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Preface 

In the last ten years, there has been an explosive development of clustering techniques 
and an increasing range of applications of these techniques. Yet there are at present 
only three books in English on clustering: the pioneering Numerical Taxonomy by 
Sokal and Sneath, oriented toward biology; Cluster Analysis by Tryon and Bailey, 
oriented toward psychology; and Mathematical Taxonomy by Jardine and Sibson. 
The principal contribution of statisticians has been in the area of discriminant analysis, 
the problem of assigning new observations to known groups. The more difficult, more 
important, and more interesting problem is discovery of the groups in the first place. 
Although modem clustering techniques began development in biological taxonomy, 
they are generally applicable to all types of data. They should be used routinely in 
early descriptions of data, playing the same role for multivaiate data that histograms 
play for univariate data. 

The origin of this book was the generai methodology lecture on clustering, given at 
the invitation of Dr. S. Greenhouse to the December 1970 meeting of the American 
Statistica] Association. The notes for the lecture were used in a seminar series at Yale 
in early 1971 and later for a number of seminars given on behalf of the Institute of 
Advanced Technology, Control Data Corporation, at various places in the United 
States and overseas. These intensive two-day seminars required the preparation of 
more detailed notes describing algorithms, discussing their computational properties, 
and listing small data sets for hand application of the algorithms. After considerable 
evolution, the notes became the basis for the first draft of the book, which was used in 
a course at Yale University in 1973. 

One difficulty of the two-day seminars was describing the various algorithms 
explicitly enough for students to apply them to actual data. A comprehensible but 
unambiguous description is needed before the algorithm can sensibly be discussed or 
applied. The technique eventually developed was the step-by-step description used in 
this book, an amalgamation of verbal description and Fortran notation. These 
descriptions form the skeleton of the book, fleshed out by applications, evaluations, 
and alternative techniques. 

The book could be used as a textbook in a data analysis course that included some 
work on clustering or as a resource book for persons actually planning to do some 
clustering. The chapters are pretty well independent of each other, and therefore the 
one or two chapters containing algorithms of special interest may be read alone. On the 
other hand, the algorithms become increasingly complex as the book proceeds, and it 
is easier to work up to the later chapters via the early chapters. 

vii 



viii 	Preface 

Fortran programs implementing the algorithms described in the chapter are listed 
at the end of each chapter. An attempt has been made to keep these programs machine 
independent, and each program has been run on several different data sets, but my 
deficiencies as a programmer and comment card writer could make the programs 
tricky to use. The ideai user is an experienced Fortran programmer who is willing to 
adapt the programs to his own needs. 

I am indebted to G. E. Dallal, W. Maurer, S. Schwager, and especially D. A. Meeter, 
who discovered many errors in facts and style in the first draft of the book. I am also 
indebted to Mrs. Barbara Amato, who cheerfully typed numerous revisions. 

Aprii 1974 	 JOHN A. HARTIGAN 
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Introduction 

1.1 CLUSTERING 

Table I.1 consists of a number of observations on minor planets. There are a very 
large number of such planets in orbits between Mars and Jupiter. The first minor 
planet is Ceres, discovered in 1801 by Piazzi and Gauss. In a photograph against the 
fixed stars, a minor planet sighting will show as a curved streak from which its orbital 
elements may be computed. Many astronomers see the minor planets as noise obscuring 
the observation of other interesting movements. 

There are about 2000 named minor planets, and many thousands of sightings of 
these and perhaps other planets. An important problem in keeping track of the minor 
planets is deciding which sightings are of the same planet. In particular, if a new planet 
is claimed, it must be checked that the sighting does not agree with any planet already 
named. 

Clustering is the grouping of similar objects. The naming of minor planets and the 
classification of sightings are typical clustering problems. The objects are the sightings. 
Two objects are similar if, considering measurement error, the sightings could 
plausibly be of the same planet. A group is a set of sightings of the same planet. 

