

4.1 Technical overview

Our algorithm for learning the centers of Gaussians in low
dimension is one of many that could be used. The tech-
nical tools used in its analysis might be helpful in devel-
oping other similar routines, and we therefore give a brief
overview of them.

• Using VC bounds, it can be shown that with justO(d)
samples, all spheres inRd will contain roughly the cor-
rect number of points, that is, the expected number
under the mixture distribution. This is a convenient
and very strong guarantee; we need no other control
on sampling error.

• Assume that the Gaussians are spherical. Each pointx
in the sample is assigned a radiusrx, and we hope that
points with lowrx will be close to the centers of the
Gaussians. In order to prove this, we must show that
in cases such as that depicted below (where the outer
sphere conceptually denotes a Gaussian), sphereA has
a significantly higher probability mass than sphereB,
which has the same radius but is further from the cen-
ter of the Gaussian. This can be shown easily by a
pointwise coupling ofA andB.

A

B

• Assume the Gaussians are spherical with unit vari-
ance. Once a centerµ∗

i has been chosen, we will elim-
inate theq points closest to it, whereq is the num-
ber of points expected to fall withinB(µ∗

i ; 3/8
√
d), as-

suming a mixing weight ofwmin. It turns out that
whateverwi might actually be, this will eliminate all
points inB(µ∗

i ; 1/4
√
d) and nothing that does not lie

in B(µ∗
i ; 1/2

√
d). In effect, it eliminates all the high-

density points in theith Gaussian while leaving intact
high-density regions of other Gaussians.

• These arguments seem most naturally suited to spher-
ical Gaussians. They all involve obtaining upper and
lower bounds on the probability masses of spheri-
cal regions inRd. In order to extend this to ellip-
soidal Gaussians, we use a simple linear transforma-
tion which maps a sphere contained in an ellipsoidal
Gaussian to an ellipsoid contained in a spherical Gaus-
sian. Bounds on the probability mass of this latter el-
lipsoid are then obtained by considering its inscribed

and circumscribed spheres. These bounds are accept-
able because the projected Gaussians have small ec-
centricity.

Gaussian
an ellipsoidal

Ellipse in a
spherical
Gaussian

Sphere in

Linear

transformation

4.2 Notation

The following notation will be used consistently through the
remainder of the paper.

ǫ, δ Accuracy and confidence, supplied by user
ǫ0 Accuracy of spherical density estimates
M Overall number of data points
n Original dimension of data
d Reduced dimension
k Number of Gaussians
wiN(µi; Σ) A mixture component (Gaussian) inRn

wmin Lower bound on thewi, supplied by user
c, c∗ Separation of Gaussians inRn,Rd

wiN(µ∗

i ,Σ
∗) Projection ofith Gaussian intoRd

π∗(·) Density of the entire projected mixture
B(x; r) Sphere of radiusr centered atx
B(r′; r) B(x; r) for somex with ‖x‖ = r′

l, p, q Integer parameters needed by algorithm
ρ Parameter needed for analysis, related toǫ

σmax, σmin

√
λmax(Σ),

√
λmin(Σ)

ε Eccentricityσmax/σmin

σ∗

max, σ
∗

min, ε
∗ Similar, but in the projected space

ν(·) N(0; Id)
νΣ∗(·) N(0; Σ∗)

T A useful linear transformation inRd

‖ · ‖Σ Mahalanobis distance,‖x‖Σ =
√
xTΣ−1x

E(z; r; Σ) Ellipsoid{x : ‖x− z‖Σ ≤ r}

As we have already seen, we can think ofε∗ as a small
constant even ifε is large, and this will help us tremen-
dously.

4.3 Crude density estimates

Our algorithm relies heavily upon the hope that in the pro-
jected space, every spherical region will contain roughly its
expected number of points under the mixture distribution.
This can shown effortlessly by VC dimension arguments.

Lemma 4 (Accuracy of density estimates) Letν(·) denote
any density onRd from which i.i.d. data is drawn. If the

number of data points seen satisfiesM ≥ O
(

d
ǫ2
0

ln 1
δǫ0

)
,

then with probability> 1−δ, for every sphereB ⊂ R
d, the



empirical probability of that sphere differs fromν(B) by at
mostǫ0; that is, the number of points that fall inB is in the
rangeMν(B)±Mǫ0.

