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Abstract

In k-means clustering we are given a set ofn data points ind-dimensional space<d and an integer
k, and the problem is to determine a set ofk points in<d, calledcenters, to minimize the mean squared
distance from each data point to its nearest center. No exact polynomial-time algorithms are known for
this problem. Although asymptotically efficient approximation algorithms exist, these algorithms are
not practical due to the very high constant factors involved. There are many heuristics that are used in
practice, but we know of no bounds on their performance.

We consider the question of whether there exists a simple and practical approximation algorithm for
k-means clustering. We present a local improvement heuristic based on swapping centers in and out.
We prove that this yields a(9 + ε)-approximation algorithm. We present an example showing that any
approach based on performing a fixed number of swaps achieves an approximation factor of at least
(9− ε) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for algorithms
based on performing a fixed number of swaps. To establish the practical value of the heuristic, we present
an empirical study that shows that, when combined with Lloyd’s algorithm, this heuristic performs quite
well in practice.
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1 Introduction

Clustering problems arise in many different applications, including data mining and knowledge discovery
[15], data compression and vector quantization [19], and pattern recognition and pattern classification [11].
There are many approaches, including splitting and merging methods such as ISODATA [6, 21], randomized
approaches such as CLARA [25] and CLARANS [34], and methods based on neural nets [27]. Further
information on clustering and clustering algorithms can be found in [8, 20, 21, 22, 23, 25]. One of the most
popular and widely studied clustering methods for points in Euclidean space is calledk-means clustering.
Given a setP of n data pointsin reald-dimensional space<d, and an integerk, the problem is to determine
a set ofk points in<d, calledcenters, to minimize the mean squared Euclidean distance from each data point
to its nearest center. This measure is often called thesquared-error distortion[19, 21]. Clustering based
on k-means is closely related to a number of other clustering and facility location problems. These include
the Euclideank-median[3, 28] and theWeber problem[42], in which the objective is to minimize the sum
of distances to the nearest center, and the Euclideank-center problem[13, 39], in which the objective is to
minimize the maximum distance. There are no efficient exact solutions known to any of these problems for
generalk, and some formulations are NP-hard [18].

Given the apparent difficulty of solving thek-means and other clustering and location problems exactly,
it is natural to consider approximation, either through polynomial-time approximation algorithms, which
provide guarantees on the quality of their results, or heuristics, which make no guarantees. One of the
most popular heuristics for thek-means problem isLloyd’s algorithm[17, 30, 31], which is often called
the k-means algorithm. Define theneighborhoodof a center point to be the set of data points for which
this center is the closest. It is easy to prove that any locally minimal solution must becentroidal, meaning
that that each center lies at the centroid of its neighborhood [10, 14]. Lloyd’s algorithm starts with any
feasible solution, and it repeatedly computes the neighborhood of each center and then moves the center to
the centroid of its neighborhood, until some convergence criterion is satisfied. It can be shown that Lloyd’s
algorithm eventually converges to a locally optimal solution [38]. Computing nearest neighbors is the most
expensive step in Lloyd’s algorithm, but a number of practical implementations of this algorithm have been
discovered recently [2, 24, 35, 36, 37].
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Fig. 1: Lloyd’s algorithm can produce an arbitrarily high approximation ratio.

Unfortunately, it is easy to construct situations in which Lloyd’s algorithm converges to a local minimum
that is arbitrarily bad compared to the optimal solution. Such an example is shown in Fig. 1 fork = 3 and
wherex < y < z. The optimal distortion isx2/4, but it is easy to verify that the solution shown at the
bottom is centroidal and has a distortion ofy2/4. By increasing the ratioy/x the approximation ratio for
Lloyd’s algorithm can be made arbitrarily high. There are many other heuristics fork-means clustering,
based on methods such as branch-and-bound searching, gradient descent, simulated annealing, and genetic
algorithms [7, 12, 41]. No proven approximation bounds are known for these methods.

It is desirable to have some bounds on the quality of a heuristic. Given a constantc ≥ 1, ac-approximation
algorithm(for a minimization problem) produces a solution that is at most a factorc larger than the optimal
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solution. There is a classical tradeoff between approximation factors and running times. Some cluster-
ing algorithms are able to produce solutions that are arbitrarily close to optimal. This includes(1 + ε)-
approximation algorithms for the Euclideank-median problem by Arora, Raghavan and Rao [3] and by
Kolliopoulos and Rao [28]. The latter achieves a running time ofO(21/εd

n log n log k), assuming that the
dimensiond is fixed. It is based on applying dynamic programming to an adaptive hierarchical decomposi-
tion of space. Another example is the(1 + ε)-approximation algorithm for the Euclideank-center problem
given by Agarwal and Procopiuc, which runs inO(n log k) + (k/ε)O(k1−1/d) time [1].

Matoǔsek [32] achieved an important breakthrough by presenting an asymptotically efficient(1 + ε)-
approximation algorithm fork-means clustering, which runs inO(n(log n)kε−2k2d) time for fixedk andd.
First, Matoǔsek shows how to compute a set ofO(nε−d log(1/ε)) candidate centers, called anε-approximate
centroid set, from which an approximately optimal solution may be drawn. He then shows that a near-
optimal solution may be assumed to consist of awell-spreadk-tuple, which intuitively means that no subset
of thek-tuple is strongly isolated relative to the other points. Finally, he proves that given a set ofm points,
there areO(mε−k2d) such well-spread sets. The algorithm generates all these tuples and returns thek-tuple
with the minimum distortion. Unfortunately, the constant factors are well beyond practical ranges unlessd
andk are very small. In Section 4, we show that, under reasonable assumptions about the way in which
the candidate centers are chosen (which Matoušek’s algorithm satisfies), the number of well-spreadk-tuples
that the algorithm generates is at least(2/ε)k. In typical applications,k may range from tens to hundreds,
and so this is well beyond practical limits. The dynamic programming approximation algorithm presented
by Kolliopoulos and Rao for thek-median problem [28] is also a candidate for modification, but also suffers
from similarly large constant factors.

Another common approach in approximation algorithms is to develop much more practical, efficient
algorithms having weaker, but still constant, approximation factors. This includes the work of Thorup on
solving location problems in sparse graphs [40] and by Mettu and Plaxton [33] on the use of successive
swapping for the metrick-means problem. The most closely related work to our own are the recent approx-
imation algorithms for the metrick-median problem by Korupolu, Plaxton and Rajaraman [29], Charikar
and Guha [9], and Aryaet al. [5]. These algorithms are based onlocal search, that is, by incrementally
improving a feasible solution by swapping a small number of points in and out of the solution set.

In this paper we present such an approximation algorithm fork-means based on a simple swapping
process. In Section 2 we derive an approximation ratio of9 + ε for the heuristic. Our approach is based
on the heuristic fork-medians presented by Aryaet al. [5]. However, due to the different nature of thek-
means problem, the analysis is different and relies on geometric properties that are particular to thek-means
problem. In Section 3 we show that this bound is essentially tight for the class of local search algorithms
that are based on performing a constant number of swaps. In particular, we present an example showing
that any approach based on performing a fixed number of swaps cannot achieve an approximation factor of
better than(9 − ε) in all sufficiently high dimensions.