It is clear that such classifications occur constantly in thought and speech. Objects 
that differ in insignificant details are given the same name, can be treated the same, 
and can be expected to act the same. For example, a wife notices that the man coming 
in the door differs only in insignificant details from her husband that left in the 
moming, and so she expects him to answer to the same name. 

The word clustering is almost synonymous with classification. In this book it is a 
generai term for formai, planned, purposeful, or scientific dassification. Other 
words that have been used for this purpose are numerical taxonomy, taximetrics, 
taxonorics, morphometrics, botryology, nosology, nosography, and systematics. 
General references are Blackwelder (1966) for animai taxonomy, Sokal and Sneath 
(1963) for the first and most important book in numerical taxonomy, Good (1965) for 
a classification of classification problems, Jardine and Sibson (1971) for a mathe-
matical development, and Cormack (1971) for a recent survey of the literature. 

1.2 EXAMPLES OF CLUSTERING 

Naming is classifying. It is not necessary (or possible) that a naming scheme be best, 
but for effective communication it is necessary that different people give the same 
name to the same objects. The most familiar naming scheme is the taxonomy of 
animals and plants. 

1.2.1 Animala and Planta 
Formai classifications of animals and plants date back to Aristotle, but the modem 
system is essentially that of Linnaeus (1753). Each species belongs to a series of clusters 
of increasing size with a decreasing number of common characteristics. For example, 
man belongs to the primates, the mammals, the amniotes, the vertebrates, the animals. 

1 



2 	Introduction 

Table I.1 Minor Manette 

	

NAmcb 	mac(Dmms) 	INCLINATIONd (DBGRZEB) 	AXIS.  (A.U. ) 

	

1935R7 	 130.916 	 4.659 	 2.2562 

	

19417D 	 132.2 	 4.7 	 2.13 

	

1955QT 	 130.07 	 4.79 	 2.1893 

	

1940TL 	 338.333 	 16.773 	 2.7465 

	

1953101 	 339.625 	 16.067 	 2.7335 

	

1930ST 	 80.804 	 4.622 	 2.1890 

	

19491114 	 80.804 	 4.622 	 2.1906 

	

1929EC 	 115.072 	 2.666 	 3.1676 

	

1948R0 	 89.9 	 2.1 	 3.35 

	

1951AM 	 115.072 	 2.666 	 3.1676 

	

1938DL 	 135.6 	 1.0 
	

2.6 

	

1951AX 	 153.1 	 6.5 
	

2.45 

	

1924TZ 	 59.9 	 5.7 	 2.79 

	

1931DQ 	 69.6 	 4.7 	 2.81 

	

1936AB 	 78.1 	 6.6 	 2.90 

	

1952DA 	 55.144 	 4.542 	 3.0343 

	

i 94 ep3 	 194.6 	 1.8 	 3.0200 

	

1948RII 	 164.1 	 10.0 	 1.93 

	

194131G 	 34.2 	 12.5 	 2.82 

The grouped sightings are some of those tentatively identified as being from the same planet in 
Elements of Minor Planets, University of Cincinnati Observatory (1961). 
° The year of sighting and the initials of the astronomer. 
° The angle, in the piane of the earth's orbit, at which the minor planet crosses the earth's orbit. 
d  The angle between the piane of the earth's orbit and the piane of the planet's orbit. 
• The maximum distance of the minor planet from the sun, divided by the same quantity for the earth. 

This tree, which was originally developed to name objects consistently, was given 
physical significance in the evolutionary theories of Darwin, which state that man, for 
example, has ancestors at the various levels of the tree. Man has an ancestor in common 
with a monkey, a rabbit, a frog, a fish, and a mosquito. If your naming scheme works 
exceptionally well, look for the reason why ! 