Proof. For any closed ballB ⊂ R
d, let 1B(x) = 1(x ∈ B)

denote the indicator function forB. The concept class
{1B : B ⊂ R

d is a sphere} has VC-dimensiond+ 1 (Dud-
ley, 1979). The rest follows from well-known results about
sample complexity; details can be found, for instance, in the
book by Pach and Agarwal (1995).

We will henceforth assume thatM meets the condi-
tions of this lemma and that all spherical density estimates
are accurate withinǫ0. The next problem we face is that
because Gaussians in general have ellipsoidal contours, it
is not easy to get tight bounds on the probability mass of
a given spherical region. We will content ourselves with
rather loose bounds, obtained via the mediation of a linear
transformationT which converts ellipsoids into spheres.

Write thed×d covariance matrixΣ∗ asBTDB, where
B is orthogonal andD is diagonal with the eigenvalues of
Σ∗ as entries. DefineT = BTD−1/2B; notice thatT is its
own transpose. The table below hints at the uses to which
T shall be put.

In R
d beforeT is applied In R

d afterT is applied
GaussianN(µ∗; Σ∗) GaussianN(Tµ∗; Id)
Pointx, with ‖x‖Σ∗ = r PointTx, with ‖Tx‖ = r
EllipseE(z; r; Σ∗) SphereB(Tz; r)

Our first step will be to relate the ellipsoidal densityνΣ∗ to
the more manageableν.

Lemma 5 (Relating ellipsoidal Gaussian density estimates
to spherical ones) Pick any pointz and any radiusr. Writing
s = ‖z‖Σ∗ , the probability massνΣ∗(B(z; r)) must lie in
the range[ν(B(s; r/σ∗

max)), ν(B(s; r/σ∗
min))].

Proof. This is easy ifT is used appropriately. For instance,
becauseE(z; r/σ∗

max; Σ
∗) ⊆ B(z; r) we can write

νΣ∗(B(z; r)) ≥ νΣ∗(E(z; r/σ∗
max; Σ

∗))

= ν(B(s; r/σ∗
max)),

where the final equality is a result of applying the transfor-
mationT .

Similarly we can bound the relative densities of dis-
placed spheres. Consider two spheres of equal radiusr, one
close to the center of the Gaussian, at Mahalanobis distance
s, and the other at some distances+∆. By how much must
the probability mass of the closer sphere exceed that of the
farther one, given that they may lie in different directions
from the center? Although the spheres have equal radius, it
might be the case that the closer sphere lies in a direction of
higher variance than the farther sphere, in which case its ra-
dius is effectively scaled down. The following lemma gives

a bound that will work for all spatial configurations of the
spheres.

Lemma 6Pick any pointz and sets = ‖z‖Σ∗ . If ‖z′‖Σ∗ ≥
s+∆ for some∆ > 0 and if radiusr ≤ sσ∗

max then
νΣ∗(B(z; r))

νΣ∗(B(z′; r))
≥ exp

{
(∆ + 2s)(∆− 2sε∗)

2

}
.

Proof. We will use the fact that Mahalanobis distance sat-
isfies the triangle inequality and that‖u‖Σ∗ ≤ ‖u‖/σ∗

min.
For any pointx in B(z; r),

‖x‖Σ∗ ≤ ‖z‖Σ∗ + ‖x− z‖Σ∗ ≤ s+
r

σ∗
min

≤ s+ sε∗,

where the last inequality follows from our restriction onr.
Similarly, for any pointx′ in B(z′; r),

‖x′‖Σ∗ ≥ ‖z′‖Σ∗ − ‖x′ − z′‖Σ∗ ≥ ∆− s(ε∗ − 1).

Since νΣ∗(y) is proportional toexp(−‖y‖2Σ∗/2) for any
point y, the ratio of probabilities of the two spheres must
be at least

e−(s(1+ε∗))2/2

e−(∆−s(ε∗−1))2/2
= exp

{
(∆− 2sε∗)(∆ + 2s)

2

}
,

as anticipated.