Approximation factors as high as 9 are of little practical value. Nonetheless, we believe that a combina-
tion of local search and existing approaches results in a practical approximation algorithm with performance
guarantees. In Section 5 we present a hybrid approximation algorithm based on combining local search with
Lloyd’s algorithm. We provide empirical evidence that this hybrid algorithm provides results that are as
good or better than Lloyd’s algorithm, both in terms of distortion and running time.
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2 The Local Search Algorithm

Givenu, v ∈ <d, let ∆(u, v) denote the squared Euclidean distance between these points, that is

∆(u, v) = dist2(u, v) =
d∑

i=1

(ui − vi)2 = (u − v) · (u − v),

whereu · v denotes the dot product of vectorsu andv. Given a finite setS ⊂ <d, define itsdistortion
relative to any pointv to be∆(S, v) =

∑
u∈S ∆(u, v).

Consider a setP of n data pointsin <d and an integerk. Given any setS of k points, for anyq ∈ <d

definesq to be the closest point ofS to q. Our goal is to compute thek-element point setS that minimizes
the totaldistortionof S relative toP , defined as

∆P (S) =
∑
q∈P

∆(q, sq).

WhenP is understood, we will refer to this simply as∆(S).

The principal difficulty in extending existing approaches for the metrick-medians problem tok-means
is that squared distances do not define a metric, and in particular they do not satisfy the triangle inequality,
which states that for any pointsu, v, andw, dist(u, w) ≤ dist(u, v)+dist(v, w). When considering squared
distances we have

∆(u, w) ≤ (dist(u, v) + dist(v, w))2

= dist2(u, v) + 2dist(u, v)dist(v, w) + dist2(v, w)
≤ ∆(u, v) + ∆(v, w) + 2dist(u, v)dist(v, w).

The final product term can be bounded by observing that2ab ≤ a2 + b2, for anya andb. Hence we have
the followingdoubled triangle inequality.

∆(u, w) ≤ 2(∆(u, v) + ∆(v, w)).

One obvious idea for producing a local improvement heuristic fork-means would be to generalize the
methods of Aryaet al. [5] for the metrick-median problem using this doubled triangle inequality. Unfor-
tunately, this does not seem to work because their analysis relies crucially on the triangle inequality. In
particular, a cancellation of terms that arises in their analysis fails to hold when the triangle inequality is
doubled.

Our approach is based on two ideas. The first is the introduction of an alternative to the triangle inequality,
which, unlike the doubled triangle inequality is sensitive to the ratio of the optimal and heuristic solution
(see Lemma 2.3 below). The second is based on the well known fact that the optimal solution is centroidal
(see [10]). LetNS(s) denote the neighborhood ofs, that is, the set of data points that are closer tos than to
any point inS. By treating points as vectors, the centroidal property implies that

s =
1

|NS(s)|
∑

u∈NS(s)

u.
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An important property of centroidal solutions is presented in the following lemma. It states that for
the purposes of computing distortions, a set of points may be treated like a point mass centered about its
centroid. It follows from a straightforward manipulation of the definition of distortion, but we include the
proof for completeness.

Lemma 2.1 Given a finite subsetS of points in<d, let c be the centroid ofS. Then for anyc′ ∈ <d,
∆(S, c′) = ∆(S, c) + |S|∆(c, c′).

Proof: By expanding the definition of∆(S, c′) we have

∆(S, c′) =
∑
u∈S

∆(u, c′) =
∑
u∈S

(u − c′) · (u − c′)

=
∑
u∈S

((u − c) + (c − c′)) · ((u − c) + (c − c′))

=
∑
u∈S

((u − c) · (u − c)) + 2((u − c) · (c − c′)) + ((c − c′) · (c − c′))

= ∆(S, c) + 2

(
(c − c′) ·

∑
u∈S

(u − c)

)
+ |S|((c − c′) · (c − c′))

= ∆(S, c) + |S|∆(c, c′),

The last step follows from the fact that ifc is S’s centroid then
∑

u∈S(u − c) is the zero vector. ut

2.1 The Single-Swap Heuristic

To illustrate our method, we first present a simple local search that provides a(25+ ε)-approximation to the
k-means problem. Our approach is similar to approaches used in other local search heuristics for facility
location andk-medians by Charikar and Guha [9] and Aryaet al. [5].

In the statement of thek-means problem, the centers may be placed anywhere in space. In order to apply
our local improvement search, we need to assume that we are given a discrete set ofcandidate centersC
from which k centers may be chosen. As mentioned above, Matoušek [32] showed thatC may be taken
to be anε-approximate centroid set of sizeO(nε−d log(1/ε)), which can be computed in timeO(n log n +
nε−d log(1/ε)). Henceforth, when we use the term “optimal,” we mean thek-element subset ofC having
the lowest distortion.

This single-swap heuristicoperates by selecting an initial set ofk centersS from the candidate centers
C, and then it repeatedly attempts to improve the solution by removing one centers ∈ S and replacing
it with another centers′ ∈ C − S. Let S′ = S − {s} ∪ {s′} be the new set of centers. If the modified
solution has lower distortion, thenS′ replacesS, and otherwiseS is unchanged. In practice this process is
repeated until some long consecutive run of swaps have been performed with no significant decrease in the
distortion. By extension of standard results [5, 9] it can be shown that by sacrificing a small factorε > 0
in the approximation ratio, we can guarantee that this procedure converges after a polynomial number of
swaps.

For simplicity, we will assume that the algorithm terminates when no single swap results in a decrease
in distortion. Such a set of centers is said to be1-stable. LettingO denote an optimal set ofk centers, a set
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S of k centers is 1-stable then we have

∆(S − {s} ∪ {o}) ≥ ∆(S) for all s ∈ S, o ∈ O. (1)

(In fact this is true no matter whatO is, but our analysis only relies on this weaker property.) Using this
along with the fact that the optimal solution is centroidal, we will establish the main result of this section,
which is stated below.

Theorem 2.1 Let S denote a 1-stable set ofk centers, and letO denote the optimal set ofk centers. Then
∆(S) ≤ 25∆(O).

Note that the actual approximation bound is larger by someε > 0, due to the errors induced by using a
discrete set of candidate centersC and the approximate convergence criterion described above. Our analysis
is similar in structure to that given by Aryaet al. [5], but there are two significant differences. The first is
that our notion of capturing a center is different from theirs, and is based on the distance to the closest center,
rather than on the numbers of data points assigned to a center. The second is that their permutation function
π is not needed in our case, and instead we rely on the centroidal properties of the optimal solution.

