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Abstract local maximum in the space of Gaussian mixtures ranked
by likelihood. An explanation of this algorithm, along with

Mixtures of Gaussians are among the most fundamentalhelpful remarks about its performance in learning mixtures
and widely used statistical models. Current techniques for of univariate Gaussians, can be found in an excellent survey
learning such mixtures from data are local search heuris- article by Redner and Walker (1984) and in a recent mono-
tics with weak performance guarantees. We present the firstgraph by Lindsay (1995).
provably correct algorithm for learning a mixture of Gaus- This paper describes a very simple algorithm for learn-
sians. This algorithm is very simple and returns the true ing an unknown mixture of Gaussians with an arbitrary
centers of the Gaussians to within the precision specified bycommon covariance matrix and arbitrary mixing weights,

the user, with high probability. It runs in time only lineari  in time which scales only linearly with dimension and poly-
the dimension of the data and polynomial in the number of nomially with the number of Gaussians. We show that with
Gaussians. high probability, it will learn the true centers of the Gaus-

sians to within the precision specified by the user. Previous
heuristics have been unable to offer any such performance
guarantee, even for highly restricted subcases like nmestur

of two spherical Gaussians.

] ] ] ] The new algorithm works in three phases. First we
The mixture of Gaussians is among the most enduring, well- 56 that it is possible to project the data into a very small
weathered models of applied statistics. A widespread be-g,pspace without significantly increasing the overlap ef th
lief in its fundamental importance has made it the object ¢jysters. The dimension of this subspace is independent of
of close theoretical and experimental study for over a cen-he number of data points and of the original dimension of
tury. In a typical application, sample data are thought of e gata. We show, moreover, that after projection general
as originating from various possible sources, and the datagjipsoidal Gaussians become more spherical and thereby
from each particular source is modelled by a Gaussian. Thisygre manageable. In the second phase, the modes of the
choice of distribution is common in the physical sciences |,\.-dimensional distribution are found using a simple new
and finds theoretical corroboration in the central limit-the clustering algorithm whose performance we rigorously an-
orem. Given mixed and unlabelled data from a weighted alyze. Finally, the low-dimensional modes are used to re-

combination of these sources, the goal is to identify the cqngiryct the original centers. Each of these stages isvoke
generating mixture of Gaussians, that is, the nature of each,q\y technical tools of more general applicability.

Gaussian source — its mean and covariance — and also the
ratio in which each source is present, known as its ‘mixing .
weight'. 2 Overview
A brief history of the many uses of mixtures of Gaus-
sians, spanning fields as varied as psychology, geology, an@.1 Background
astrophysics, has been compiled by Titterington, Smitt, an
Makov (1985). Their authoritative book outlines some of Ay ,,_dimensional GaussiaN (1; ¥) has density function
the fascinating and idiosyncratic techniques that have bee
applied to the problem, harking back to days of sharpened
pencils and slide rules. Modern methods delegate the bulk 1
of the work to computers, and amongst them the most popu—p(x) - (2m)n/2|%|1/2 oxp <
lar appears to be the EM algorithm formalized by Dempster,
Laird, and Rubin (1977). EM is a local search heuristic of Although the density is highest at it turns out that for
appealing simplicity. Its principal goal is convergenceato large n most of the probability mass lies far away from

1 Introduction
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this center. This is the first of many surprises that high- these modes themselves provide good estimates of the cen-

dimensional space will spring upon us. A potte R” ters.

chosen randomly from a spherical Gaussi(t; o21,,) has Easy algorithms of this kind fail dismally in higher di-

expected squared Euclidean ndit||x —p||?) = no?. The mension. Consider again the Gaussi¥(y; o21,,). We

law of large numbers forces the distribution of this squared must pick2?(™ random points from this distribution in or-

length to be tightly concentrated around its expected valueder to get just a few which are at distancel o/n from the

for big enoughn. That is to say, almost the entire distribu- center! The data in any sample of plausible size, if plotted

tion lies in a thin shell at distance,/n from the center of  somehow, would resemble a few scattered specks of dust

the Gaussian! Thus the natural scale of this Gaussian is inn an enormous void. What can we possibly glean from

units ofo\/n. such a sample? Such gloomy reflections have prompted re-
The more general Gaussia¥(0;X) has ellipsoidal  searchers to try mapping data into spaces of low dimension.

contours of equal density. Each such ellipsoid is of the form

{x : 272~z = r2}, corresponding to points at a fixéth- 2.3 Dimensionality reduction

halanobis distancdjz|z = vVzTX~1z from the center of

the Gaussian. As in the spherical case, in high dimensiontne paive algorithm we just considered requires at least

the distribution is concentrated around an ellipsoidalishe gpout2¢ data points to learn a mixture of Gaussian®ih

|z[ls ~ v/n. The reader should try to reconcile this with 54 this holds true of many other simple algorithms that one

the fact that the distribution is also concentrated (peshap might be tempted to concoct. Is it possible to reduce the di-

less tightly) around a spherical shigh|| ~ \/tracgX). mension of the data so dramatically that this requirement
It is reasonable to imagine, and is borne out by expe- actually becomes reasonable?

rience with techniques like EM (Duda & Hart; Redner & One popular technique for reducing dimension is prin-

Walker), that a mixture of Gaussians is easiest to learn whencipa| component analysis, or PCA. It is quite easy to sym-

the Gaussians do not overlap too much. Taking cue from OUrmetrically arrange a group @f spherical Gaussians so that

discussion ofV(u; o*1,,), we adopt the following a PCA projection to any dimensiash< (k) will collapse