Finally we need a bound on the rate at which the prob-
ability mass of a sphere, under distributionνΣ∗ , grows as its
radius increases.

Lemma 7 If radii r ands satisfyr + s ≤ 1
2σ

∗
min

√
d then

νΣ∗(B(0; r + s))

νΣ∗(B(0; r))
≥
(
r + s

r

)d/2

.

Proof.Notice that

νΣ∗(B(0; r)) =

∫

B(0;r)

νΣ∗(x)dx

=

(
r

r + s

)d ∫

B(0;r+s)

νΣ∗

(
y · r

r + s

)
dy

via the change in variabley = x · r+s
r . Therefore

νΣ∗(B(0; r + s))

νΣ∗(B(0; r))
=

(
r + s

r

)d
∫
B(0;r+s)

νΣ∗(y)dy
∫
B(0;r+s)

νΣ∗(y · r
r+s )dy

.

We will bound this ratio of integrals by considering a point-
wise ratio. For anyy ∈ B(0; r + s), we know‖y‖Σ∗ ≤
(r + s)/σ∗

min and so



νΣ∗(y)

νΣ∗(y · r
r+s )

= exp

{
−‖y‖2Σ∗

2

(
1− r2

(r + s)2

)}

≥ exp

{
− (r + s)2 − r2

2σ∗2
min

}

≥
(

r

r + s

)d/2

,

given the condition onr + s.

We next examine a few technical properties of the unit
Gaussianν ∼ N(0; Id), as a step towards showing that
there are many data points near the centers of projected
Gaussians.

Lemma 8 (Crude lower bounds) Ifτ ≤ 1/3 andd ≥ 10,
(a)ν(B(0; τ

√
d)) ≥ τd, and (b)ν(B(τ

√
d; τ

√
d)) ≥ τd.

Proof.LetVd denote the volume of the unit ball ind dimen-
sions. We will use the lower bound

Vd =
πd/2

Γ(1 + d/2)
≥ (2π)d/2

2(d/2)d/2

which follows from the observationΓ(1 + k) ≤ kk2−(k−1)

for k ≥ 1. Now center a sphere at the mean of the Gaussian.
A crude bound on its probability mass is

ν(B(0; τ
√
d)) ≥

(
e−(τ

√
d)2/2

(2π)d/2

)
(Vd(τ

√
d)d) ≥ τd.

Continuing in the same vein, this time for a displaced
sphere, we get bound (b).

4.4 Estimating the projected centers

We are now in a position to prove that for an appropriate
choice of the parametersp and q, the algorithm will find
one data point close to each projected center. The valueρ
used in the analysis that follows is proportional toǫ. Denote
byµ∗

i the means of the projected Gaussians and byΣ∗ their
common covariance matrix. Letπ∗ be the density of the
projected mixture.

Parameters ρ ≤ O( ǫ
ε∗2 ), d = O(ε∗2 log 1

wminρδ
), ǫ0 =

wminρ
d min{ 1

8 ,
3
16ρ

2ε∗2d}, l = p = M(wminρ
d−ǫ0), q =

Mν(B(0; 3
8ε∗

√
d)). It is important that all these parameters

can easily be computed.

Lemma 9 There is at least one data point within Maha-
lanobis distanceρ

√
d of each center. Any such pointx has

at leastp data points close by, inB(x; ρσ∗
max

√
d), and thus

rx ≤ ρσ∗
max

√
d.

Proof. Since all the density estimates are accurate within
ǫ0, we need only show thatwminνΣ∗(E(0; ρ

√
d; Σ∗)) ≥

ǫ0 and thatwminνΣ∗(B(x; ρσ∗
max

√
d)) ≥ p/M + ǫ0 if

‖x‖Σ∗ ≤ ρ
√
d. TransformationT and Lemma 5 convert

statements aboutνΣ∗ into statements aboutν, in particular,
νΣ∗(E(0; ρ

√
d; Σ∗)) = ν(B(0; ρ

√
d)) and

νΣ∗(B(x; ρσ∗
max

√
d)) ≥ ν(B(ρ

√
d; ρ

√
d)).