For each optimal centero ∈ O, let so denote its closest heuristic center inS. We say thato is captured
by so. Note that each optimal center is captured by exactly one heuristic center, but each heuristic center
may capture any number of optimal centers. We say that a heuristic center islonely if it captures no optimal
center. The analysis is based on constructing a set ofswap pairs, considering the total change in distortion
that results, and then apply Eq. (1) above to bound the overall change in distortion.

We begin by defining a simultaneous partition of the heuristic centers and optimal centers into two sets
of groupsS1, S2, . . . , Sr andO1, O2, . . . , Or for somer, such that|Si| = |Oi| for all i. For each heuristic
centers that captures some numberm ≥ 1 of optimal centers, we form a group ofm optimal centers
consisting of these captured centers. The corresponding group of heuristic centers consists ofs together
with anym − 1 lonely heuristic centers. (See Fig. 2.)

3
Swap pairsPartition

Heuristic centers

Optimal centers

5S S1

O1 O2 O3 O4 O5

S2 S3 S4 S54S3S2S

5O4OO2O1O

1S

Fig. 2: Partitioning of the heuristic and optimal centers for analysis and the swap pairs. On the left, edges
represent the capturing relation, and on the right they represent swap pairs.

We generate the swap pairs as follows. For every partition that involves one captured center we generate
a swap pair consisting of the heuristic center and its captured center. For every partition containing two or
more captured centers we generate swap pairs between the lonely heuristic centers and the optimal centers,
so that each optimal center is involved in exactly one swap pair and each lonely center is involved in at most
two swap pairs. It is easy to verify that:

(1) each optimal center is swapped in exactly once,

(2) each heuristic center is swapped out at most twice, and
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(3) if s ando are swapped, thens does not capture any optimal center other thano.

We establish an upper bound on the change in distortion resulting from any such swap pair〈s, o〉 by
prescribing a feasible (but not necessarily optimal) assignment of data points to the centersS − {s} ∪ {o}.
First, the data points inNO(o) are assigned too, implying a change in distortion of∑

q∈NO(o)

(∆(q, o) − ∆(q, sq)). (2)

Each pointq ∈ NS(s) \ NO(o) has losts as a center and must bereassignedto a new center. Letoq denote
the closest optimal center toq. Sinceq is not inNO(o) we know thatoq 6= o, and hence by property (3)
aboves does not captureoq. Therefore,soq , the nearest heuristic center tooq, exists after the swap. We
assignq to soq . Thus the change in distortion due to this reassignment is at most∑

q∈NS(s)\NO(o)

(∆(q, soq) − ∆(q, s)). (3)

By combining over all swap pairs the change in distortion due to optimal assignment and reassignment
together with Eq. (1) we obtain the following.

Lemma 2.2 LetS be a 1-stable set ofk centers, and letO be an optimal set ofk centers, then

0 ≤ ∆(O) − 3∆(S) + 2R,

whereR =
∑

q∈P ∆(q, soq).

Proof: Consider just the swap pair〈s, o〉. By Eqs. (2) and (3) and the fact thatS is 1-stable we have∑
q∈NO(o)

(∆(q, o) − ∆(q, sq)) +
∑

q∈NS(s)\NO(o)

(∆(q, soq) − ∆(q, s)) ≥ 0.

To bound the sum over all swap pairs, we recall that each optimal center is swapped in exactly once, and
hence each pointq contributes once to the first sum. Note that the quantity in the second sum is always
nonnegative (becausesoq ∈ S ands is the closest center inS to q). Hence by extending the sum to all
q ∈ NS(s) we can only increase its value. Recalling that each heuristic center is swapped in at most twice
we have

0 ≤
∑
q∈P

(∆(q, oq) − ∆(q, sq)) + 2
∑
q∈P

(∆(q, soq) − ∆(q, sq))

0 ≤
∑
q∈P

∆(q, oq) − 3
∑
q∈P

∆(q, sq)) + 2
∑
q∈P

∆(q, soq)

0 ≤ ∆(O) − 3∆(S) + 2R,

from which the desired conclusion follows. ut
The termR above is called thetotal reassignment cost. By applying Lemma 2.1 to each optimal neigh-

borhood, we have

R =
∑
o∈O

∑
q∈NO(o)

∆(q, so) =
∑
o∈O

∆(NO(o), so)

=
∑
o∈O

(∆(NO(o), o) + |No(O)|∆(o, so)) =
∑
o∈O

∑
q∈NO(o)

(∆(q, o) + ∆(o, so)).
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Becauseso is the closest heuristic center too, for eachq ∈ NO(o), we have∆(o, so) ≤ ∆(o, sq). This
yields

R ≤
∑
o∈O

∑
q∈NO(o)

(∆(q, o) + ∆(o, sq)) =
∑
q∈P

(∆(q, oq) + ∆(oq, sq)).

By applying the triangle inequality and expanding we obtain

R ≤
∑
q∈P

∆(q, oq) +
∑
q∈P

(dist(oq, q) + dist(q, sq))2

=
∑
q∈P

∆(q, oq) +
∑
q∈P

(dist2(oq, q) + 2dist(oq, q)dist(q, sq) + dist2(q, sq))

= 2
∑
q∈P

∆(q, oq) +
∑
q∈P

∆(q, sq) + 2
∑
q∈P

dist(q, oq)dist(q, sq)

= 2∆(O) + ∆(S) + 2
∑
q∈P

dist(q, oq)dist(q, sq).

To bound the last term we will apply the following technical lemma.

Lemma 2.3 Let 〈oi〉 and〈si〉 be two sequences of reals, such thatα2 = (
∑

i s
2
i )/(

∑
i o

2
i ), for someα > 0.

Then
n∑

i=1

oisi ≤ 1
α

n∑
i=1

s2
i .

Proof: By Schwarz’s inequality [16] we have

n∑
i=1

oisi ≤
(

n∑
i=1

o2
i

)1/2( n∑
i=1

s2
i

)1/2

=

(
1
α2

n∑
i=1

s2
i

)1/2( n∑
i=1

s2
i

)1/2

=
1
α

n∑
i=1

s2
i ,

as desired. ut
To complete the analysis, let theoi sequence consist ofdist(q, oq) over allq ∈ P , and let thesi sequence

consist ofdist(q, sq). Let α denote the square root of the approximation ratio, so that

α2 =
∆(S)
∆(O)

=

∑
q∈P dist2(q, sq)∑
q∈P dist2(q, oq)

=
∑n

i=1 s2
i∑n

i=1 o2
i

.

By applying Lemma 2.3 we have

R ≤ 2∆(O) + ∆(S) +
2
α

∑
q∈P

dist2(q, sq) = 2∆(O) + ∆(S) +
2
α

∆(S)

= 2∆(O) +
(

1 +
2
α

)
∆(S).
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Now we combine this with Lemma 2.2, yielding

0 ≤ ∆(O) − 3∆(S) + 2
(

2∆(O) +
(

1 +
2
α

)
∆(S)

)

≤ 5∆(O) −
(

1 − 4
α

)
∆(S). (4)

Through simple rearrangements we can express this in terms ofα alone.