The tree is used in storing and disseminating knowledge. For example, vertebrates 
have a backbone, bilateral symmetry, four limbs, a head with two eyes and a mouth, 
a heart with blood circulation, a liver, and other common properties. Once you've 
seen one vertebrate, you've seen them all. It is not necessary to record these properties 
separately for each species. See Borradaile and Potts (1958) for accumulation of 
knowledge about an ant, moving down the tree through Metazoa, Arthropoda, 
Insecta, Pterygota, Endopterygota, Hymenoptera, and Formicoidea. 
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The techniques of tazonomy deserve imitation in other areas. The tree structure is 
now used as a standard clustering structure. The functions of naming objects and of 
storing information cheaply are also generalized to other areas. It is in the construc-
tion of the tree that it becomes difficult to generalize the methods of animal and plant 
taxonomy. New classifications of groups of species are frequently suggested and much 
disputed. The principles of classification, which might sometimes settle the disputes, 
are themselves very underdeveloped. 

Modern clustering owes its development to high-speed computers and to a small 
group of numerical taxonomists. The stroughold of numerical taxonomy is the joumal 
Systematic Zoology. Sokal and Sneath's book (1963) has had a very important seminai 
influence. Since computers will do exactly what they are told, it is necessary to have 
precise definitions of the meaning of a cluster, of the data type, and of the meaning of 
similarity before computers can be useful. The intervention of the computer has thus 
caused extensive development of clustering principles. On the other hand, traditional 
taxonomists suspect that their rich and instinctive knowledge of species in their field 
cannot be reduced in any substantial part to machine-readable form and are wisely 
wary of accepting classifications from the computer. For such a "traditionalist" view, 
see Darlington (1971). For some recent examples of numerical taxonomy, see Dupont 
and Hendrick (1971), Stearn (1971), and Small, Bassett, and Crompton (1971). 

1.2.2 Medicine 

The principal classification problem in medicine is the classification of disease. 
Webster's dictionary defines a disease as an impairment of the normal state of the 
living animal that interrupts or modifies the performance of the vital functions, being 
a response to environmental factors (such as malnutrition, industrial hazards, or 
climate), to specific infective agents (such as worms, bacteria, or viruses), or to in-
herent defects of the organism. Webster's has already classified diseases into three 
types. The World Health Organization produces a Manual of the International 
Statistical Classification of Diseases, Injuries, and Causes of Death (1965). This 
provides a standard nomenclature necessary to compile statistics, especially death 
statistics, comparable across different countries and times. General theories of 
classification of disease or general principles such as the evolutionary principle of 
taxonomy in biology are not known to the author. See Temkin (1970) for some history 
of classifications. As Feinstein (1972) remarks, nosology differs from biological 
taxonomy in being oriented to treatment; it is important to separate diseases that 
require different treatment. 

Numerical techniques have had only a slight impact on the classification of disease, 
perhaps because medicai data and especially medical histories are not easy to as-
similate into the standard data structures that were first developed for biologica] 
taxonomy. In particular, since a disease is an abnormality, it is always important to 
scale observations against normal observations for the patient or for a population, 
as in Goldwyn et al. (1971). The data structure used in the following studies is a matrix 
of measurements on a number of patients for various characteristics relevant to the 
disease. A measure of similarity is usually computed between each pair of patients, 
and groups of similar patients are then constructed. Knusman and Toeller (1972) 
discover three subgroups of diabetes mellitus, using factor analysis. Winkel and 
Tygstrup (1971) identify two distinct subgroups of 400 cirrhosis patients, but leave 
70% of the patients unclassified. Baron and Fraser (1968), in an experimental test of 
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clustering methods on 50 cirrhosis patients measured on 330 characteristics, show that 
the single-linkage algorithm conforms less well to previous diagnoses than the average-
linkage algorithm. Hayhoe et al. (1964) identify four groups in 140 cases of leukemia 
and propose diagnostic criteria to distinguish the four groups. Manning and Watson 
(1966) divide 99 heart patients into three groups agreeing substantially with physicians' 
diagnoses of univalvular lesions, multivalvular lesions, and arteriosclerotic, hyper-
tensive, or pulmonary disease. 

