
Performance guarantees for hierarchical

clustering

Sanjoy Dasgupta

Department of Computer Science and Engineering

University of California, San Diego

Philip M. Long

Genome Institute of Singapore

Abstract

We show that for any data set in any metric space, it is possible to construct a
hierarchical clustering with the guarantee that for every k, the induced k-clustering
has cost at most eight times that of the optimal k-clustering. Here the cost of a
clustering is taken to be the maximum radius of its clusters. Our algorithm is sim-
ilar in simplicity and efficiency to popular agglomerative heuristics for hierarchical
clustering, and we show that these heuristics have unbounded approximation fac-
tors.

Key words: Hierarchical clustering, complete linkage, k-center

1 Introduction

A hierarchical clustering of n data points is a recursive partitioning of the
data into 2, 3, 4, . . . and finally n, clusters. Each intermediate clustering is
made more fine-grained by dividing one of its clusters. Figure 1 shows one
possible hierarchical clustering of a five-point data set.

Such hierarchical representations of data have long been a staple of biologists
and social scientists, and since the sixties or seventies they have been a stan-
dard part of the statistician’s toolbox. Their popularity is easy to understand.

Email addresses: dasgupta@cs.ucsd.edu (Sanjoy Dasgupta),
gislongp@nus.edu.sg (Philip M. Long).

Preprint submitted to Elsevier Science 24 July 2010

�
�
�
�

��
��
��
��

����

��
��
��
��

����

3
1-clustering

2-clustering

3-clustering

4-clustering

5-clustering

2

21 5

1 4

43
5

Fig. 1. A hierarchical clustering of five points.

They require no prior specification of the number of clusters, they permit the
data to be understood simultaneously at many levels of granularity, and there
are some simple, greedy heuristics that can be used to construct them.

It is very useful to be able to view data at different levels of detail, but the
requirement that these clusterings be nested within each other presents some
fundamental difficulties. Consider the data set of Figure 2, consisting of six
evenly-spaced collinear points in the Euclidean plane. The most commonly-
used clustering cost functions, such as that of k-means, strive to produce
clusters of small radius or diameter. Under such criteria, the best 2-clustering
(grouping into two clusters) of this data is unambiguous, as is the best 3-
clustering. However, they are hierarchically incompatible. This raises a trou-
bling question: by requiring a hierarchical structure, do we doom ourselves to
intermediate clusterings of poor quality?

To rephrase this more constructively, must there always exist a hierarchical
clustering in which, for every k, the induced k-clustering (grouping into k
clusters) is close to the optimal k-clustering under some reasonable cost func-
tion? As we have already seen, it is quite possible that the optimal cost-based
k-clustering cannot be obtained by merging clusters of the optimal (k + 1)-
clustering. Can they be so far removed that they cannot be reconciled even
approximately into a hierarchical structure? Despite the large body of theo-
retical work on hierarchical clustering (see, for instance, [8] and the references
therein), this fundamental existence question has remained unanswered. We
resolve it via the following reassuring result.

Theorem 1 Take the cost of a clustering to be the largest radius of its clus-
ters. Then, any data set in any metric space has a hierarchical clustering in
which, for each k, the induced k-clustering has cost at most eight times that
of the optimal k-clustering.

Remark A simple modification of our analysis shows that this result also
holds if the cost of a clustering is taken to be the largest diameter of its
clusters.

We present an algorithm for constructing such a hierarchy which is similar in
simplicity and efficiency to standard heuristics for hierarchical clustering. It is

2

�� �� �� �� �� ��

Fig. 2. What is the best hierarchical clustering for this data set?

based upon the farthest-first traversal of a set of points, used by González [7] as
an approximation algorithm for the closely-related k-center problem. His use of
this traversal for clustering is ingenious, and in fact just a cursory examination
of its properties is necessary for his results. For hierarchical clustering, we
examine it in greater detail and need to built upon it. Specifically, the farthest-
first traversal of n data points yields a sequence of “centers” µ1, . . . , µn such
that for any k, the first k of these centers define a k-clustering which is within
a factor two of optimal. However, the n clusterings created in this way are not
hierarchical. Our main contribution is to demonstrate a simple and elegant
way of using the information found by the traversal to create a hierarchical
clustering.