The rest follows from Lemma 8.

This lemma gives an upper bound onrx for pointsx
close to a center. We next need to show thatrx will be
significantly larger for points further away, at Mahalanobis
distance≥ (3ε∗ + 1)ρ

√
d from the center.

Lemma 10 Supposerx ≤ ρσ∗
max

√
d for some pointx

which is at Mahalanobis distance≥ (3ε∗+1)ρ
√
d from the

closest centerµ∗
i and atL2 distance≥ 1

4ε∗σ
∗
min

√
d from all

other centers.
Then any pointz within Mahalanobis distanceρ

√
d of µ∗

i

will have rz < rx.

Proof sketch.The conditions onx imply that
(1) ‖x− µ∗

i ‖Σ∗ ≥ (3ε∗ + 1)ρ
√
d;

(2) ‖x− µ∗
j‖Σ∗ ≥ 1

4ε∗
σ∗

min

σ∗

max

√
d ≥

√
d

4ε∗2 for j 6= i; and

(3) π∗(B(x; rx)) ≥ p
M − ǫ0.

The result follows when these three facts are combined us-
ing Lemma 6.

This lemma implies roughly that within any Gaussian,
the lowestrx values come from data points which are within
distance(3ε∗ + 1)ρ

√
d of the center.

A potential problem is that a few of the Gaussians
might have much higher mixing weights than the rest and
consequently have a monopoly over smallrx values. In or-
der to handle this, after selecting a center estimate we elimi-
nate theq points closest to it, and guarantee that this knocks
out the high-density points near the current center while
leaving intact the high-density regions near other centers.

Lemma 11Let x be any point within Mahalanobis distance
ρ(3ε∗ + 1)

√
d of some centerµ∗

i . Then theq data points
closest tox include all data points inB(µ∗

i ;
1

4ε∗σ
∗
min

√
d)

and no point outsideB(µ∗
i ; (

1
2ε∗ − ρ)σ∗

max

√
d).

Proof sketch.Rewriting q
M aswminνΣ∗(E(0; 3

8ε∗

√
d; Σ∗)),

we notice that it lies betweenwminνΣ∗(B(0; 3
8ε∗σ

∗
min

√
d))

andwminνΣ∗(B(0; 3
8ε∗σ

∗
max

√
d)). The first inclusion con-

sists in proving that

π∗(B(x; ( 1
4ε∗ + ρε∗(3ε∗ + 1))σ∗

min

√
d)) ≤ q

M − ǫ0;

this is a direct consequence of Lemma 7 and the lower
bound on q

M . The second inclusion is shown similarly.

Lemma 12(Accuracy of low-dimensional center estimates)
If the various parameters are set in accordance with the



specifications above, then with probability> 1− δ, for ev-
ery i ≤ k, ‖µ̂∗

i − µ∗
i ‖Σ∗ ≤ (3ε∗ + 1)ρ

√
d.

Proof,by induction on the number of centers selected so far.
Referring back to the algorithm, the first center-

estimate chosen is the pointx ∈ S with lowest rx. By
Lemma 9, thisrx ≤ ρσ∗

max

√
d. Let µ∗

i be the projected
center closest tox. Since the Gaussians are1/2-separated,x
is at distance at least14σ

∗
min

√
d from all the other projected

centers. By Lemma 10, we then see thatx must be within
Mahalanobis distance(3ε∗ + 1)ρ

√
d of µ∗

i .
Say that at some stage in the algorithm, center-

estimatesĈ have already been chosen,|Ĉ| ≥ 1, and that
these correspond to true centersC. Select anyy ∈ Ĉ; by
the induction hypothesis there is aj for which‖y−µ∗

j‖Σ∗ ≤
(3ε∗ + 1)ρ

√
d. S′ doesnot contain theq points closest to

y. By Lemma 11, this removesB(µ∗
j ;