5
1 − 4/α

≥ ∆(S)
∆(O)

= α2

5 ≥ α2

(
1 − 4

α

)
0 ≥ α2 − 4α − 5 = (α − 5)(α + 1).

This implies thatα ≤ 5, and hence the approximation ratio of the simple heuristic is bounded byα2 ≤ 25.
This completes the proof of Theorem 2.1.

2.2 The Multiple-Swap Heuristic

We generalize the single-swap approach to provide a factor9+ε approximation ratio. Rather than swapping
a single pair of points at any time, for some integerp, we consider simultaneous swaps between any subset
of S of sizep′ ≤ p with anyp′-element subset of candidate centers. Otherwise the algorithm is the same.
We say that a set of centers isp-stableif no simultaneous swap ofp elements decreases the distortion. Our
main result is given below. As before, there is an additionalε term in the final error because of the use of
the discrete candidate centers and the approximate convergence conditions.

Theorem 2.2 Let S denote ap-stable set ofk centers, and letO denote the optimal set ofk centers. Then

∆(S) ≤
(
3 + 2

p

)2
∆(O).

Again our approach is similar to that of Aryaet al. [5], but using our different notion of capturing. We
define our swaps as follows. Recall the simultaneous partitions of heuristic and optimal centers used in the
simple heuristic. If for somei, |Si| = |Oi| ≤ p, then we create a simultaneous swap involving the setsSi

andOi. Otherwise, if|Si| = |Oi| = m > p, then for each of them − 1 lonely centers ofSi we generate
individual 1-for-1 swaps with allm optimal centers ofOi. For the purposes of the analysis, the change
in distortion due to each of these 1-for-1 swaps is weighted by a multiplicative factor of1/(m − 1). (For
example, Fig. 3 shows the swaps that would result from Fig. 2 forp = 3. The swaps appearing in shaded
boxes are performed simultaneously. The 1-for-1 swaps performed betweenS1 andO1 are each weighted
by 1/4.)

It is easy to verify that: (1) each optimal center is swapped in with total weight 1, (2) each heuristic
center is swapped out with weight at most1 + 1/p, and (3) if setsS′ andO′ are swapped, thenS′ captures
no optimal centers outside ofO′.
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5S4S3S1

O1 O2 O3 O4 O5

S2 S

weighted
by 1/4

Fig. 3: Swaps forp = 3. Shaded regions indicate swaps that are performed simultaneously.

The analysis proceeds in the same manner as the simple case. Because of the replacement of the factor 2
with (1 + 1/p), the inequalities in the proof of Lemma 2.2 now become

0 ≤
∑
q∈P

(∆(q, oq) − ∆(q, sq)) +
(

1 +
1
p

)∑
q∈P

(∆(q, soq) − ∆(q, sq))

0 ≤ ∆(O) −
(

2 +
1
p

)
∆(S) +

(
1 +

1
p

)
R.

The analysis and the definition ofα proceed as before, and Eq. (4) becomes

0 ≤ ∆(O) −
(

2 +
1
p

)
∆(S) +

(
1 +

1
p

)(
2∆(O) +

(
1 +

2
α

)
∆(S)

)

≤
(

3 +
2
p

)
∆(O) −

(
1 − 2

α

(
1 +

1
p

))
∆(S).

Again, by rearranging and expressing in terms ofα we have

3 + (2/p)
1 − (2/α)(1 + 1/p)

≥ ∆(S)
∆(O)

= α2

0 ≥ α2 − 2α

(
1 +

1
p

)
−
(

3 +
2
p

)

≥
(

α −
(

3 +
2
p

))
(α + 1).

This implies thatα ≤ 3 + 2/p, and hence the approximation ratio of the general heuristic isα2, which
approaches 9 asp increases.

3 A Tight Example

It is natural to ask whether the factor 9 is the correct approximation factor for swap-based heuristics, or
whether it arises from some slackness in our analysis. In this section we provide evidence that this is
probably close to the correct factor assuming an algorithm based on performing a fixed number of swaps.
We show that for anyp, there is a configuration of points in a sufficiently high dimensional space such
that thep-swap heuristic achieves a distortion that is(9 − ε) times optimal. This example has the nice
property that it is centroidal. This implies that it is also a local minimum for Lloyd’s algorithm. Hence
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neither the swap heuristic (assuming swaps with optimal centers) nor Lloyd’s algorithm would be able
to make further progress. We make the assumption that centers may only be placed at a given discrete
set of candidate locations. This candidate set is reasonable in that it contains anε-approximately optimal
solution. Overcoming this assumption would imply that the entire analysis method would somehow need to
be generalized to handle swaps with points other than the optimal centers.

Arya et al. [5] presented a tight example for their heuristic in a metric space. However, their example
cannot be embedded in Euclidean space of any dimension and does not even allow centers to be placed at
data points. Our approach is quite different.

Theorem 3.1 Givenp andε > 0, there exists an integerk, a dimensiond, a finite set of pointsP ∈ <d, a
finite set of candidate centersC, and a setS ⊆ C of k centers, such that the following hold.

(i) C contains anε-approximately optimal solution.

(ii) S is p-stable.

(iii) ∆(S) ≥ (9 − ε)∆(O), whereO is the optimalk-means solution.

In the rest of this section we provide a proof of this theorem. Letd (dimension) andN be even
integer parameters to be specified later. Our framework consists of a larged-dimensional integer grid,
G = {0, 1, . . . , N − 1}d. To avoid messy boundary issues, we may assume that the grid is a topological
d-dimensional torus, by taking indices moduloN . ForN sufficiently large, this torus may be embedded in
(d+1)-space, so that distances from each embedded grid point to the embedded image of its grid neighbors
is arbitrarily close to 1. Thus the local neighborhoods of all the grid points are identical.

The grid points ared-dimensional integer vectors, where each coordinate is in{0, 1, . . . , N − 1}. The
points ofG are labeled even or odd, depending on the parity of the sum of coordinates. Consider a parameter
x, 0 < x < 1/2, to be fixed later. LetT (x) be the following set of2d points displaced at a distance+x and
−x from the origin along each of the coordinate axes.

(±x, 0, 0, . . . , 0), (0,±x, 0, . . . , 0), . . . , (0, 0, 0, . . . ,±x).

The data setP consists of the union of translates ofT (x) each centered about an even grid point. (See
Fig. 4.) Thus,n = dNd. We setk = n/(2d). It is easy to see that the optimal solutionO consists ofk
centers placed at the even grid points. The neighborhood of each center ofO consists of2d points, each
at distancex. Consider a solutionS consisting ofk points placed at each of the odd grid points. The
neighborhood of each point ofS consists of2d points at distance1 − x.

Each optimal center has a neighborhood of2d points at distancex, and each heuristic center has a
neighborhood of2d points at distance(1 − x). Thus we have

∆(S)
∆(O)

=
(1 − x)2

x2
.