Our algorithm also has a randomized variant with a tighter constant of ap-
proximation.

Theorem 2 In the setting of the previous theorem, there is a randomized
algorithm which produces a hierarchical clustering such that, for each k, the
induced k-clustering has expected cost at most 2e ≈ 5.44 times that of the
optimal k-clustering.

Unlike our algorithm, the most common heuristics for hierarchical clustering
work bottom-up, starting with a separate cluster for each point, and then pro-
gressively merging the two “closest” clusters until only a single cluster remains.
The different schemes are distinguished by their notion of closeness. In single-
linkage clustering, the distance between two clusters is the distance between
their closest pair of points. In complete-linkage clustering, it is the distance
between their farthest pair of points (and thus complete-linkage is explicitly
trying to minimize the diameter, one of our cost functions). Average-linkage
has many variants; in the one we consider, the distance between clusters is
the distance between their means [5].

We analyze the worst-case behavior of these three heuristics, and find that
their approximation ratios are unbounded.

Theorem 3 For any k, single-linkage can produce induced k-clusterings which
are a multiplicative factor k from optimal, while average- and complete-linkage
can be off by a multiplicative factor of log2 k.

The problems of single-linkage clustering are already well understood by statis-
ticians; we give a lower bound on its performance mostly as further intuition
about what different approximation factors mean. On the other hand, our bad

3

cases for the other two heuristics yield insights into their particular failings. To
be fair, the only algorithm which can really be judged in comparison to ours
is complete-linkage, because it attempts to optimize the same cost function.

Since the publication of a preliminary abstract of this paper, we have learned
that earlier work of Charikar, Chekuri, Feder and Motwani [3] uses similar
techniques for a loosely related problem, and achieves the same bounds. These
authors consider an online setting, in which an endless stream of data is ar-
riving, and the goal is to maintain a k-clustering which is at all times within a
constant factor of optimal. At first glance this problem is very different from
ours, because it is focused on a particular value of k rather than optimizing
all k simultaneously. However, the authors limit attention to a certain class of
agglomerative algorithms, and this leads them to use many of the same tech-
niques as ours. Like us, they rely upon a k-center algorithm, albeit a different
one due to Hochbaum and Shmoys [9], and they also use a geometric binning
of distances.

Ours is the first provably good approximation algorithm for hierarchical clus-
tering under a radius-based cost function. We therefore start by reviewing the
literature on approximation algorithms for k-clustering, to convey some sense
of what these approximation factors mean, and what factors one might hope
to achieve.

2 Approximation algorithms for clustering

The most widely-used clustering algorithms – k-means, EM, and the vari-
ous hierarchical agglomerative procedures – have received almost no attention
from theoretical computer scientists. Some exceptions include work by Kearns,
Mansour, and Ng [10], and by Dasgupta and Schulman [4]. On the other hand,
there has been a lot of theoretical work on the k-center and k-median prob-
lems. In each of these, the input consists of points in Euclidean space (or more
generally, in a metric space) as well as a preordained number of clusters k,
and the goal is to find a partition of the points into clusters C1, . . . , Ck, and
also cluster centers µ1, . . . , µk drawn from the metric space, so as to minimize
some cost function which is related to the radius of the clusters.

(1) k-center: Maximum radius of clusters

max
j

max
x∈Cj

d(µj, x)

(2) k-median: Average radius of clusters

∑

j

∑

x∈Cj

d(µj, x)

4

����

����

Fig. 3. The circles represent an optimal 3-clustering; all the data points lie within
them. The dots are centers of a really bad clustering.