1
4ε∗σ

∗
min

√
d) from

S′, yet no point outsideB(µ∗
j ; (

1
2ε∗ − ρ)σ∗

max

√
d) is elimi-

nated fromS′ on account ofy.
Let z be the next point chosen, and letµ∗

i be the center
closest to it which is not inC. We have seen thatz must
be at distance at least14ε∗σ

∗
min

√
d from centers inC. Be-

cause of the separation of the mixture,z must be at distance
at least14σ

∗
min

√
d from all centers butµ∗

i . Again due to
the separation of the Gaussians, all points within distance
ρσ∗

max

√
d of µ∗

i remain inS′, and thereforez is potentially
one of these, whereupon, by Lemma 9,rz ≤ ρσ∗

max

√
d. By

Lemma 10 then,‖z − µ∗
i ‖Σ∗ ≤ (3ε∗ + 1)ρ

√
d.

Remark If wmin = Ω( 1k ) then we need to use reduced
dimensiond = O(ε∗2 log k

ρδ ) and sample sizeM =

kO(ε∗2 log2 1/ρδ).

5 Back in high-dimensional space

We may now safely assume that inRd, each estimated cen-
ter µ̂∗

i is within Mahalanobis distance(3ε∗ + 1)ρ
√
d of

the corresponding projected centerµ∗
i . The setSi con-

sists of thel data points closest tôµ∗
i in the reduced space.

We will choosel ≤ p so as to constrainSi to lie within
B(µ̂∗

i ; ρσ
∗
max

√
d) ⊆ B(µ∗

i ; (3ε
∗+2)ρσ∗

max

√
d), as per the

proof of Lemma 12. The final estimatêµi in R
n is the mean

of Si.
The random projection fromRn to R

d can be thought
of as a composition of two linear transformations: a ran-
dom rotation inRn followed by a projection onto the first
d coordinates. Since rotations preserveL2 distance, we can
assume, for the purpose of bounding theL2 accuracy of our
final estimates, that our random projection consists solely
of a mapping onto the firstd coordinates. We will write
high-dimensional points in the form(x, y) ∈ R

d × R
n−d,

and will assume that each such point is projected down to
x. We have already bounded the error on the final portion.

How do we deal with the rest?
Let us fix attention onS1. We would like it to be the

case that this set consists primarily of points chosen from
the first GaussianG1 = N(µ1,Σ). To this end, we establish
the following

Definitions Tj = points inS1 drawn from thejth Gaussian
Gj andfj = ‖µj − µ1‖/(cσmax

√
n) ≥ 1.

We will show thatS1 is relatively uncontaminated by
points from other Gaussians, that is,|T2| + · · · + |Tk| is
small. Those points which do come fromG1 ought to (we
hope) average out to something near its meanµ1. The prob-
lem is that thex coordinates could be highly correlated
with the y coordinates (depending upon the nature ofΣ),
and thus a small, unavoidable error inµ̂∗

1 might potentially
cause the setT1 to lie far fromµ1 in R

n. To dismiss this
possibility we need a bit of matrix analysis.

Write covariance matrixΣ in the form
(

Σxx Σxy

Σyx Σyy

)
,

with Σxx = Σ∗ being the covariance matrix of the pro-
jected Gaussians. What is the correlation between thex and
y components of points drawn from Gaussians with covari-
anceΣ?

Fact If a point drawn fromN(0; Σ) hasx as its firstd co-
ordinates, then its lastn − d coordinates have the distri-
butionN(Ax;C), whereA = ΣyxΣ

−1
xx andC = Σyy −

ΣyxΣ
−1
xxΣxy. This well-known result can be found, for in-

stance, in Lauritzen’s (1996) book on graphical models.

We will need to tackle the question: for a point(x, y)
drawn fromN(0; Σ), what is the expected value of‖y‖
given ‖x‖? In order to answer this, we need to study the
matrixA a bit more carefully.

Lemma 13‖Ax‖ ≤ σmax‖x‖Σ∗

√
n/d for anyx ∈ R

d.

Proof. A = ΣyxΣ
−1
xx is a (n − d) × d matrix; divide it

into n/d − 1 square matricesB1, . . . , Bn/d−1 by takingd
rows at a time. Fix attention on one suchBi. The rows
of Bi correspond to somed consecutive coordinates ofx;
call these coordinatesz. Then we can writeBi = ΣzxΣ

−1
xx .