We argue below that by choosingx = 1/(4− p/d), nop-swap involving points ofS andC can improve the
distortion. By makingd sufficiently large relative top, this implies that the approximation ratio is arbitrarily
close to(3/4)2/(1/4)2 = 9, as desired.
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Data point Optimal center Heuristic center

x 1−x

s

o

Fig. 4: Example of the lower bound in the plane. Black circles are the data points, hollow circles denote the
optimal centers, and crosses denote the heuristic centers.

To show that nop-way swap improves the distortion, consider any simultaneous swap between twop-
element subsetsS′ andO′ of heuristic and optimal centers, respectively. Because the optimal neighborhoods
are disjoint and each contains2d points, the change in distortion due to assigning these points to their new
optimal center is

2dp(x2 − (1 − x)2) = 2dp(2x − 1).

No other points are assigned to a closer center.

Now consider the2dp neighbors of heuristic centers that have now been removed. These data points
must be reassigned to the nearest existing center. After performing the swap, there are at mostp2 pairs
〈s, o〉, wheres ∈ S ando ∈ O, such thats ando are adjacent to each other in the grid. For these points no
additional reassignment is needed because the point has been moved to its optimal center. For the remaining
neighbors of the heuristic centers, of which there are at least2dp − p2, we need to reassign each to a new
center. The closest such center is at distance

√
1 + x2. Hence the change in distortion due to reassignment

is at least

(2dp − p2)((1 + x2) − (1 − x)2) = 2dp
(
1 − p

2d

)
2x.

Combining these two, the total change in distortion is at least

2dp
(
2x − 1 +

(
1 − p

2d

)
2x
)

= 2dp
((

2 − p

2d

)
2x − 1

)
.

This is nonnegative if we setx = 1/(4− p/d), and hence thep-swap heuristic cannot make progress on this
example. This establishes Theorem 3.1.

4 Analysis of Well-Spreadk-Tuples

In the introduction we pointed out that Matoušek presented an asymptotically efficientε-approximation to
thek-means problem, under the assumption thatk, d andε are fixed constants [32]. Although this is a very
important theoretical result, the constant factors arising in this algorithm are too large to be of practical
value, unlessk is very small. This raises the question of whether these large constant factors are merely an
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artifact of the analysis, or whether they are, in some sense, an inescapable consequence of the approach. In
this section, we will argue that the latter is the case.

Let us begin with an overview of the essential elements of Matoušek’s algorithm. First, recall that a set
of candidate centers is called anε-approximate centroid setif, by restricting the selection of centers to this
set, the average distortion is larger by a factor of at most(1 + ε). Matoǔsek shows that givenn points in
<d, such a set of sizem = O(nε−d log(1/ε)) can be computed efficiently. Given such a set the algorithm
proceeds by selecting a judicious subset ofk-tuples from these candidate points, and argues that one of these
subsets provides the desired approximate solution to thek-means problem. Given a real numberr and two
point setsY ⊂ X, the setY is r-isolatedin X if every point inX \Y is at distance at leastr ·diam(Y ) from
Y . A setX is ε-well-spreadif there is no proper subset ofX of two or more points that is(1/ε)-isolated in
X. Matoǔsek shows that, given a set ofm points in<d, anε-well-spread set ofk-tuples of sizeO(mε−k2d)
can be computed efficiently, and that restricting attention to suchk-tuples produces anε-approximation.
Applying this procedure to the set of candidate points produces the desired approximation.

Of course, the constant factors suggested above are well beyond the bounds of practicality, but might a
smaller set suffice? We will prove a lower bound on the number of well-spreadk-tuples that would need to
be generated in order to guarantee a relative error ofε. Our analysis is based on alocality assumptionthat
the choice of candidate centers is based only on the local distribution of the points, and has no knowledge of
which cluster each point belongs to in an optimal clustering. This assumption is satisfied by any reasonable
selection algorithm, including Matoušek’s algorithm.

Theorem 4.1 There exists a configuration of points in the plane, such that ifε ≤ 1/(3
√

k), the number of
well-spreadk-tuples that need to be tested by Matouˇsek’s algorithm is at least(2/ε)k.

Our approach is to present a configuration of points in the plane and argue that, in order to achieve a
relative error that is less thanε, the points of the candidate centroid set must be sampled with a certain
minimum density. This in turn provides a lower bound on the size of the candidate centroid set, and on the
number of well-spreadk-tuples.

Our analysis assumes thatk is a perfect square and that the points lie in a 2-dimensional square domain
of size

√
k ×√

k, which is subdivided into a grid ofk pairwise disjoint unit squares. (See Fig. 5(a).) Points
are distributed identically within each of these squares. Consider any unit square. LetT be a closed square
of side length1/7 centered at the midpoint of the unit square. (The factor1/7 is rather arbitrary, and only
affects the constant factor in the analysis. We assume this value is independent ofε.) The points of this
unit square are placed uniformly along the boundary of a squareS of side length5/7 that is centered at an
arbitrary point ofz within T . (See Fig. 5(b).) It is easy to see that for largen, the optimalk-means solution
involves placing one center in each unit square at the center pointz.

For the purposes of producing a lower bound, it suffices to limit consideration to candidate points lying
within T . By our locality assumption, the candidate selection algorithm cannot know the location of the
optimum center, and, since the distribution of points surroundingT looks about the same to every point
of T , the candidate selection process can do no better than select points uniformly throughoutT . Let us
assume that the candidate pointsC are taken to be the vertices of a square grid of side lengthx, where
the value ofx will be derived below. See Fig. 5(c). (The exact pattern of candidates is not important for
our proof, only the assumption of uniformity.) By adjusting the location ofz within T , we can placez so
that the closest candidate centerz′ to z is at a squared distance of2(x/2)2 = x2/2 from z. By applying
Lemma 2.1 (wherez plays the role ofc, andz′ plays the role ofc′), it follows that the absolute increase in
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Fig. 5: Analysis of the number of well-spreadk tuples.

the average squared distortion is equal to the squared distance betweenz andz′ which is,x2/2. To derive
the relative error, we first need to compute the expected optimal average distortion. Since the points are
uniformly distributed alongS’s boundary, and assuming thatn is large, we can estimate this by integrating
the squared distance from each point on the boundary ofS to the center ofS. Straightforward calculations
show this to be(4/3)(5/14)2 ≤ 1/4. Therefore, in order to achieve a relative approximation error ofε, we
require thatx2/2 ≤ ε/4, that is,x ≤ √ε/2. From this it follows that the number of candidate points inT
must be at least1/x2 = 2/ε. (This lower bound is much smaller than Matoušek’s upper bound because our
assumption that points are uniformly distributed allows us to ignoren altogether.)