Both problems are NP-hard but have simple constant-factor approximation
algorithms. For k-center, a 2-approximation was found by González [7] and
by Hochbaum and Shmoys [9], and this is the best approximation factor pos-
sible [6]. For k-median there have been a series of results, of which the most
recent [1] achieves an approximation ratio of 6 + ǫ, in time nO(1/ǫ).

What does a constant-factor approximation mean for a clustering problem?
Consider the scenario of Figure 3, set in the Euclidean plane. The solid lines
show the real clusters, and the three dots represent the centers of a bad 3-
clustering whose cost (in either measure) exceeds that of the true solution
by a factor of at least ten. This clustering would therefore not be returned
by the approximation algorithms we mentioned. However, EM and k-means
regularly fall into local optima of this kind, and practitioners have to take great
pains to try to avoid them. In this sense, constant-factor approximations avoid
the worst: they are guaranteed to never do too badly. At the same time, the
solutions they return can often use some fine-tuning, and local improvement
procedures like EM might work well for this.

3 An approximation algorithm for hierarchical clustering

3.1 Farthest-first traversal

González [7] uses what might be called a farthest-first traversal of a data set
as an approximation algorithm for the k-center problem, that of finding an
optimal k-clustering under our cost function, maximum cluster radius. The
idea is to pick any data point to start with, then choose the point furthest
from it, then the point furthest from the first two (the distance of a point x
from a set S is the usual min{d(x, y) : y ∈ S}), and so on until k points are

5

Input: n data points with a distance metric d(·, ·).

Pick a point and label it 1.

For i = 2, 3, . . . , n

Find the point furthest from {1, 2, . . . , i− 1} and label it i.
Let π(i) = argminj<id(i, j).
Let Ri = d(i, π(i)).

Fig. 4. Farthest-first traversal of a data set. Take the distance from a point x to a
set S to be d(x, S) = miny∈S d(x, y).

�
�
�
�

����

��

��
��
��
��

��

����

����

��
��
��
��

����

��
��
��
��

R2

R6 2

R3

R5

4

R10

R8

1

R4
R7

5

9R9

3

6

10

7

8

Fig. 5. A farthest-first traversal of ten data points in the plane, under Euclidean
distance. The numbering is completely determined by the choice of point number
one (and by the method of breaking any ties that arise).

obtained. These points are taken as cluster centers and each remaining point is
assigned to the closest center. If the distance function is a metric, the resulting
clustering is within a factor two of optimal. For hierarchical clustering, we will
study the farthest-first traversal in detail, and will build upon it.

Starting with n points in a metric space, number all the points in it using a
farthest-first traversal (Figure 4). For any point i, describe its closest neighbor
among 1, 2, . . . , i− 1 as its parent, π(i). Let Ri be its distance to this parent,

Ri = d(i, π(i)) = d(i, {1, 2, . . . , i− 1}).

Figure 5 shows an example with a toy data set of ten points.

The algorithm of González uses points 1, 2, . . . , k as centers for a k-clustering.
Let Ck be this clustering. We begin by observing that its cost is exactly Rk+1.

Lemma 4 Adopt the convention that R1 = ∞ and Rn+1 = 0.

(1) R1 ≥ R2 ≥ R3 ≥ · · · ≥ Rn.

6

(2) For all k, cost(Ck) = Rk+1.

PROOF. By the manner in which any point i is chosen, for all j > i

Rj = d(j, {1, 2, . . . , j − 1})

≤ d(j, {1, 2, . . . , i− 1})

≤ d(i, {1, 2, . . . , i− 1}) = Ri,

which immediately gives us (1). To see (2), notice that in the k-clustering, the
distance from any point i > k to its closest center is

d(i, {1, 2, . . . , k}) ≤ d(k + 1, {1, 2, . . . , k}) = Rk+1.

To illustrate our notation we repeat here the result of González [7].

Lemma 5 (González) For any k, any k-clustering must have at least one
cluster of diameter ≥ Rk+1. Therefore,

cost(Ck) = Rk+1 ≤ 2 · cost(optimal k-clustering).