Definition Two GaussiansV (uy;021,,) and N (uz; 021,,) many of the Gaussians together, and thereby decisively de-

are considered-separatedf ||, — pa| > co/n. More rail any hope of learning. For instance, place the centers of

generally, Gaussian¥ (u1, ;) and N (us, 35) in R™ are  the(2j — 1) and2;*" Gaussians along thé" coordinate

c-separated if axis, at positiong and—;. The eigenvectors found by PCA
will roughly be coordinate axes, and the discarding of any
g — pa]l > ev/nmax(omae (51); Amae (Z2)) eigenvector will collapse together the corresponding giir

Gaussians. Thus PCA cannot in general be expected to re-

where \,,,.. () is shorthand for the largest eigenvalue of duce the dimension of a mixture &f Gaussians to below
. A mixture of Gaussians is-separated if its component  €2(k). Moreover, computing eigenvectors in high dimen-

Gaussians are pairwiseseparated. sion is a very time-consuming process.
A much faster technique for dimensionality reduction,

A 2-separated mixture corresponds roughly to almost . . ; )
. . .which has received a warm welcome in the theoretical com-
completely separated Gaussians, whereas a mixture thatis =~ ~. : .
. . . . munity, is expressed in the Johnson-Lindenstrauss (1984)
1- or l/>-separated contains Gaussians which overlap sig-

nificantly. We will be able to deal with Gaussians that are lemma. The gistis thatany/ data points in high dimension

_ log M ; H it
arbitrarily close together; the running time will, however can be mapped down ® = O(*%~) dimensions with
inevitably depend upon their radius of separation.

out distorting their pairwise distances by more tiian-€).
However, for our purposes this reduced dimension is still fa
] ] too high! According to our rough heuristic, we nezfddata
2.2 The problem of dimension points, and this exceedd by many orders of magnitude.

We will show thatfor the particular case of mixtures
What makes this learning problem difficult? In low dimen- of Gaussianswe can reduce the dimension of the data far
sion, for instance in the case of univariate Gaussians, it ismore drastically. By using projection to a randomly chosen
often possible to simply plot the data and visually estimate subspace as in the Johnson-Lindenstrauss lemma, we can
a solution, provided the Gaussians maintain a respectablenap the data into just = O(log k) dimensions, wherg is
distance from one another. This is because a reasonabléhe number of Gaussians. Therefore the amount of data we
amount of data conveys a fairly accurate idea of the overallwill need is only polynomial irk.
probability density. The high points of this density corre- This might puzzle readers who are familiar with ran-
spond to centers of Gaussians and to regions of overlap bedom projection, because the usual motive behind such pro-
tween neighbouring clusters. If the Gaussians are far apartjections is to approximately preserve relative distanees b



tween data points. However, in our situation we expressly 2.5 Spherical density estimates

do not want this. We want most of the pairwise distances

to contract significantly, so that the fraction of pointshvirit The data get projected frof™ to R? via a linear map.
distanceA/d of any Gaussian center in the reduced space Since any linear transformation of a Gaussian conveniently
R is exponentially greater than the fraction of points within remains a Gaussian, we can pretend that the projected data

distanceA/n of the same center in the original spage. themselves come from a mixture of low-dimensional Gaus-
At the same time, we do not want the distances between dif-gjgns.

ferent Gaussians to contract; we must make sure that Gaus-  The second step of the algorithm is concerned with es-
sians which are well-separated remain so when they are protimating the means of these projected Gaussians. Regions
jected. These conflicting requirements are accommodatechf higher density will tend to contain more points, and we
admirably by a projection to jugp(log k) dimensions. can roughly imagine the density around any data poitat

This method of projection has another tremendous be inversely related to radius. In particular, the data point
benefit: we show that even if the original Gaussians arewith lowestr, will be near the center of some (projected)
highly skewed (have ellipsoidal contours of high eccentric Gaussian. If the Gaussians all share the same covariance,
ity), their projected counterparts will be more spherigada  then this data point will be close to the center of that Gaus-
thereby easier to learn! The low-dimensional portion of sjan which has the highest mixing weight.
our algorithm is able to take advantage of this; it works Once we have a good estimate for the center of one
for Gaussians of arbitrary eccentricity, but affords thetbe ~Gaussian, how do we handle the rest of them? The prob-
guarantees for spherical Gaussians. lem is that one Gaussian may be responsible for the bulk

of the data if it has a particularly high mixing weight. All
2.4 The algorithm the data points with low, might come from this one over-
represented Gaussian, and need to be eliminated from con-
sideration somehow.

This is done by growing a wide region around the esti-
mated center, and removing from contention all the points
in it. The region should be large enough to remove all
high-density points in that particular Gaussian, but stiaiil
the same time leave intact the high-density points of other
Gaussians. The reader may wonder, how can we possibly
know how large this region should be if we have no idea of
SampleS consists of\/ data points ifR™. either the covariance or the mixing weights? First, we pick
theq points closest to the estimated center rather than using
a preset radius; this accomplishes a natural scaling. Secon
the probability of encountering a data point at a distance

We are now in a position to present the algorithm. The user
furnishes:e, the accuracy within which the centers are to be
learned;s, a confidence parametér; the number of Gaus-
sians; andw.,;,, the smallest mixing weight that will be
considered. These values will be discussed in full detail in
the next section. The paramete¥s d, [, p, andq depend
upon the inputs, and will be determined later.