Now, consider anyk-tuple formed by selecting any one candidate from each of the candidate sets of the
unit squares. We claim that each such set isε-well-spread, for all sufficiently smallε. The closest that two
candidate points can be is6/7, and the farthest they can be is at most2

√
k. Thus any subset of two or

more points has a diameter of at least6/7, and the next closest point is at most a distance of2
√

k away. It
follows that if (2

√
k) ≤ 6/(7ε), any suchk-tuple isε-well-spread. This is satisfied given our hypothesis

thatε ≤ 1/(3
√

k). Thus, the number of suchk-tuples that the algorithm needs to test, in order to guarantee
anε relative error in the average distortion for this 2-dimensional example is at least(2/ε)k. This completes
the proof.

5 Experimental Results

Given the relatively high approximation factors involved and the tight example, an important question is
whether the swap-based heuristics perform well enough to be of practical value. In this section we argue
that indeed these heuristics can be of significant value, especially if applied in conjunction with a locally
optimal heuristic such as Lloyd’s algorithm.

It is quite easy to see why such a merger is profitable. As mentioned earlier, Lloyd’s can get stuck in
local minima. One common approach for dealing with this is to run this algorithm repeatedly with different
random starting sets. In contrast, the swap heuristic is capable of moving out of a local minimum, but it
may take very long to move near to a local minimum. By alternating between the two methods, we have a
simple heuristic that takes advantage of both methods’ strengths. This is similar in spirit to methods based
on simulated annealing [26], but without the complexities of defining temperature schedules and with the
advantage of provable performance guarantees.
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Our implementation of the swap heuristic differs from the description in this paper in a couple of respects.
First, we sampled pairs for swapping randomly, rather than applying some systematic enumeration. This
allows the heuristic to be terminated at any point. Also, rather than performingp swaps simultaneously, our
heuristic performs swaps one by one. After each individual swap, we compute the change in distortion. If
the distortion decreases after any one swap, we stop immediately, without completing the full sequence ofp
swaps. This was done so that any improvement that arises from a swap is not undone by a subsequent swap.

One other difference involves the selection of candidate centers. We did not explicitly construct anε-
approximate centroid set as in Matoušek’s algorithm [32]. Since the size of such a set isO(ε−dn log(1/ε)),
storing such a set in higher dimensions is not practical. Instead, we implemented a procedure that is designed
to simulate Matoǔsek’s scheme but samples candidate centers on demand. The original points are stored in
a kd-tree, in which each leaf node contains one data point. Each node of the tree is associated with an axis-
aligned hyper-rectangle, called itscell, which contains all the descendent data points. We generate a node
of the tree at random. If this is a leaf node, we sample the associated point that is stored in this node. If this
is an internal node, we consider the factor-3 expansion of its cell, and sample a point uniformly at random
from this expanded cell. In this way, about half the candidate points are sampled randomly from the data set
(when a leaf node is sampled), and otherwise they are just points in<d.

For purposes of comparison, we also implemented a common variant of Lloyd’s algorithm, callediterated
Lloyd’s. In this heuristic, centers are chosen randomly, and some number of stages of Lloyd’s algorithm
are performed. Recall that each stage consists of computing the neighborhood of each center point, and
then moving each center point to the centroid of its neighborhood. Stages are repeated until the following
convergence condition is satisfied: over three consecutive stages, the average distortion decreases by less
than10%. We call such a sequence of stages arun. After each run, a new random set of centers is generated
and the process is repeated until the total number of stages exceeds a prespecified bound. The centers
producing the best distortion are saved.

Finally, we implemented ahybrid heuristic, which is combination of the swap heuristic with iterated
Lloyd’s algorithm. This heuristic augments the swap step by first applying one step of the swap heuristic
and then follows this with one run of Lloyd’s algorithm, as described in the previous paragraph.

The programs were written in C++, compiled with g++, and run on a Sun Ultra 5 workstation. We
considered the following two synthetic distributions.

ClusGauss: The data consist ofn = 10, 000 points in<3, which were generated from a distribution con-
sisting ofk clusters of roughly equal sizes, with centers uniformly distributed in a cube of side length
2. The points of each cluster are drawn from a multivariate Gaussian distribution centered at the clus-
ter center, where each coordinate has a given standard deviationσ. We consideredk ∈ {25, 50, 100},
andσ = 0.05.

MultiClus: The data consist ofn = 10, 000 points in<3, which were generated from a distribution con-
sisting ofk multivariate Gaussian clusters of various sizes and standard deviations. Again cluster
centers were sampled uniformly from a cube of side length 2. The cluster sizes are powers of 2. The
probability of generating a cluster of size2i is 1/2i. The coordinate standard deviation for a cluster of
sizem is 0.05/

√
m, implying that each cluster has roughly the same total distortion. We considered

k ∈ {50, 100, 500}.

The MultiClus distribution was designed to be a adversary for clustering methods based on simple ran-
dom sampling. Because most of the points belong to a constant number of the clusters, random sampling
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will tend to pick most of the centers from these relatively few clusters.

We also ran experiments on the following data sets taken from standard applications ofk-means in vector
quantization and pattern classification.

Lena22 and Lena44: These were taken from an application in image compression through vector quanti-
zation. The data were generated by partitioning a512× 512 gray-scale Lena image into 65,5362× 2
tiles. Each tile is treated as a point in a 4-dimensional space. Lena44 was generated using4 × 4 tiles,
thus generating 16,384 points in 16-dimensional space. We consideredk ∈ {8, 64, 256}.

Kiss: This is from a color quantization application. 10,000 RGB pixel values were sampled at random from
a color image of a painting “The Kiss” by Gustav Klimt. This resulted in 10,000 points in 3-space.
We consideredk ∈ {8, 64, 256}.

Forest: This data set came from the UCI Knowledge Discovery in Databases Archive. The data set relates
forest cover type for30×30 meter cells, obtained from the US Forest Service. The first 10 dimensions
contain integer quantities, and the remaining 44 are binary values (mostly 0’s). We sampled 10,000
points at random from the entire data set of 581,012 points in dimension 54. We consideredk ∈
{10, 50, 100}.

For all heuristics the initial centers were taken to be a random sample of the point set. For the sake of
consistency, for each run the various heuristics were started with the same set of initial centers. Each time the
set of centers is changed, the distortion is recomputed. The combination of modifying the set of centers and
recomputing distortions is called astage. We measured convergence rates by tracking the lowest distortion
encountered as a function of the number of stages executed. We also computed the average CPU time per
stage. We use the filtering algorithm from [24] for computing distortions for all the heuristics. The results
in each case were averaged over five trials having different random data points (for the synthetic examples)
and different random initial centers. We ran the swap heuristic forp ∈ {1, 2} swaps. Because they lack a
consistent termination condition, all heuristics were run for 500 stages.

5.1 Comparison of Convergence Rates

In order to compare the quality of the clustering produced by the various heuristics, we ran each heuristic
for 500 stages and plotted the best average distortion after each stage. These plots are shown in Fig. 6 for
the ClusGauss, MultiClus and Lena44 data sets.