It is well-known – see, for instance, the textbook by Horn
and Johnson (1985), or consider the inverse of the2d × 2d
positive definite covariance matrix of(z, x) – that(Σxx −
ΣxzΣ

−1
zz Σzx) is positive definite. Therefore, for anyu ∈

R
d, uTΣxxu > uTΣxzΣ

−1
zz Σzxu, and by choosingu =

Σ−1
xx v, we find

‖v‖2Σ∗ = vTΣ−1
xxΣxxΣ

−1
xx v > vTBT

i Σ
−1
zz Biv

≥ ‖Biv‖2
λmax(Σzz)

≥ ‖Biv‖2
σ2
max

.

Therefore‖Biv‖ ≤ σmax‖v‖Σ∗ . The pieces now come
neatly together,



‖Ax‖2 = ‖B1x‖2+· · ·+‖Bn/d−1x‖2 ≤ n−d
d σ2

max‖x‖2Σ∗ ,

and the lemma is proved.

They coordinates of points inT1 look roughly like ran-
dom draws from the distributionN(Aµ̂∗

1;C). What bounds
can be given for the average of these points?

Lemma 14Randomly draws pointsY1, . . . , Ys from Gaus-
sianN(µ, In). Then for any∆ ≥ 1√

s
,

P

(∥∥∥∥
Y1 + · · ·+ Ys

s
− µ

∥∥∥∥ ≥ ∆
√
n

)
≤
(
es∆

2−1

s∆2

)−n/2

.

Proof. Let Zi = Yi − µ ∼ N(0, In). The mean(Z1 +
· · ·+Zs)/s has distributionN(0, (1/s)In), and its squared
L2 norm has moment-generating functionφ(t) = (1 −
2t/s)−n/2. By Markov’s inequality,

P

(∥∥∥∥
Z1 + · · ·+ Zs

s

∥∥∥∥ ≥ ∆
√
n

)
≤ φ(t)

et∆2n
;

the lemma follows by choosingt = s
2 (1− 1

∆2s ).

We are finally in a position to bound the deviation of
mean(Tj) from µj and thereby fromµ1. Specifically, the
y coordinates of points inTj ⊂ S1 look roughly like ran-
dom draws from the distributionN(A(µ̂∗

1 − µ∗
j );C). We

will use the previous two lemmas to bound their average.

Lemma 15For anyj ≥ 1, mean(Tj) has the same distribu-
tion as

µj + (X,AX + C1/2E|Tj |),

where
(1)X ∈ R

d is a random variable with‖X‖ ≤ ‖µ∗
1 −µ∗

j‖+
ǫ
4σ

∗
min

√
d; and

(2) Em is shorthand for the mean ofm i.i.d. N(0; In−d)
random variables.

Proof. Assume for the sake of convenience thatµj is zero.
In the low-dimensional space, forcingl ≤ p guarantees that
all of S1 lies within ρσ∗

max

√
d of µ̂∗

1, and therefore within
ρ(3ε∗ + 2)σ∗

max

√
d ≤ 5ε∗ρσ∗

max

√
d ≤ ǫ

4σ
∗
min

√
d of µ∗

1.
Recall thatTj consists of those points inS1 which

come from GaussianGj . For our purposes, we can pretend
that each point(Xi, Yi) ∈ Tj is generated in the following
fashion:

• Pick Xi ∈ B(µ∗
1;

ǫ
4σ

∗
min

√
d) ⊂ R

d, according to an
unknown distribution.

• ChooseYi ∼ N(AXi;C).

In this manner we choose|Tj | points{(Xi, Yi)}, with mean
value some(X,Y ). The range of theXi coordinates con-
strains‖X‖ to be at most‖µ∗

1 − µ∗
j‖ + ǫ

4σ
∗
min

√
d. To un-

derstand the distribution ofY , we notice(Yi − AXi)
d
=

N(0;C)
d
= C1/2N(0, In−d), and taking averages,Y

d
=

AX + C1/2E|Tj |.