1. Select a randomi-dimensional subspace of the original
spaceR™, and project the data into this space. This takes

time onlyO(Mdn). : .
< r from the center of the Gaussian grows exponentially
2. In the projected space: with r, and this rapid growth tends to eclipse discrepancies
of mixing weight and directional variance.
e Forx € S,'IetrgC _bg the_ smallest radius such that there Both the techniques described — that of choosing the
are p points within distance;, of . point with next lowestr, as a center estimate, and then
e StartwithS’ = S. “subtracting” the points close to it — rely heavily on the ac-
o Forie1. k: curacy of spherical Qensity estimates. That is, _they assume
that for any sphere iR, the number of data points which
— Let estimatei; be the pointr € S’ with the low- fall within that sphere is close to its expected value under
estrs. the mixture distribution. That this is in fact the case fol-
— Find theq closest points to this estimated center. lows from the happy circumstance that the concept class of
— Remove these points frois. spheres iR? has VC-dimension only + 1.

e For eachi, let S; denote thd points in.S which are

closest ta?. 2.6 Mapping back to the original space

3. Let the (high-dimensional) estimaie be the mean of; in At this stage, projected centers in hand, we recall that our
R™. actual task was to find the Gaussian means in the origi-

nal high-dimensional space. Well, this is not too difficult,
This algorithm is very simple to implement. at least conceptually. For each low-dimensional estimated



centeryi}, we pick thel data points closest to it iR¢, call 3 Reducing dimension
them S;, and then average these same point®in We

expects; to be relatively uncontaminated with points from
other Gaussians (although we cannot of course avoid th

odd straggler), and thus its mean should closely approxi-
matep;. We start by showing that the dimension of the data can

be reduced drastically without significantly increasing th
overlap of the clusters.

e3.1 Maintaining intercluster distances

The chief technical problem in the reconstruction is to
show that small errors in the estimgig¢ are not grossly
magnified when carried back in@”. The core question  Definition For a positive definite matrix, let ;.. (2)
can be stated quite simply. Given that an unknown point @nd A, (2) refer to its largest and smallest eigenvalues,
z € R™ drawn from GaussiatV (0; ¥) gets projected to respectively, and denote byY.) the eccentricityof the ma-
somey € R?, what is the conditional distribution dfz|| trix, that is, v/ Az (3)/Amin ().
given||y||? A bit of matrix analysis yields the answer.

The following dimensionality reduction lemma applies

We complete our overview with one last clarification. to arbitrary mixtures of Gaussians, which we parametrize
How exactly did the projection help us? It enabled us to by mixing weightsw;, meansy; and covariance matrices
find, for each Gaussian, a set of data points drawn mostlys:;, one per Gaussian. Its statement refers to the notion of
from that Gaussian. separation introduced in the overview.

Lemma 1 (Dimensionality Reduction)For anyc > 0, let
{(w;, s, X;) } denote a-separated mixture df Gaussians
in R™, and letd > 0 ande > 0 designate confidence and
accuracy parameters, respectively. With probabity—d,
the projection of this mixture of Gaussians onto a randem
In the next section we will prove a dimensionality reduction dimensional subspace yieldéam,/1 — €)-separated mixture
lemma, the first step towards our main of Gaussiang (w;, uf, ¥)} in RY, providedd > :% In %
Moreover, Aoz (2F) < Anaz(Zi) and A (37) >

7 7

Amin (2;). In particular therefores(XF) < &(%;).

2.7 The main result

Theorem Suppose data is drawn from a mixturekoGaus-
sians inR™ which is c-separated, for > 1/; has small- _ _ _
est mixing weight(+); and has (unknown) common co- Proof sketch. Consider a single line segment R*, of

variance matrixz with maximum and minimum eigenval- squared lengtiL. If the original space is projected onto
ueso?,, o2 . and eccentricitt = 0ynaz/0min. Then @ randomd-dimensional subspace, the squared length of

max’ ¥ min

with probability > 1 — §, the center estimates returned by this line segment becomes sonie, of expected value

the algorithm are accurate withih, distanceeo,,q,/n. ~ EL® = Ld/n. It was shown by Johnson and Linden-

If the eccentricitys < O(-), then the reduced di- Strauss (1984) th&(L* < (1—e¢)Ld/n) < e~ /4. Their

ogk/ed
mension isd = O(log %) and the number of data points proof has been simplified by Frankl and Maehara (1988)
car _ 100’ f/<55)) he alqorith i and most regently by the author anq Gupta (1998_).. _

needgd IM =k - The algorithm runs in time Apply this lemma to theD(k?) line segments joining

O(M*d + Mdn). pairs of Gaussian centers in the original space. This keeps
Our algorithm can in fact handle Gaussians which are the centers far apart; to satisfy our dgfinition of s_epaFated

arbitrarily close together. It is only to curtail the preif ness, we must also check that the original Gaussians do not

ation of symbols that we insist upork-separation in this ~ SPread outwhen projected, thats,. (37) < Amax (%)-

theorem. The mixing weights and eccentricity are similarly

unrestricted. Remarks (1) If two of the Gaussians in the original mix-

¢ ture are particularly far apart, sayf-separated for some

f > 1, thenin the projected space they will bg /1 — ¢)-

Feparated. This will be useful to us later. (2) A projection

onto a random lower-dimensional subspace will in fact dra-

_ ] o matically reduce the eccentricity of Gaussians, as demon-
In the last section of this paper, we will discuss how the gtrated in the next section.

mixing weights and covariance matrix may be estimated, if

these are needed. We will also suggest ideas for reducing-orollary If ¢ > 1/, then in order to ensure that the
the sample complexity t&@°0°21/9) /2 and for handling projected mixture is at least>-separated with probability

' . C4 2
more general families of distributions. >1—4, itis enough to choose > (Cf_ﬁ In %=

A word about the inputs: in addition to the number o
Gaussiang and the usuad (accuracy) and (confidence)
parameters, the user is expected to supply a lower boun
wmin ON the mixing weights which will be considered.