A number of observations can be made from these plots. After a small number of stages both iterated
Lloyd’s and the hybrid algorithms converged rapidly. However, after this initial start the iterated Lloyd’s
algorithm rarely makes significant gains in distortion. The problem is that this algorithm begins each run
with an entirely new set of random centers, without accounting for which centers were well placed and
which were not. In contrast, the swap heuristics tend to converge very slowly, and even after 500 stages they
do not surpass the progress that the iterated Lloyd’s algorithm makes in its first 10–50 stages. Since these
heuristics do not use Lloyd’s algorithm for descending to a local minimum, their gains occur only through
the relatively slow process of making good random choices. As expected, the hybrid method does best of
all. It has the same rapid initial convergence as with the iterated Lloyd’s algorithm, but through repeated
swaps, it can transition out of local minima. For most of the real data sets, the hybrid method and Lloyd’s
method produce very similar distortions. (This is not surprising, given the popularity of Lloyd’s algorithm
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Fig. 6: Comparison of the average distortions versus number of stages of execution for ClusGauss (k = 50),
MultiClus (k = 100), and Lena44 (k = 256). Note that they-axis is plotted on a log scale and does not start
from 0.
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over many years.) Nonetheless, we observed instances where the hybrid method performs significantly
better than the iterated Lloyd’s algorithm, and we never found it to perform significantly worse. The hybrid
algorithm tends to outperform the iterated Lloyd’s algorithm in instances involving large numbers of well
separated clusters.

Our results comparing the performance on all the data sets is given in Table 1. It shows the best distortions
at stages 50, 100, and 500, and CPU times. To facilitate comparison, single-swap and single-swap hybrid are
given as percentage of increase relative to Lloyd’s. (In particular, lettingL andH denote the performance
quantities for Lloyd’s algorithm and another algorithm respectively, the listed percentage is100(H−L)/L.)
The 2-swap heuristic performed very similarly to single-swap and is not shown here. Again, with respect to
average distortions, the hybrid algorithm never performed significantly worse than the other heuristics, and
sometimes performed significantly better. It is also interesting to observe that the hybrid method’s running
time is generally as good, if not better, than the other heuristics. Execution time will be discussed further in
Section 5.2.

The fundamental question, which we cannot answer, is how good are these heuristics relative to the
optimum. Because we do not know the optimal distortion, we can only compare one algorithm against
another. In the case of the ClusGauss, however, it is possible to estimate the optimal distortion. In dimension
3, withk = 50 andσ = 0.05, the expected squared distance from each generated data point is3σ2 = 0.0075.
After 500 iterations, the hybrid method achieved an average distortion of0.00813, which is about 8.4%
above the expected optimal value (see Fig. 6(a)). The relatively good performance of the hybrid algorithm
relative to the other heuristics suggests that, at least for the relatively sets that we tested, the hybrid heuristic’s
performance is much closer to optimal than our proven approximation bounds would suggest.

5.2 Parametric Analysis of Performance

In order to better understand the performance of the various heuristics as a function of the parameters
involved, we ran a number of experiments in which we varied the sizes of the various quantities. All
experiments involved the ClusGauss distribution, where the number of clusters was adjusted to match the
numberk of centers computed. The parameters we varied included the numbern of data points, the number
k of centers, the dimensiond, and the coordinate standard deviationσ for the Gaussian clusters. In each
case we ran the heuristic for 500 iterations and recorded the running time in CPU seconds and the average
distortion.

When varying the numberk of centers or the dimensiond, we also adjusted the value ofσ, so that
the clusters were similarly well separated. Recall that the cluster centers are uniformly distributed in a
hypercube of side length 2. Intuitively, if we subdivide this hypercube into a grid of subcubes each of
side length(2/k)1/d, the expected number of clusters centers per subcube is exactly 1. Assuming an ideal
situation in which each cluster center is located at the center of each subcube, this would imply an ideal
separation distance of(2/k)1/d between neighboring subcubes. To model this, we generated clusters with
a coordinate standard deviation ofc(2/k)1/d, for some constantc < 1. Of course, some clusters will be
more well separated than others due to random variations in the placement of cluster centers, but we felt that
this adjustment would help better distinguish variations due solely tok andd from variations due to cluster
separation.

One advantage of having moderately well separated clusters is that we can use the cluster variance as a
rough estimate for the optimal distortion. As clusters tend to overlap, the optimum distortion will tend to be
lower, since outlying points generated from one Gaussian cluster may be assigned to a closer center. In our
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Table 1: Summary of Experiments. Absolute values are indicated for Lloyd’s algorithm, and the other values
are given as a percentage of increase (positive) or decrease (negative) relative Lloyd’s algorithm.

DataSet k Method Best Distortion Time/Stage
Size/Dim Stage 50 Stage 100 Stage 500 (CPU sec)

Lloyd’s 0.048834 0.045096 0.041236 0.00989
25 1-swap 80.2% 61.2% 41.3% 10.0%

hybrid 2.3% -0.2% -7.6% -24.8%
ClusGauss Lloyd’s 0.014546 0.013956 0.011758 0.01852
n = 10, 000 50 1-swap 131.6% 92.3% 15.0% -8.0%
d = 3 hybrid 15.7% -6.4% -30.9% -18.7%

Lloyd’s 0.005953 0.005914 0.005868 0.03318
100 1-swap 141.7% 104.2% 22.4% -2.0%

hybrid 6.1% -0.6% -2.9% 1.2%
Lloyd’s 0.036752 0.03633 0.03428 0.02437

50 1-swap 83.6% 49.9% 11.1% -15.1%
hybrid 1.5% -7.7% -16.6% -27.7%

MultiClus Lloyd’s 0.020258 0.01981 0.01839 0.03658
n = 10, 000 100 1-swap 100.5% 68.5% 15.3% -6.9%
d = 3 hybrid 12.7% 6.8% -20.0% -18.5%

Lloyd’s 0.004123 0.00393 0.00372 0.11064
500 1-swap 194.0% 186.7% 102.7% 4.2%

hybrid 4.2% 2.3% -13.3% -6.3%
Lloyd’s 349.28 342.48 339.62 0.07312

8 1-swap 26.6% 21.7% 10.6% 1.7%
hybrid 0.4% 0.2% -0.3% 1.5%

Lena22 Lloyd’s 107.82 107.00 106.32 0.29192
n = 65, 536 64 1-swap 38.8% 32.2% 16.5% -1.0%
d = 4 hybrid -0.2% -1.9% -4.3% -7.6%

Lloyd’s 56.35 56.35 55.54 0.57020
256 1-swap 63.4% 55.9% 33.8% 4.9%

hybrid -3.3% -5.8% -7.8% -8.5%
Lloyd’s 2739.2 2720.0 2713.2 0.20412

8 1-swap 20.2% 11.4% 7.4% 4.6%
hybrid 1.1% 0.7% 0.0% 1.2%

Lena44 Lloyd’s 1158.8 1156.2 1150.4 1.19340
n = 16, 384 64 1-swap 40.9% 34.8% 21.1% -1.4%
d = 16 hybrid -0.9% -1.7% -3.5% -5.7%