Armed with this result we finally prove the main theorem.

Lemma 16 With probability> 1 − δ, for all 1 ≤ i ≤ k,
‖µ̂i − µi‖ ≤ ǫσmax

√
n.

Proof. We observed in the previous lemma that in low
dimension, all ofS1 lies within 5ε∗ρσ∗

max

√
d of µ∗

1, and
therefore at distance at least( 12 − 5ε∗ρ)fjσ∗

max

√
d from

any other projected centerµ∗
j .

Fix any pointx ∈ S1, and anyj > 1. Applying the
general principle that‖u‖σ∗

max
≤ ‖u‖Σ∗ ≤ ‖u‖

σ∗

min
, we then

know ‖x − µ∗
1‖Σ∗ ≤ 5ε∗2ρ

√
d and‖x − µ∗

j‖Σ∗ ≥ ( 12 −
5ε∗ρ)fj

√
d and therefore

P(x comes fromGj)

P(x comes fromG1)
≤ wje

−( 1

2
−5ε∗ρ)2f2

j d/2

w1e−(5ε∗2ρ)2d/2

≤ wjǫ

64c2ε∗2f2
j

.

This inequality effectively bounds the number of outliers
|T2| + · · · + |Tk|. The normed difference betweenµ1 and
the mean ofS1, which we hope is close to zero, is given by

‖mean(S1)− µ1‖

≤
k∑

j=1

‖mean(Tj)− µj‖
|Tj |
l

+
k∑

j=2

‖µj − µ1‖
|Tj |
l

≤ ‖C1/2El‖+O


∑

j>1

cε∗fj ·
|Tj |
l


σmax

√
n,

whereEl is, as before, the mean ofl i.i.d. N(0; In−d) ran-
dom variables, and the final inequality uses Lemmas 13 and
15. It remains to bound these two terms.

(a) SinceC = Σyy − ΣyxΣ
−1
xxΣxy and each of these

two right-hand terms is positive semidefinite,λmax(C) ≤
λmax(Σyy) ≤ σ2

max and therefore ‖C1/2El‖ ≤
σmax‖El‖. To bound‖El‖ we use Lemma 14.

(b) A Chernoff bound shows that|Tj | ≤ O(
lwjǫ
cε∗fj

) for j >

1, the final piece of the puzzle.



6 Auxiliary issues

6.1 Learning the mixing weights and covariance
matrix

The algorithm we have presented solves the core combina-
torial problem of learning the centers of a mixture of Gaus-
sians. In some situations, for instance if likelihoods need
to be computed, it is also important to learn the mixing
weights and the covariance matrix. We now briefly suggest
a possible approach.

Assume we have in hand the center-estimatesµ̂i ∈ R
n.

Associate each data point with its closest center-estimate.
It can be shown that the proportion of misclassified points
in this hard clustering will (with high probability) be only
O(k exp(−Ω((c − ǫ)2n))). The proof is not difficult but
requires some care because of the dependence between the
data and the estimated centers.

By computing statistics of the points in each cluster,
we can obtain estimates for the mixing weights and covari-
ance matrix. Taking averages of the points in each clus-
ter may also give improved estimates of the centers. In
fact, this technique might lower the sample complexity to
justkO(1)/ǫ2 instead ofkO(log2 1/ǫ) (ignoring terms inδ) –
use our algorithm to construct crude estimates of the means,
correct to withinO(cσmax

√
n), and then use the hard clus-

tering to improve this accuracy toǫσmax
√
n.

6.2 More general families of distributions

There has been some recent interest in modelling data by
distributions which have fatter tails than the Gaussian. For
instance, Basu and Micchelli (1998) report experiments
which attempt to model speech data using densities

p(x) ∝ exp
(
−c((x− µ)TΣ−1(x− µ))α

)

whereα < 1 (the caseα = 1 produces a Gaussian). These
distributions also have ellipsoidal contours, but the density
drops off at a slower rate. This suggests a possible general-
ization of our results.

Definition A distribution onRn is ellipsoidally symmetricif
it has a density of the formp(x) = f((x−µ)TΣ−1(x−µ)),
whereΣ is a positive definite matrix.