3.2 Bounding the eccentricity of projected ellip- We can without loss of generality assume thdies
soids along some coordinate axis, say the very first one, in which
case

The low-dimensional phase of our algorithm works best
when the projected Gaussians have eccentricity close to n
one. We will now see that random projection makes Gaus- V(z) = Z)\N?l-
sians more spherical. i=1
Think of the random projection frof™ to R¢ as a ran-
dom rotation inR", represented by some orthogonal ma- Since U is a random orthogonal matrix, its first row

trix U, followed by a projectionP” onto the firstd co- (w11, ..., un1) is arandom unit vectoll
ordinates. The columns df” are an orthonormal basis W h imole f lati fthe distribut f
{u,...,u,} of R". Denote the restriction of these vec- € now have a simple formulation ot the distribution o

V(z). For any given, this value is likely to be close to its

The high-dimensional covariance matkixhas eigenvalues expectation because it is the sumrolmost-independent
A < -+ < A, With eccentricitye = /A, /A > 1, and bounded random variables. To demonstfidte) ~ \ si-
— — ns - n - 1 . .
; 1 : multaneously for all vectors on the unit sphere iiR?, we
normalized trace = --(\; + - - + A,,). We will show that

the covariance matrix of the projected Gaussians, denoted” ill prove u_niform convergence for a carefully chosen finite
3*, is close to the spherical covariance mafxib. cover of this sphere.

Pick any unit vector: € R?, and defind/(z) to be the
variance of the projected Gaussian in direction

tors to their firstd coordinates by, ..., u}, respectively.

Lemma 3 (Eccentricity reduction) For any0 < ¢ < 1, if

n > O(%(log + + dlog £)), then with probability> 1 — 6,
Lemma 2 (Variance of projected Gaussians) For any unit the eccentricity:=" of the projected covariance matrix is at
vector + € R?, V(z) has the same distribution as MOStl+e. In partil%Jlar, if the high-dimensional eccentricity
i, Aiv?, wherev is chosen uniformly at random from ¢ is at mostO(lo’;m) then with probability at least — 4,
the surface of the unit spherelRY'. ThereforeEV (z) = A, the projected Gaussians have eccentriefty< 2.

over the choice of random projection. - . .
proJ Proof sketchBy considering moment-generating functions

Proof. We can write the projected covariance maikas  of various gamma distributions, we can show that for any
(UP)TS(UP), and on account o/ we may assume is particularz and anye € (0,1), P(|[V(z) — A| > e)) <
diagonal, specificalll: = diag(\1, ..., \n). o—2ne? /).

Pick any directionz € R<. The variance of the
projected Gaussian in directionis V(z) = z7%*r =
(Px)T(UTXU)(Pz). SinceY is diagonal,

Moreover, V(y) cannot differ too much froni/(x)
wheny lies close tar:

(UTSU)i; =Y MeUrilUs;

h=1 V() =Vl < D N[ -2)® = (uf -y)?|
i=1
whereby n
< D NPz +yl -z -yl
=1
V(l‘) = Z (Px)i(Px)j(UTEU)ij < 9 ||$ _ y” zn:)\HU*HQ )
=t - i=1 o
d n N
- iz_;l Titi ; AeUriUki The final parenthesized quantity will with high probability
’i_ . be close to its expectatiafh (perhaps we should point out
_ Z)‘ Z 2:Ua) (2,Us;) thatE||u}||? = %sinceu;‘ consists of the firsf coordinates
S = kij:l FRIAIER of a random unit vector il"). Choosing|z — y|| < O(9)

N will then ensurdV (x) — V(y)| < eX.
= Z Ae(z - uf)?, Bounding V' (z) effectively boundsV (y) for y €
1 B(x;0(5)). How many pointse must be chosen to cover
the unit sphere in this way? A geometric argument — see, for
whereu} denotes the first coordinates of thé'" row of instance, Gupta (1999) — shows th@t(g))d points will do
U. the trick, and completes the prodf.



4 Low-dimensional clustering and circumscribed spheres. These bounds are accept-
able because the projected Gaussians have small ec-

4.1 Technical overview centricity.

Our algorithm for learning the centers of Gaussians in low Sphere in
dimension is one of many that could be used. The tech- anours0'd|
nical tools used in its analysis might be helpful in devel-

oping other similar routines, and we therefore give a brief

overview of them.

e Using VC bounds, it can be shown that with jastd)
samples, all spheres R will contain roughly the cor-

rect number of points, that is, the expected number 4.2 Notation

under the mixture distribution. This is a convenient

Ellipse in a
spherical

. Gaussian
Linear

transformation

and very strong guarantee; we need no other control The following notation will be used consistently througk th
on sampling error. remainder of the paper.

e Assume that the Gaussians are spherical. Each point €9
in the sample is assigned a radiys and we hope that €0
points with lowr, will be close to the centers of the
Gaussians. In order to prove this, we must show that
in cases such as that depicted below (where the outer b
sphere conceptually denotes a Gaussian), sphais wiN (s; %)
a significantly higher probability mass than sph&re Wonin
which has the same radius but is further from the cen- . .-
ter of the Gaussian. This can be shown easily by a w, N(u}, ©*)
pointwise coupling ofdA and B. ()

B(x;r)
B(r';r)
lp.q

S ;
Omaz, Omin

3
* * *
Omazs) Ominy €

v(-)
e Assume the Gaussians are spherical with unit vari- vs=(:)
ance. Once a centgr’ has been chosen, we will elim- T
inate theq points closest to it, where is the num- - lls
ber of points expected to fall withiB¥(;.}; 3/5\/d), as- E(z ;%)
suming a mixing weight ofw,,;,. It turns out that
whateverw; might actually be, this will eliminate all

n

Accuracy and confidence, supplied by user
Accuracy of spherical density estimates
Overall number of data points

Original dimension of data

Reduced dimension

Number of Gaussians

A mixture component (Gaussian) Ri*
Lower bound on thev,, supplied by user
Separation of Gaussiansif*, R¢
Projection ofi*" Gaussian intd®?