PROOF. By construction, the points 1, 2, . . . , k+1 all have distance at least
Rk+1 from each other. Any k-clustering must put two of these points in the
same cluster.

3.2 A first attempt at hierarchical clustering

A farthest-first traversal orders the points so that for any k, the first k points
constitute the centers of a near-optimal k-clustering Ck. Unfortunately, the n
clusterings defined in this manner are not hierarchical. In Figure 5 for instance,
the 2-clustering clearly puts point 6 in the cluster centered at 1, and point 3
in the cluster centered at 2. However, in the 3-clustering points 3 and 6 are
grouped together.

We need a simple scheme for producing a hierarchical clustering starting with
a numbering of the data points and an associated parent function π. The tree
of Figure 5 is suggestive. Initially it consists of one connected component: one
big cluster. Deleting an edge from the tree breaks this into two connected
components, two clusters. Removing another edge will subdivide one of these
two clusters, and so on.

7

��

��
��
��
��

��

��
��
��
��

����

��

����

��
��
��
��

��
��
��
��

��
��
��
��

2

4

1

5

9

3

6

10

7

8

����

��
��
��
��

��

��
��
��
��

����

��

����

��
��
��
��

��
��
��
��

��
��
��
��

2

4

1

5

9

3

6

10

7

8

��
��
��
������

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

2

4

1

5

9

3

6

10

7

8

��
��
��
������

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

2

4

1

5

9

3

6

10

7

8

Fig. 6. A first try at hierarchically clustering the data of Figure 5. The 1-, 2-, 3-,
and 4-clusterings are shown.

Definition A hierarchical clustering {Cρ
1, . . . ,C

ρ
n} based on a mapping ρ:

• Pick any function ρ : {2, . . . , n} → {1, 2, . . . , n} for which ρ(i) < i. This
property is certainly satisfied by parent function π.

• The graph on nodes {1, 2, . . . , n}, with edges {(i, ρ(i)) : 2 ≤ i ≤ n}, is a
tree. Call it T ρ.

• For any k, the k-clustering C
ρ
k is defined as follows.

· Remove the k − 1 edges (2, ρ(2)), . . . , (k, ρ(k)) from T ρ.
· This leaves k connected components.
· Each cluster in C

ρ
k consists of the points in one of these components.

Figure 6 illustrates this for T π. Witness that the clusterings {Cπ
1 ,C

π
2 , . . . ,C

π
n}

are hierarchical.

Lemma 6 Create clusterings Cρ
1, . . . ,C

ρ
n as above. Then

(1) these clusterings are hierarchical, and

(2) for all k, the points 1, 2, . . . , k lie in different clusters of Cρ
k.

8

PROOF. This can be seen inductively. The k-clustering is produced by re-
moving edges (2, ρ(2)) through (k, ρ(k)) from T ρ. The (k + 1)-clustering is
produced by further removing the edge (k + 1, ρ(k + 1)). This last operation
splits the cluster (of Cρ

k) containing k + 1 and ρ(k + 1) into two pieces. One
piece contains ρ(k + 1) ≤ k; the other contains k + 1.

3.3 Levels of granularity

The hierarchical clustering generated by tree T π might be very poor. To get
a sense of what’s lacking, look again at Figure 5. Pick any node k in this tree,
remove the edge (k, π(k)), and consider the connected component containing
k. The nodes in this component are grouped together in the k-clustering. The
immediate neighbors of k are very close to it – at most Rk+1 away, and this
in turn is at most twice the cost of the optimal k-clustering (recall Lemma 5).
But other nodes in this cluster could potentially be much further away.

We will therefore construct an alternative parent function π′ whose tree T π′

has the following property: as you move along any path with increasing node
numbers, the edge lengths are bounded by a geometrically decreasing sequence.
This immediately rules out the bad effect mentioned above, and as a conse-
quence cost(Cπ′

k) ≤ O(1) · cost(Ck).