Bouckaert (1971) uses single linkage to select clusters of patients from 85 persons 
presenting a goiter and also to select three syndromes (clusters of symptoms) that 
correspond to the common description of simple goiter, hyperthyroidism, and cancer. 
The usual practice in classification stili foliows the traditional biologica) taxonomists' 
technique of selecting one or two important variables by expert judgement and 
classifying according to these variables, as in Schrek et al (1972), where it is proposed 
to classify lymphocytic leukemia by the cross-sectional area of blood lymphocytes 
and by the percentage of smooth nuclei. 

A particular type of classification within a disease is the identification of stages of 
severity—for example, for renai disease (1971). Various symptoms are grouped by 
expert judgement to make up ordered classes of severity in three categories. Goldwyn 
et al. (1971) use clustering techniques to stage critically ili patients. 

For diseases that are caused by viruses and bacteria, the techniques of numerica' 
taxonomy carry over, and there are many papers using such techniques. For example, 
Goodfellow (1971) measures 241 characters on 281 bacteria, some biochemical, some 
physiological, and some nutritional. He identifies seven groups substantially con-
forming to groups already known. However, the classifications of viruses in Wilner 
(1964) and Wildy (1971) and the classification of bacteria in Prevot (1966) are stili 
based on picking important variables by expert judgement. 

Stark et al. (1962) use clustering techniques to identify abnormal electrocardiograms. 
There are other uses of classification in medicine besides the direct classification of 

disease. Blood group serology is classification of blood, which began with the dis-
covery of the A and B antigens by Landsteiner in 1900 (see, for example, Boorman 
and Dodd (1970)). Numerical techniques, as in Chakraverty (1971), frequently use a 
square data matrix in which the rows are antigens and the columns are the corre-
sponding antibodies. 

Finally, in epidemiology, diseases may be clustered by their pattern of distribution 
in space and time. Burbank (1972) identifies ten clusters of tumors by the pattern of 
death rates over time and over the United States and postulates a common causai 
agent for tumors within the same cluster. 

1.2.3 Psychiatry 

Diseases of the mind are more elusive than diseases of the body, and the classification 
of such diseases is in an uncertain state. There is agreement on the existence of 
paranoia, schizophrenia, and depression (such categories can be seen in Kant's 
classification published in 1790), but clear diagnostic criteria are not available, as 
Katz et al. (eds., 1970) remark. Shakow (1970) reports a study in which, of 134 
patients diagnosed manic depressive at Boston Psychopathic Hospital, 28 % were so 
diagnosed at Boston State Hospital and 10 % were so diagnosed at Worcester State 
Hospital. A characteristic difficulty of classification of mental illness is the subjective, 
subtle, and variable character of the symptoms. 
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Numerical techniques have gained more acceptance in this area than in medicai 
diagnosis. One of the earliest known contributions to clustering, by Zubin (1938a, 
193811 discusses a method of discovcring subgroups of schizophrenic patients. The 
algorithm, which is of course oriented to hand calculation, is not clearly described. 
His schizophrenic group were on the average closer to his norma' group than to them-
selves, which illustrates the variability problem. 

The standard numesical technique collects mental state and historical data on each 
patient. The originai data might be quite voluminous, but they are usually reduced 
by careful selection, by subjective averaging over groups of items, or by factor 
analysis. Some papers such as those of Everitt et al. (1971) and of Paykel (1970) seek 
clusters of patients. Others, such as those of Hautaluoma (1971) and of Lorr et al. 
(1963), seek clusters of symptoms (syndromes). Perhaps a great victory awaits 
clustering in psychiatry. Certainly, the psychiatrists have become hardened to 
numerica! techniques and computerniks by their collaboration in factor analysis with 
psychologists. Certainly, the present classes and diagnostic rules satisfy no one. But 
perhaps the real problem is the vague data, which no amount of clever arithmetic 
will repair. 

1.2.4 Archaeology and Anthropology 

The field worker finds large numbers of objects such as stone tools, funeral objects, 
pieces of pottery, ceremonial statues, or skulls that he would like to divide into groups 
of similar objects, each group produced by the same civilization. Clustering tech-
niques are surveyed in Weiner and Huizinger (eds., 1972) and in Hodson et al. (eds., 
1971). Some recent papers are by Boyce (1969), who studies a number of average-
linkage techniques on 20 skulls, and by Hodson (1969, 1970), who considers a wide 
range of techniques on three interesting data sets—broaches, stone tools, and copper 
tools. 