Lloyd’s 744.7 742.7 734.2 -3.14580
256 1-swap 60.2% 57.5% 39.3% 7.7%

hybrid -3.5% -5.2% -7.7% 20.3%
Lloyd’s 705.88 703.50 693.56 0.01062

8 1-swap 34.9% 20.5% 9.2% -2.4%
hybrid 5.6% 0.8% -0.4% -2.5%

Kiss Lloyd’s 156.40 153.32 147.44 0.03528
n = 10, 000 64 1-swap 86.6% 62.8% 20.7% 1.0%
d = 3 hybrid 1.9% -1.4% -7.0% -6.2%

Lloyd’s 60.71 60.34 59.13 0.07621
256 1-swap 85.2% 76.4% 34.3% 1.8%

hybrid -0.2% -2.3% -11.0% -7.3%
Lloyd’s 595040 588860 587340 0.13722

10 1-swap 28.9% 26.3% 19.5% -1.4%
hybrid 0.7% 0.8% -0.7% -14.6%

Forest Lloyd’s 202980 199360 198140 0.38842
n = 10, 000 50 1-swap 56.6% 46.4% 26.0% 7.2%
d = 54 hybrid -0.3% -0.4% -3.7% -14.1%

Lloyd’s 138600 137800 136280 0.62256
100 1-swap 62.6% 50.7% 28.0% 11.7%

hybrid -0.9% -2.1% -4.5% -10.5%
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plots in Figs. 7–10 of average distortion, we have shown this variance-based distortion estimate as a broken
line, to give a better sense of the optimum distortion.

As mentioned above, all the heuristics use the same filtering algorithm [24] for computing nearest centers
and distortions. Since this is the dominant component of the running time, we observed that all the heuristics
had very similar running times. The filtering algorithm uses a kd-tree to store the data points and uses a
pruning technique to compute nearest centers and distortions. As a result, its running time is expected to be
sublinear inn andk, assuming that the dimensiond is fixed. See [24] for further analysis of this algorithm.
(In contrast, a brute-force implementation of the nearest center computation would requireO(dkn) time.)
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Fig. 7: CPU time and average distortion versus number of points. (n = 10, 000, k = 50, σ = 0.1, d = 3.)

20 40 60 80 100

Number of Centers

10

20

30

40

50

C
P

U
 T

im
e 

pe
r 

S
ta

ge
 (

m
se

c)

1-Swap
2-Swap
Lloyd’s
Hybrid

CPU Time vs. Number of Centers

20 40 60 80 100

Number of Centers

0

0.05

0.1

0.15

0.2

A
ve

ra
ge

 D
is

to
rt

io
n

1-Swap
2-Swap
Lloyd’s
Hybrid
Variance

Average Distortion vs. Number of Centers

Fig. 8: CPU time and average distortion versus number of centers. (n = 10, 000, σ ≈ k−1/3/2, d = 3.)

Varying data size: In this experiment, the numbern of data points was varied from 1000 to 100,000, fixing
k = 50, d = 3, andσ = 0.1. The results are shown in Fig. 7. As expected, the running times grow
sublinearly withn. The hybrid heuristic and iterated Lloyd’s achieved the best average distortions.

Varying the number of centers: Here the numberk of centers was varied from 5 to 100, while fixing
n = 10, 000 andd = 3. We generatedk Gaussian clusters in each case. As explained above, in
order to guarantee similar cluster separation, we set the standard deviationσ = (1/k)1/3/3 for each
coordinate. The results are shown in Fig. 8. As expected, running times grow sublinearly withk, and,
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Fig. 9: CPU time and average distortion versus cluster standard deviation. (n = 10, 000, k = 50, d = 3.)
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Fig. 10: CPU time and average distortion versus dimension. (n = 10, 000, k = 50, σ ≈ k−1/d/2.)

21



as the number of centers grew, the average distortion decreased. All the heuristics produced similar
average distortions.

Varying cluster standard deviation: Here we varied the standard deviation of the generated clusters from
0.01 (highly separated clusters) to 1 (overlapping clusters). We fixedn = 10, 000, k = 50, andd = 3.
The results are shown in Fig. 9. Running times were seen to increase as the clusters are less well
separated. This effect is anticipated in the analysis of the filtering algorithm given in [24]. When the
clusters are well separated, the hybrid heuristic tends to produce the smallest average distortions. In
the absence of well defined clusters, all the heuristics produced similar distortions.

Varying dimension: The dimension was varied, while fixingn = 10, 000 and k = 50. To maintain
similar cluster separation, we setσ to (1/k)1/d/3. The results are shown in Fig. 10. As with many
algorithms based on hierarchical spatial subdivision, the running time of the filtering algorithm grows
superlinearly with dimension. The curse of dimensionality would suggest that the growth rate should
be exponential in dimension, but these experiments indicate a more modest growth. This is likely
due to boundary effects. This phenomenon was described in [4] in the context of nearest neighbor
searching. The hybrid heuristic and iterated Lloyd’s performed comparably with respect to average
distortion, while the swap heuristics performed considerably worse. This suggests that the importance
of moving to a local minimum grows in significance as dimension increases.

6 Conclusions

We have presented an approximation algorithm fork-means clustering based on local search. The algorithm
achieves a factor9 + ε approximation ratio. We presented an example showing that any approach based on
performing a fixed number of swaps achieves an approximation factor of at least(9 − ε) in all sufficiently
high dimensions. Thus, our approximation factor is almost tight for this class of local search algorithms. We
have also presented empirical evidence that by combining this algorithm with Lloyd’s algorithm (a simple
descent algorithm, which produces a locally minimal solution) the resulting hybrid approach has very good
practical performance.

This work provides further insights intok-means and other geometric clustering problems from both a
practical and theoretical perspective. This work shows that it is possible to provide theoretical performance
guarantees (albeit weak ones) on the performance of simple heuristics. It also shows the practical value
of combining discrete approximation algorithms with continuous approaches that produce locally optimal
solutions.

There are a number of open problems. Our analysis shows that if only single swaps are performed, the
best approximation bound is25 + ε. However, we know of no centroidal configuration in any dimension for
which the algorithm is at a stable configuration and the performance ratio is worse than9− ε. Furthermore,
in our tight example, we assume that the dimension may be chosen as a function of the number of swaps.
This raises the question of whether a tighter analysis might show that an approximation factor better than
25 can be achieved even for single swaps and/or in fixed dimensions. Our analysis makes use of the fact
that the optimal solution is centroidal. By alternating steps of the swap algorithm with Lloyd’s algorithm, it
is possible to assume that the heuristic solution is centroidal as well. Could such an assumption be used to
tighten our analysis? A final important question needed for empirical analysis of the approximation bounds
is how to generate good lower bounds on the optimal distortion.
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