Density of the entire projected mixture
Sphere of radius centered at:

B(z; r) for somez with ||z|| = r’

Integer parameters needed by algorithm
Parameter needed for analysis, related to
VAmaz(2), v/ Amin(2)

Eccentricityomaz /omin

Similar, but in the projected space
N(0;1a)

N(0;%%)

A useful linear transformation iR?
Mahalanobis distancdz||s = VT35 1z
Ellipsoid{z : ||z — z||x < r}

As we have already seen, we can thinkbfas a small

points in B(x*; 1/4v/d) and nothing that does not lie constant even it is large, and this will help us tremen-

b

in B(ut; 1oy/d). In effect, it eliminates all the high- ~ doUsIY:
density points in thé'” Gaussian while leaving intact

high-density regions of other Gaussians. 4.3 Crude density estimates

These arguments seem most naturally suited to spherQur algorithm relies heavily upon the hope that in the pro-
ical Gaussians. They all involve obtaining upper and jected space, every spherical region will contain rougtsly i
lower bounds on the probability masses of spheri- expected number of points under the mixture distribution.
cal regions inR?. In order to extend this to ellip-  This can shown effortlessly by VC dimension arguments.

?O'dal hC_;e;]usaans, wehuse a S|;nple(jllnear tre}PSfor.g]TLemma 4 (Accuracy of density estimates) Let-) denote
lon which maps a sphéere contained n an €flipsoida any density oriR? from which i.i.d. data is drawn. If the

Gaussian to an ellipsoid contained in a spherical Gaus- , , 4 L
sian. Bounds on the probability mass of this latter el- NUMber of data points seen satisfies > O (% In E)

lipsoid are then obtained by considering its inscribed then with probability> 1 — ¢, for every spherd3 ¢ R<, the



empirical probability of that sphere differs fron{ B) by at a bound that will work for all spatial configurations of the
mosteg; that is, the number of points that fall i8 is in the spheres.

rangeMv(B) £ Meo. : :

geMv(B) 0 J Lemma 6 Pick any pointz and set = ||z||s~. If ||2/|
Proof. For any closed balB c R?, let1z(z) = 1(z € B) s + A for someA > 0 and if radius- < so”,,. then
denote the indicator function foB. The concept class Vs (B(z; 7)) {(A +28)(A — 2se* )}

{1p : B C Ris a spherg has VC-dimensiod + 1 (Dud- S > eX
ley, 1979). The rest follows from well-known results about ve-(B(#/57)) 2
sample complexity; details can be found, for instance,énth  proof. We will use the fact that Mahalanobis distance sat-
book by Pach and Agarwal (1994). isfies the triangle inequality and thit|s- < ||ul|/o*
We will henceforth assume that/ meets the condi-  For any pointz in B(z;7),
tions of this lemma and that all spherical density estimates
are accurate withiry. The next problem we face is that
because Gaussians in general have ellipsoidal contours, it ]
is not easy to get tight bounds on the probability mass of
a given spherical region. We will content ourselves with where the last inequality follows from our restriction en
rather loose bounds, obtained via the mediation of a linearSimilarly, for any pointz’ in B(2';r),
transformatiori” which converts ellipsoids into spheres.
Write thed x d covariance matrix* asB” DB, where , , , , .
B is orthogonal and is diagonal with the eigenvalues of [2'][2- = |12'][2- = [l2" = 2]+ = A —s(e” = 1).
¥* as entries. Defin@ = BT D—1/2B; notice thatT  is its
own transpose. The table below hints at the uses to which
T shall be put.

s >

min*

= <2

E*<s+7<s+sg

min

o+ o -2

Since vs-(y) is proportional toexp(—||y|/%./2) for any
point ¥, the ratio of probabilities of the two spheres must

be at least
In RY beforeT is applied | In R? afterT is applied
GaussianV (u*; *) GaussianV(T'u*; 1) (s(14e))2)2 .
Pointz, with ||z||g- = r | PointTa, with | Tz| = r ﬁ — exp { (A = 2se")(A + 25) } ’
Ellipse E(z;r; ¥*) SphereB(T'z; 1) e (Al =)/ 2

Our first step will be to relate the ellipsoidal density- to as anticipated

the more manageabie Finally we need a bound on the rate at which the prob-
ability mass of a sphere, under distributiag. , grows as its

Lemma 5 (Relating ellipsoidal Gaussian density estimates L7
radius increases.

to spherical ones) Pick any poinand any radius. Writing

s = ||z[|s-, the probability masss- (B(z;r)) mustliein | emma 7If radii r ands satisfyr + s < Lo%,. v/dthen
the rangq.l/(. (S r/amaw)) (B(S T/Umzn)ﬂ ' s (B(O, r+ S)) r+s d/2
Proof. This is easy ifl" is used appropriately. For instance, e (B(0:1)) " .

becaus& (z;r/c,..; X*) C B(z;r) we can write

max?