Such distributions remain ellipsoidally symmetric when
projected, and both our random projection lemmas (main-
taining intercluster distance and reducing eccentricity)con-
tinue to apply. It should be possible to design a simple
low-dimensional clustering algorithm which will work for
a wide choice of functionsf .

Mixtures of discrete distributions are also commonly
used, and various ideas for handling them have recently

been suggested by Kearnset al (1994) and by Freund and
Mansour (1999). It is plausible, as per Diaconis and Freed-
man (1984), that many families of discrete distributions
start looking more Gaussian when randomly projected into
low dimension. This suggests an unusual algorithm for
learning these mixtures: project the data, apply a low-
dimensional Gaussian center estimator, and then perform
some sort of high-dimensional reconstruction!

6.3 Odds and ends

One source of concern about our algorithm is that a naive
computation of therx values would seem to require com-
puting distances between all pairs of points, which is in-
feasible for enormous data sets. In such cases, acceptable
performance might be obtained by computing these values
with respect to a small random subset of the data. That is,
randomly select a small subsetT ⊂ S of sizeO(k) and for
each data pointx ∈ S, let rx be the smallest radius such
thatB(x; rx) contains at leastp points ofT .

We end with an important open problem. Our algo-
rithm will work when different clusters have differing co-
variances, provided these matrices have approximately the
same trace. It would be a significant advance to remove this
qualification.

Acknowledgements

The author profusely thanks Peter Bickel, Yoav Freund, Nir
Friedman, Anupam Gupta, Michael Jordan, Christos Pa-
padimitriou, Stuart Russell, and Umesh Vazirani.

Literature cited

Basu, S. & Micchelli, C.A. (1998) Parametric density estimation
for the classification of acoustic feature vectors in speech recog-
nition. Nonlinear Modeling, eds. J. Suykens and J. Vandewalle.
Kluwer, Boston.

Dasgupta, S. & Gupta, A. (1999) An elementary proof of the
Johnson-Lindenstrauss lemma. Technical Report 99-006, Inter-
national Computer Science Institute, Berkeley.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977) Maximum-
likelihood from incomplete data via the EM algorithm.J. Royal
Statist. Soc. Ser. B, 39:1-38.

Diaconis, P. & Freedman, D. (1984) Asymptotics of graphical pro-
jection pursuit.Annals of Statistics, 12:793-815.

Duda, R.O. & Hart, P.E. (1973)Pattern Classification and Scene
Analysis.John Wiley, New York.

Dudley, R.M. (1979). Balls inRk do not cut all subsets ofk + 2
points.Advances in Mathematics, 31:306-308.

Frankl, P. & Maehara, H. (1988) The Johnson-Lindenstrauss
lemma and the sphericity of some graphs.Journal of Combi-
natorial Theory Ser. B, 44:355-365.



Freund, Y. & Mansour, Y. (1999) Estimating a mixture of
two product distributions.ACM Conference on Computational
Learning Theory.

Gupta, A. (1999) Embedding tree metrics into low dimensional
Euclidean spaces.ACM Symposium on Theory of Computing.

Horn, R.A. & Johnson, C.R. (1985)Matrix Analysis.Cambridge
University Press.

Johnson, W.B. & Lindenstrauss, J. (1984) Extensions of Lipschitz
mapping into Hilbert space.Contemp. Math., 26:189-206.

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R. &
Sellie, L. (1994) On the learnability of discrete distributions.
ACM Symposium on Theory of Computing.

Lauritzen, S. (1996).Graphical models.Oxford: Oxford Univer-
sity Press.

Lindsay, B. (1995)Mixture Models: Theory, Geometry, and Appli-
cations.American Statistical Association, Virginia.

Pach, J. & Agarwal, P. (1995)Combinatorial Geometry.Wiley.
Redner, R.A. & Walker, H.F. (1984) Mixture densities, maximum

likelihood and the EM algorithm.SIAM Review, 26(2):195-239.
Titterington, D.M., Smith, A.F.M. & Makov, U.E. (1985)Statisti-

cal Analysis of Finite Mixture Distributions.Wiley.