1.2.5 Phytosociology 

Phytosociology concerns the spatial distribution of plant and animai species. It bears 
the same relation to taxonomy that epidemiology bears to the classification of disease. 
Typical data consist of counts of the number of species in various quadrats. Clustering 
detects similar quadrats as being of the same type of habitat. An article by Whittaker 
(1962) contains a survey of traditional approaches. Lieth and Moore (1970) reorder 
the data matrix so that similar species are close in the new ordering and similar 
quadrats are close. Clark and Evans (1954) suggest a significance test for the random 
distribution of individuals (such as trees) within a region. 

1.2.6 Miscellaneous 

Clustering has been applied in diverse fields. In economics, Fisher (1969) considers 
input–output matrices in which the rows and columns have the same labels, so that 
the clustering of rows and columns must occur simultaneously. In market research, 
Goronzy (1970) clusters firms by various financial and operating characteristics, while 
King (1966) does so by stock price behavior. Frank and Green (1968) review a number 
of interesting applications. In linguistics, Dyen et al. (1967) use the proportion of 
matched words over a list of 196 meanings as a measure of the distance between two 
languages, with the aim of reconstructing an evolutionary tree of languages. Kaiser 
(1966) and Weaver and Hess (1963) consider numerica' methods for establishing 
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legislative districts. Abell (1960) finds clusters of galaxies by searching photographic 
plates of ali high galactic latitudes. He lists 2712 such clusters and demonstrates that 
the clusters are not randomly distributed but exhibit further clustering themselves. 
Psychological applications are less common because of the dominante of factor 
analysis and multidimensional scaling, which are frequently interpreted as classifica-
tions. Miller (1969) has 50 Harvard students divide 48 nouns into categories according 
to similarity of meaning; the nouns are clustered into 5 groups, measuring similarity 
between two nouns by the proportion of students who piace them in the same category. 
Wiley (1967) uses a factor-analysis-like technique on a similar data set. 

1.3 FUNCTIONS OF CLUSTERING 

The principal functions of clustering are to name, to display, to summarize, to pre-
dict, and to require explanation. Thus all objects in the same cluster will be given the 
same name. Objects are displayed, in order that subtle differences may become more 
apparent, by physically adjoining ali objects in the same cluster. Data are summarized 
by referring to properties of clusters rather than to properties of individuai objects. 
If some objects in a cluster have a certain property, other objects in the cluster will be 

Table 1.2 Mammals' Milk 

	

WATER 	PROTEIN 	 FAT 	/AMORE 

BORSE 	 90.1 	 2.6 	 1.0 	 6.9 

DOR10EY 	 90.3 	 1.7 	 1.4 	 6.2 

IIJIE 	 90.0 	 2.0 	 1.8 	 5.5 

gmEL 	 87.7 	 3.5 
	

3.4 
	

4.8 

LIANA 	 86.5. 	 3.9 
	

3.2 
	

5.6 

ZEBRA 	 86.2 	 3.0 
	

4.8 
	

5.3 

SIINEP 	 82.0 	 5.6 	 6.4 	 4.7 

BUFALO 	 82.1 	 5.9 	 7.9 	 4.7 

GUINEA PIG 	 81.9 	 7.4 	 7.2 	 2.7 

FOX 	 81.6 	 6.6 	 5.9 	 4.9 

P/G 	 82.8 	 7.1 	 5.1 	 3.7 

RARBIT 	 71.3 	 12.3 	 13.1 	 1.9 

RAT 	 72.5 	 9.2 	 12.6 	 3.3 

DE ER 	 65.9 	 10.4 	 19.7 	 2.6 

BEAR 	 64.8 	 10.7 	 20.3 	 2.5 

WRAIE 	 64.8 	 11.1 	 21.2 	 1.6 

Selected animals have been clustered by similarity of percentage constituents in milk. 
[From Handbook of Biologica! Data, Spector, ed. (1956), Saunders.] 
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Table 1.3 Mammal's Mi& Summarized 