We will build π′ by viewing the data at certain specific levels of granularity.
Let R = R2; this is some rough measure of the span of the data. If we do not
care about distances smaller than R, the entire data set can be summarized
by the single point {1}. This is our coarsest view, and we will call it L0,
granularity level zero. Suppose we want a little more detail, but we still don’t
care about distances less than R/2. Then the data can be summarized by L0

augmented with L1 = {i : R/2 < Ri ≤ R}. Continuing in this manner, we
construct levels L0, L1, L2, . . . such that every data point is within distance
R/2j of L0 ∪ L1 ∪ · · · ∪ Lj.

Earlier we set the parent of i to be its closest neighbor amongst {1, 2, . . . , i−1}.
We now choose parents from a more restricted set: the closest point at a
lower level of granularity. (Approximating a metric space at geometrically
converging levels of granularity is key to chaining, a proof technique often used
in empirical process theory and machine learning, e.g. [15,11].) This can be
generalized to allow the granularity to be refined by a factor β > 1 possibly
different from 2 between levels, and to start with granularity αR2, for α ∈
[1, β). The resulting hierarchical clustering algorithm is shown in Figure 7,
and its effect on our earlier example in the case β = 2 can be seen in Figure 8.
For the time being, think of α as 1; it will come in handy later.

9

Input: n data points with a distance metric d(·, ·).

Fix constants β > 1 and α ∈ [1, β).

Numbering the points

Number the points by farthest-first traversal (Figure 4).
For i = 2, 3, . . . , n, let Ri = d(i, {1, 2, . . . , i− 1}).
Let R = αR2.

Levels of granularity

Lowest level: L0 = {1}.
For j > 1, Lj = {i : R/βj < Ri ≤ R/βj−1}.

Hierarchical clustering

Parent function: π′(i) = closest point to i at lower level of granularity.
Return the hierarchical clustering corresponding to tree T π′

.

Fig. 7. A hierarchical clustering procedure. The main result uses α = 1, β = 2.

3.4 A performance guarantee

Each data point x is assigned to a particular level of granularity; denote this
level by lev(x). In the notation of the algorithm, we would say x ∈ Llev(x).

Lemma 7 Pick any point x in the data set. For all j, x lies at distance
≤ R/βj from L0 ∪ L1 ∪ · · · ∪ Lj.

PROOF. Let l be the highest-numbered point on level j. Then all points
have distance ≤ Rl+1 from L0 ∪L1 ∪ · · · ∪Lj = {1, 2, . . . , l}, and Rl+1 ≤ R/βj

(since l + 1 6∈ Lj).

Corollary 8 For any data point x,

d(x, π′(x)) ≤
R

βlev(x)−1
.

Lemma 9 Pick any k < n. The k-clustering C
π′

k has cost at most

R

(β − 1)βlev(k+1)−2
≤

β2

β − 1
·Rk+1.

PROOF. We have already seen that the k-clustering puts points 1, 2, . . . , k
in distinct clusters; call these the centers of the clusters. Pick any i > k. To

10

��

��
��
��
��

��

��
��
��
��

����

��

����

��
��
��
��

��
��
��
��

��
��
��
��

2

4

1

5

9

3

6

10

7

8

����

��
��
��
��

��

��
��
��
��

����

��

����

��
��
��
��

��
��
��
��

��
��
��
��

2

4

1

5

9

3

6

10

7

8

��
��
��
������

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

2

4

1

5

9

3

6

10

7

8

��
��
��
������

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

����

��
��
��
��

2

4

1

5

9

3

6

10

7

8

Fig. 8. A continuation of the example of Figure 6. Shown are the 1-, 2-, 3-, and
4-clusterings obtained from the modified parent function π′.

determine which cluster it belongs to, follow the parent links

(i0 = i) → (i1 = π′(i0)) → (i2 = π′(i1)) → · · ·

until some point il ∈ {1, 2, . . . , k} is reached. This sequence i0, i1, . . . , il is
decreasing, and these points belong in the same cluster because they lie in
the same connected component of T π′

when edges (2, π′(2)), . . . , (k, π′(k)) are
removed.