Proof. Notice that

va-(B(z;r)) 2 vee(E(27/05,,,:57))
= UB(5i7/0ha)) v (BO) = [ e(a)da
B(0;r)
where the final equality is a result of applying the transfor- d
mationT". I = ( . ) / Vz*(y- d )dy
r+s B(0;r+s) r+s

Similarly we can bound the relative densities of dis-
placed spheres. Consider two spheres of equal raguse via the change in variable = x - 7+=. Therefore
close to the center of the Gaussian, at Mahalanobis distance
s, and the other at some distance A. By how much must
the probability mass of the closer sphere exceed that of thevs,- (B(0;7 + 5)) <r + s)d S (06 Ve (W)dy
farther one, given that they may lie in different dlrectlpns_ vs« (B(0;7)) fB(OHS) v (y - r+s)dy
from the center? Although the spheres have equal radius, it
might be the case that the closer sphere lies in a direction ofWe will bound this ratio of integrals by considering a point-
higher variance than the farther sphere, in which case-its ra wise ratio. For any € B(0;r + s), we know||y|
dius is effectively scaled down. The following lemma gives (r + s)/c%,;, and so

r

o <



2 2
V(z (v) - - exp{_lly;* (1_( i )2>}
Vs = y'r-i-s T S
r+s)2—r?
{2

r
r+s

()

given the condition om + s. 1

We next examine a few technical properties of the unit
Gaussianv ~ N(0;14), as a step towards showing that

there are many data points near the centers of projected emma 10 Supposer,

Gaussians.

Lemma 8 (Crude lower bounds) i < 1/3 andd > 10,

(@) v(B(0;7V/d)) > 7%, and (b)v(B(rVd; 7v/d)) > 7.
Proof.Let V; denote the volume of the unit ball ihdimen-
sions. We will use the lower bound

/2 (27T)d/2

Vi =S raym = 2aj2)ie

which follows from the observatiofi(1 + k) < k*2- (=1

Proof. Since all the density estimates are accurate within
€0, we need only show thab,,;,vs-(E(0; pvd; %)) >

€0 and thatw,,i,vs- (B(z; pot,,.NVd) > p/M + ¢ if
|z||s+ < pvd. Transformationl’ and Lemma 5 convert
statements abouk:- into statements abouwt in particular,
v+ (E(0; pVd; £7)) v(B(0;pVd))  and
Ve (B(2; poar V) = v(B(pVd; pV/d)).

The rest follows from Lemma 4.

This lemma gives an upper bound ep for points x
close to a center. We next need to show thawwill be
significantly larger for points further away, at Mahalarsobi
distance> (3¢* 4 1)pV/d from the center.

< pol,..Vd for some pointz
which is at Mahalanobis distance (3¢* + 1) p+v/d from the
closest centen’ and atL, distance> éa;‘nm\/& fromall
other centers.

Then any point: within Mahalanobis distancev/d of .
will haver, < r,.

Proof sketchThe conditions on: imply that
@) [z = pflls- = Be* +1)pVd;
@l = 15 > 5= Foev/d >
() m* (B(z;1y)) > L — €.

Vd

4e*2

for j #£ 4; and

for k > 1. Now center a sphere at the mean of the Gaussian.The result follows when these three facts are combined us-

A crude bound on its probability mass is

o= (TVd)? /2

>(Vd(7'\/a)d) > 74

Continuing in the same vein, this time for a displaced
sphere, we get bound ().

4.4 Estimating the projected centers

We are now in a position to prove that for an appropriate
choice of the parametegs and ¢, the algorithm will find
one data point close to each projected center. The value
used in the analysis that follows is proportionatt®enote

by 17 the means of the projected Gaussians anil byheir
common covariance matrix. Let* be the density of the
projected mixture.

Parametersp < O(=%5),d = O(e**log w"j”pé),eo =
1 3

Wininp? min{ g, & p%*2d}, 1 = p = M(wminp®—€0),q =
Muv(B(0; %\/&)). Itis important that all these parameters
can easily be computed.

Lemma 9 There is at least one data point within Maha-
lanobis distance+/d of each center. Any such pointhas

at leasip data points close by, iB(; po,,.V/d), and thus
T-T S po—:na.’t \/&

ing Lemma 61

This lemma implies roughly that within any Gaussian,
the lowestr, values come from data points which are within
distance(3s* + 1)p+/d of the center.

A potential problem is that a few of the Gaussians
might have much higher mixing weights than the rest and
consequently have a monopoly over smallvalues. In or-
der to handle this, after selecting a center estimate wa-elim
nate the; points closest to it, and guarantee that this knocks
out the high-density points near the current center while
leaving intact the high-density regions near other centers

Lemma 11Letx be any point within Mahalanobis distance
p(3e* + 1)v/d of some centepf. Then theq data points
closest tox include all data points imB(u}; 1207, Vd)

and no point outsid@ (1i; (5= — p)o ..V d).

2e*
Proof sketchRewriting - asw i, vs- (E(0; & vd; £¥)),
we notice that it lies between, ,;, vs« (B(0; g2 07y, Vd))
anNdwomin Vs (B(0; g2 07,4,V d)). The first inclusion con-
sists in proving that
(Bl (5 + pe* (3% +1))07,5, V) < & — e

this is a direct consequence of Lemma 7 and the lower
bound ons%. The second inclusion is shown similarly.

Lemma 12(Accuracy of low-dimensional center estimates)
If the various parameters are set in accordance with the



specifications above, then with probabilityl — 4, for ev-
eryi < k, [[7i; — pillse < (3 + 1)pV/d.
Proof,by induction on the number of centers selected so far.