To bound d(i, il) we use the triangle inequality,

d(i, il) ≤ d(i0, i1) + d(i1, i2) + · · ·+ d(il−1, il).

By Corollary 8,

d(i, il) ≤
R

βlev(i0)−1
+

R

βlev(i1)−1
+ · · ·+

R

βlev(il−1)−1
.

11

Each point in the sequence i0, . . . , il lies in a strictly lower level of granularity
than its predecessor, so

d(i, il) ≤
R

βlev(il−1)−1

(

1 +
1

β
+

1

β2
+ · · ·

)

.

Since the path terminated once it reached il ∈ {1, ..., k}, we have il−1 > k,
which implies

d(i, il) ≤
R

(β − 1)βlev(k+1)−2
≤

β2

β − 1
·Rk+1,

since Rk+1 > R/βlev(k+1).

Theorem 1 follows immediately, by setting β = 2 and applying Lemma 5. We
next consider a variant in which α is chosen randomly for a fixed value of β.
This trick has been used in scheduling [13] and, later, in other algorithms, and
we thank Rajeev Motwani for suggesting it to us.

Lemma 10 Choose α
d
= βU [0,1] (that is, pick a real number uniformly at ran-

dom from [0, 1] and then raise β to this power). For all k < n, the induced
k-clustering has expected cost at most β

lnβ
· Rk+1.

PROOF. Suppose k + 1 lies in level l; then R/βl−1 ≥ Rk+1 > R/βl. Write
Rk+1 = R/β((l−1)+ǫ), where ǫ ∈ [0, 1). This ǫ is the fractional part of

logβ
R

Rk+1

= logβ
αR2

Rk+1

= logβ
R2

Rk+1

+ logβ α.

Since logβ α is distributed uniformly over [0, 1), so is ǫ.

By Lemma 9, the k-clustering has cost at most

R

βl−1
·

β

β − 1
=

β1+ǫ

β − 1
· Rk+1.

This has expected value

1
∫

0

β1+ǫ

β − 1
·Rk+1 dǫ =

β

ln β
·Rk+1.

Choosing β = e and applying Lemma 5 then gives an (expected) approxima-
tion factor of 2e ≈ 5.44. Choosing β = 2 gives a factor of about 5.77.

12

(a) ������ �
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
���������

j n− 1j + 1

1− jε

1 2 3 n

(b)
�
�
�
�
��
��
��
��

��
��
��
��

�����������
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

���� ��

n− 11 2 3 nk − 1 k

Fig. 9. (a) Data points on a line. (b) The k-clustering induced by a single-linkage
heuristic.

4 Worst-case performance of standard agglomerative clustering
heuristics

4.1 Single linkage

Single-linkage clustering has a performance ratio of at least k for intermediate
k-clusterings, even in the simple case when the data points lie on a line. This
particular kind of bad behavior is known to statisticians as chaining [8] (not
to be confused with the aforementioned use of the same term in empirical
process theory).

Consider the set of points shown in Figure 9(a). Let the distance between any
two adjacent points j and j + 1 be 1 − jε, for some tiny ε > 0. Then the
intermediate k-clustering found by single linkage is as shown in the bottom
half of the figure. It consists of one large cluster containing n− k + 1 points,
and k − 1 singleton clusters. The diameter of the big cluster can be made
arbitrarily close to n − k by setting ε small enough. On the other hand, the
optimal k-clustering has clusters of diameter at most ⌈n

k
⌉ − 1, for vanishingly

small ε. Therefore the approximation ratio is at least k.

4.2 Average linkage

The average-linkage heuristic can create intermediate k-clusterings of cost
log k times optimal. Fix any k which is a power of two. Our bad example
in this case involves points in (log k)-dimensional space under an L1 metric.
Again we will make use of a tiny constant ε > 0.

• For j = 1, 2, . . . , log k, define

Bj = (1− εj) · {−1,+1} = {−(1− εj),+(1− εj)}.

• Let S = B1×B2× · · ·×Blog k be the set of vertices of a (log k)-dimensional

13

��

��

��

��

��

��

����

����

x2x1x′

1 x′

2

−1−3

x4x′

4 x3 x′

3

1 3

−1

1

Fig. 10. A two-dimensional bad case for average-linkage clustering. The optimal
4-clustering is shown, and has clusters of diameter ≈ 2. Average-linkage will put the
central four points together; these have diameter ≈ 4. By increasing the dimension
to log k, we find that average-linkage can return k-clusterings whose component
clusters have diameter log k times optimal.

cube whose side lengths are just slightly less than two.
• Arbitrarily label the points of S as x1, . . . , xk. Now define points S ′ =
{x′

1, . . . , x
′

k} as follows. For ℓ = 1, 2, . . . , k,
· if xℓ has a positive first coordinate, then let x′

ℓ be identical to xℓ, but with
first coordinate +3 + ℓ · 2ε log k;

· if xℓ has a negative first coordinate, then let x′

ℓ be identical to xℓ, but with
first coordinate −3− ℓ · 2ε log k.

• The data set so far consists of S ∪ S ′, a total of 2k points. Duplicate points
as necessary to get the count up to n. Figure 10 shows this data set for
k = 4.

Lemma 11 For the data set just defined, under the L1 metric,

(1) The distance between any two distinct points of S ′ is at least two.

(2) The distance from any point in S ′ to [−1,+1]log k is more than two.

(3) Any two points in S which disagree on the jth coordinate have distance at
least 2(1− εj) between them.

PROOF. (1) Pick distinct x′

a, x
′

b ∈ S ′. If xa, xb disagree on the first coordinate
then x′

a, x
′

b differ by at least six on the first coordinate. If xa, xb differ on the
jth coordinate, then x′

a, x
′

b differ by at least 2ε log k on the first coordinate,
and by 2(1− εj) on the jth coordinate, giving a total of at least two.

(2) This can be seen by considering the first coordinate alone.

14

The closest pairs of points (once duplicates get merged) are therefore those
pairs in S which disagree only on the last coordinate. The distance between
such pairs is 2(1− ε log k). They get merged, and in this way S is reduced to
just k/2 clusters, with means B1 × B2 × · · · × Blog k−1 × {0}. Continuing in
this way, eventually all the points in S get merged into one cluster centered
at the origin, while the points of S ′ remain untouched. During this phase,
clusters getting merged always have means which are within distance two of
each other, and which lie in [−1,+1]log k.

The k-clustering therefore includes a large cluster containing all of S. The
diameter of the cluster is at least the diameter of S, namely 2 log k− ε log k−
ε log2 k.

There is a better k-clustering: {x1, x
′

1}, {x2, x
′

2}, . . . , {xk, x
′

k}. These clusters
have diameter at most 2 + 2εk log k + ε log k. Letting ε go to zero, we get an
approximation ratio of log k.

4.3 Complete linkage

In our counterexample for complete linkage, the data lie in R × R, and the
distance between two points (x, y) and (x′, y′) is defined as

d((x, y), (x′, y′)) = 1(x 6= x′) + log2(1 + |y − y′|).

It can quickly be confirmed that this is a metric.

Assume k is a power of two for convenience. The data set consists of k clusters
S1, S2, . . . , Sk, each with k points (points can be duplicated to get the total
up to n). Within each cluster, all points have the same y-coordinate, and have
x-coordinates (say) {1, 2, . . . , k} (it doesn’t matter what they are, as long as
they are the same across clusters). Therefore the clusters all have diameter
one. The y-spacing between clusters is shown in Figure 11 for the case k = 4.
The y-distance between Sj and Sj+1 is 1−ε(log2 k−q), where 2q is the largest
power of two dividing j (which might be 20 = 1).

This example is set up so that the k-clustering found by complete linkage will
have clusters which (each) touch every Sj, and which therefore have diameter
log2 k, as ε goes to zero.