Referring back to the algorithm, the first center-
estimate chosen is the poimt € S with lowestr,. By
Lemma 9, thisr, < po?,..Vd. Letuf be the projected
center closest to. Since the Gaussians ar@-separatedy
is at distance at Ieaitajnm\/& from all the other projected
centers. By Lemma 10, we then see thahust be within
Mahalanobis distanc@s* + 1)pv/d of .

Say that at some stage in the algorithm, center-
estimates” have already been chosdg;| > 1, and that
these correspond to true centérs Select anyy < C; by

the induction hypothesis there ig éor which [|ly—p} s« <

(3¢* + 1)pv/d. S’ doesnot contain they points closest to
y. By Lemma 11, this removeB(y}; 1507, Vd) from
S’, yet no point outsides (117 (5 Vd) is elimi-
nated fromS’ on account of;.

Let z be the next point chosen, and J€t be the center
closest to it which is not irC. We have seen that must
be at distance at leagt: o7, v/d from centers inC. Be-
cause of the separation of the mixturenust be at distance
at leastio* . \/d from all centers bup?. Again due to

47 min

- p) U:n,am

How do we deal with the rest?

Let us fix attention or5;. We would like it to be the
case that this set consists primarily of points chosen from
the first Gaussiat¥; = N(u1, ). To this end, we establish
the following

Definitions 7; = points inS; drawn from thej** Gaussian
Gjandf; = [luj — pll/(comazv/n) = 1.

We will show that$S; is relatively uncontaminated by
points from other Gaussians, that |§5] + --- + |Tk]| is
small. Those points which do come fraf ought to (we
hope) average out to something near its meanThe prob-
lem is that thex coordinates could be highly correlated
with the y coordinates (depending upon the nature)f
and thus a small, unavoidable errorziih might potentially
cause the se€f; to lie far from i in R™. To dismiss this
possibility we need a bit of matrix analysis.

Tay
Zyy >,

Write covariance matrixX in the form( Zae
with ¥,, = X* being the covariance matrix of the pro-

Sya

jected Gaussians. What is the correlation between: ted

y components of points drawn from Gaussians with covari-
anceX?

Fact If a point drawn fromN (0; ) hasz as its firstd co-

the separation of the Gaussians, all points within distancegrdinates, then its last — d coordinates have the distri-

PO eV d Of ¥ remain inS’, and therefore is potentially
one of these, whereupon, by Lemma9< po’,,.\d. By
Lemma 10 then||z — pf|s- < (3e* + 1)pVd. 1

Remark If w,in = Q(%) then we need to use reduced
dimensiond O(e*?log p%) and sample sizel/
k0(6*2 log? 1/p5)_

5 Back in high-dimensional space

We may now safely assume thatlik¥, each estimated cen-
ter 7i¢ is within Mahalanobis distanc&e* + 1)pv/d of
the corresponding projected centgf. The setS; con-
sists of thel data points closest t@; in the reduced space.
We will choosel < p so as to constraiy; to lie within
B(fi;: p0taV/d) C B (3% +2)po,,v/d), as per the
proof of Lemma 12. The final estimatg in R™ is the mean
of S;.

The random projection fro” to R¢ can be thought
of as a composition of two linear transformations: a ran-
dom rotation inR™ followed by a projection onto the first
d coordinates. Since rotations presefsedistance, we can
assume, for the purpose of bounding fheaccuracy of our
final estimates, that our random projection consists solely
of a mapping onto the firsd coordinates. We will write
high-dimensional points in the forifx, y) € R? x R4,
and will assume that each such point is projected down to
x. We have already bounded the error on the final portion.

bution N (Az; C), whered = £,,3. ! andC = ¥, —
ZyrE;jEmy. This well-known result can be found, for in-
stance, in Lauritzen’s (1996) book on graphical models.

We will need to tackle the question: for a point, y)
drawn from N(0; X), what is the expected value d¢f||
given||z||? In order to answer this, we need to study the
matrix A a bit more carefully.

Lemma 13||Az|| < 0ynaz||z|/s<+/n/d for anyz € RY.
Proof. A = ¥,,X.} is a(n — d) x d matrix; divide it
into n/d — 1 square matrice®, ..., B, 41 by takingd
rows at a time. Fix attention on one suéh. The rows
of B; correspond to somé consecutive coordinates af
call these coordinates Then we can writeB; = 3., > 1.
It is well-known — see, for instance, the textbook by Horn
and Johnson (1985), or consider the inverse oRthe 2d
positive definite covariance matrix ¢f, «) — that(X,, —
.. 5 1%, is positive definite. Therefore, for any €
R, w0 > wl'S,, %Y, ,u, and by choosing: =
¥ L, we find

3. = 0TS 8.0 > o"BI'Y !B
| Bivl|? |Biv]?
a )\max(zzz) o U?nax

Therefore|| B;v|| < omaz|v||s--
neatly together,

The pieces now come



[Az|* = || Biz||*+- -+ Bnja—12]* < “3%07 00|23,

and the lemma is proved.

They coordinates of points ift} look roughly like ran-
dom draws from the distributiolv (A7 ; C'). What bounds
can be given for the average of these points?

Lemma 14Randomly draws pointsYs, . . .,
sianN (, I,,). Then for anyA > —,

Y, from Gaus-

esAz—l —n/2
sA2 '
The mean(Z; +

I,,), and its squared
(1 -

([ 0

Proof. Let Z; = Y; —pu ~ N(0,1I,).

.-+ Zs)/s has distributionV (0, (1/s)
L, norm has moment-generating functigift) =
2t/s)~"/2. By Markov’s inequality,

(1)

tAzn

Zy 4+ Zg
P(H 1+ +
s

>Aw)_
x55)-1

We are finally in a position to bound the deviation of
mean(;) from p; and thereby fromu,. Specifically, the
y coordinates of points ifi; C .S; look roughly like ran-
dom draws from the distributioV (A(zz7 — 15); C). We
will use the previous two lemmas to bound their average.

the lemma follows by choosing= 5 (1 —

Lemma 15For any;j > 1, mean({’;) has the same distribu-
tion as

+ (X, AX + OBy,

where

(1) X € Ris arandom variable withX || < ||u% — will+
<or.mVd; and

(2) E,,, is shorthand for the mean of i.i.d. N(0;1,_4)

random variables.

Proof. Assume for the sake of convenience thatis zero.

In the low-dimensional space, forcidg< p guarantees that

all of S, lies within po:, ..\/d of i}, and therefore within

(35 + 2) maz\/> < 56 pamam\[ < 4 mtn\/gOf /f{

Recall thatT; consists of those points i8; which

come from Gaussia@ For our purposes, we can pretend

that each pointX;, Y) € Tj is generated in the following

fashion:

o Pick X; € B(ui; <ot,;,,Vd) C R according to an
unknown distribution.

e ChooseY; ~ N(AX;; C).

In this manner we choos&;| points{(X;, Y;)}, with mean
value somg X, Y). The range of theX; coordinates con-
strains|| X || to be at most|u; — || + <ot Vd. Toun-

derstand the distribution df’, we notice(Y; — AX;)

N(0;C) £ CY2N(0,1,_4), and taking averages/
AX +C'YV2Eir,.}

IENIES

Armed with this result we finally prove the main theorem.

Lemma 16 With probability> 1 — 4, forall 1 < i < k,
||ﬁz - IUZH < 6Umaaﬁ\/ﬁ-

Proof. We observed in the previous lemma that in low
dimension, all ofS; lies within 5¢* po*, . v/d of p%, and
therefore at distance at leay — 5% p) f;07,,,Vd from
any other projected centgr;.

Fix any pointz € S;, and any; > 1. Applying the
general principle thaM < |- ”“” , we then

know ||z — pifjs- < 55*2p\f and||g; - ,U] > (3 -
5¢*p) f3/d and therefore

wye~ (B30 fd/2

(Ge2p)2d)2

P (x comes fromG;)
P(x comes from;)

wie—
w;e€
2 %2 £2°
64c?e*2 f;

This inequality effectively bounds the number of outliers
|T2| + - - - 4+ |T%|. The normed difference between and
the mean of5;, which we hope is close to zero, is given by

IImeaﬂiSO — |

k

|7} |7

< ZHmear(T = pill == J + ) Ml — mll lj
j=2

N

< Omazx \/ﬁ7

IC'2E|+O (> e f;- M

i>1

whereE, is, as before, the mean bf.i.d. N(0;I,,_4) ran-
dom variables, and the final inequality uses Lemmas 13 and
15. It remains to bound these two terms.

(@) SinceC = ¥,, — £,,2,.%,, and each of these
two right-hand terms is positive semidefinite,,..(C) <
Anaz(Zyy) < 02, and therefore |CY/2E)|| <

Omaz||Et]|- TO bound|| E;|| we use Lemma 14.

(b) A Chernoff bound shows thé;| < O(j;ﬁ-v‘;j ) for j >
1, the final piece of the puzzI8.



6 Auxiliary issues been suggested by Keares al(1994) and by Freund and
Mansour (1999). It is plausible, as per Diaconis and Freed-
6.1 Learning the mixing weights and covariance ~ man (1984), that many families of discrete distributions
matrix start looking more Gaussian when randomly projected into
low dimension. This suggests an unusual algorithm for

The algorithm we have presented solves the core combinal€@ming these mixtures: project the data, apply a low-
torial problem of learning the centers of a mixture of Gaus- dimensional Gaussian center estimator, and then perform
sians. In some situations, for instance if likelihoods need S°™M€ sort of high-dimensional reconstruction!
to be computed, it is also important to learn the mixing
weights and the covariance matrix. We now briefly suggest6.3 Odds and ends
a possible approach.

Assume we have in hand the center-estimates R”. One source of concern about our algorithm is that a naive
Associate each data point with its closest center-estimate computation of the-, values would seem to require com-
It can be shown that the proportion of misclassified points puting distances between all pairs of points, which is in-
in this hard clustering will (with high probability) be only  feasible for enormous data sets. In such cases, acceptable
O(k exp(—((c — €)?n))). The proof is not difficult but  performance might be obtained by computing these values
requires some care because of the dependence between theith respect to a small random subset of the data. That is,
data and the estimated centers. randomly select a small subsEtC S of sizeO(k) and for

By computing statistics of the points in each cluster, each data point € S, let r, be the smallest radius such
we can obtain estimates for the mixing weights and covari- that B(z; r,) contains at leagt points of 7.
ance matrix. Taking averages of the points in each clus- We end with an important open problem. Our algo-
ter may also give improved estimates of the centers. Inrithm will work when different clusters have differing co-
fact, this technique might lower the sample complexity to variances, provided these matrices have approximately the
just k0(1) /€2 instead ofk®°e” 1/) (ignoring terms i) —  same trace. It would be a significant advance to remove this
use our algorithm to construct crude estimates of the meansqualification.
correct to withinO(comq2+/n), and then use the hard clus-

tering to improve this accuracy t@,,,./n. Acknowledgements
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