15

��

��

��

�
�
�
�

��

��

��

�
�
�
�

����

����

����

��
��
��
��

��

��

��

�
�
�
�

1− 2ε 1− ε 1− 2ε

Fig. 11. A bad case for complete-linkage clustering. The norm here is unusual; see
the definition. The optimal 4-clustering is shown in bold and the 4-clustering found
by complete-linkage is delineated by dots.

5 Practical issues and open questions

5.1 Small values of k

It is often sufficient to guarantee good k-clusterings just for small values of k,
say in the hundreds or so, or in some cases even smaller. Therefore it would
be quite heartening if it turned out that our Ω(log k) lower bound on the
approximation ratio of average- and complete-linkage were actually an upper
bound as well. At present no nontrivial upper bounds are known.

5.2 Other cost functions

We could reasonably have chosen the cost function of k-median (average dis-
tance to nearest cluster center), but picked ours instead because it is easier
from a technical point of view. Plaxton has since obtained similar performance
guarantees for this other cost function [14]. Can the constants in either of these
analyses be improved?

5.3 Efficiency

Can our algorithm, or any of the standard heuristics we have considered, be
implemented in o(n2) time for data sets of size n? Results of Borodin et al. [2]
and Thorup [16] offer some hope here. At the same time, results of Mettu [12]
indicate that at least for the k-median cost function, we cannot hope for a
subquadratic algorithm which guarantees a constant-factor approximation for
all k.

16

5.4 Hill Climbing

Is there a simple procedure for hill climbing the space of hierarchical clusterings
with respect to our cost function? This would be a useful postprocessing step
to improve the quality of the solutions we obtain.

Acknowledgements

The authors thank Rajeev Motwani, Werner Stuetzle, and the anonymous
reviewers for their help.

References

[1] V. Arya, N. Garg, V. Khandekar, V. Pandit, A. Meyerson, and K. Munagala.
Local search heuristics for k-median and facility location problems. Proceedings
of the 33rd ACM Symposium on the Theory of Computing, 2001.

[2] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation
algorithms for clustering problems in high dimensional spaces. Proceedings of

the 31st ACM Symposium on the Theory of Computing, 1999.

[3] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering
and dynamic information retrieval. Proceedings of the 29th ACM Symposium

on the Theory of Computing, 1997.

[4] S. Dasgupta and L. J. Schulman. A two-round variant of em for gaussian
mixtures. Proceedings of the 16th Conference on Uncertainty in Artificial

Intelligence, 2000.

[5] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. Proceedings of the National

Academy of Sciences, 95:14863–14868, 1998.

[6] T. Feder and D. Greene. Optimal algorithms for approximate clustering.
Proceedings of the 20th ACM Symposium on the Theory of Computing, 1988.

[7] T. F. González. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

[8] J. A. Hartigan. Statistical theory in clustering. Journal of Classification, (2):63–
76, 1985.

[9] D. Hochbaum and D. Shmoys. A best possible heuristic for the k-center
problem. Mathematics of Operations Research, 10(2):180–184, 1985.

17

[10] M. J. Kearns, Y. Mansour, and A. Ng. An information-theoretic analysis of hard
and soft assignment methods for clustering. Proceedings of the 13th Conference

on Uncertainty in Artificial Intelligence, 1997.

[11] P. M. Long. The complexity of learning according to two models of a drifting
environment. Machine Learning, 37(3):337–354, 1999.

[12] R. R. Mettu. Approximation Algorithms for NP-Hard Clustering Problems.
PhD thesis, Department of Computer Science, University of Texas at Austin,
August 2002.

[13] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical
Computer Science, 130:17–47, 1994.

[14] G. Plaxton. Approximation algorithms for hierarchical location problems.
Proceedings of the 35th ACM Symposium on the Theory of Computing, 2003.

[15] D. Pollard. Convergence of stochastic processes. Springer, 1984.

[16] M. Thorup. Quick k-median, k-center, and facility location for sparse graphs.
International Colloquium on Automata, Languages, and Programming, 2001.

18