NUMBER 	WATER 	PROTZIN 	FAT 	IACTOBB 

110Rn-1411E 	3 	90.1 ± 0.2 	2.1 t 0.5 	1.4 t 0.4 	6.2 t 0.7 

CAWEL-ZEBRA 	3 	87.0 t 0.8 	3.5 t 0.5 	4.0 t 0.8 	5.2 t 0.4 

SHEEP -PIO 	5 , 	82.2 t 0.6 	6.5 t 0.9 	6.5 t 1.4 	3.8 t 1.1 

RABBIT-RAT 	2 	71.9 t o.6 	10.8 t 1.6 	12.9 t 0.3 	2.6 t 0.7 

DEER-WHAIE 	3 	65.3 t 0.6 	10.8 t 0.3 	20.5 t 0.8 	2.1 t 0.5 

expected to have the same property. Finally, clear-cut and compelling clusters such as 
clusters of stars or animals require an explanation of their existence and so promote 
the development of theories such as the creation of matter in space or the evolutionary 
theory of Darwin. 

Some data on mammal's milk will be used to illustrate these functions. These data 
are displayed in Table 1.2, where animals with similar proportions of the constituents. 
of milk are sorted into contiguous groups. Names for the groups are given by looking 
for characteristic properties of the groups. For example, the deer-reindeer-whale 
group is a high-fat group, the horse-donkey-mule group is a high-lactose group, and 
the rabbit-rat group is a high-protein group. A summary of the data for five groups 
on four variables appears in Table 1.3. Such a summary makes the data easier to 
understand and to manipulate. For example, it now becomes apparent that water and 
lactose tend to increase together, that protein and fat tend to increase together, and 
that these two groups of properties are inversely related, with high water and lactose 
corresponding to low fat and protein. As for manipulation, the mean water content 
in the original data requires a sum of 16 numbers yielding the mean 80.03. The mean 
water content in the summarized data requires a sum of five numbers yielding the 
mean 80.13. 

Prediction might occur in two ways. First, if a new object is classified into one of 
these groups by some other means, the same values would be predicted for the 
variables. Thus a mouse would be expected to be in the rabbit-rat group and to have a 
protein content of about 10.8 %. Secondly, a new measurement of a similar type 
should exhibit a similar grouping. Thus, if a horse had 1.3 % of a special protein, it 
would be predicted that a donkey also had 1.3 % approximately of that protein. 

The clusters require explanation, especially those clusters which differ quite a bit 
from the accepted mammalian taxonomy. For example, the zebra is classified with 
the camel and llama rather than with the horse by using this data. It may be that the 
classical taxonomy is incorrect, but of course it is supported by much more compelling 
data. It may be that the milk constituents are more dependent on the eating habits 
and local environment than on evolutionary history. Another odd grouping is the 
deer-reindeer-whale group. The high percentage of fat perhaps is necessary for 
resistance to cold. 

1.4 STATISTICS AND DATA ANALYSIS 

Like factor analysis, clustering techniques were first developed in an applied field 
(biological taxonomy) and are rarely accompanied by the expected statistical clothing 
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of significance tests, probability models, loss functions, or optimal procedures. Al-
though clustering techniques have been used (with arguable effect) in many different 
fields, they are not yet an accepted inhabitant of the statistical world. As Hills remarks 
after Cormack (1971), "The topic . . . calls to mind, irresistibly, the once fashionable 
custom of telling fortunes from tea leaves. There is the same rather arbitrary choice 
of raw material, the same passionately argued differences in technique from one teller 
to another, and, above all, the same injunction to judge the success of the teller solely 
by whether he proves to be right." Could statistics itself be described in this way? Do 
fortune tellers passionately argue technique ? The principal difference between tra-
ditional biologica] taxonomy and numerical taxonomy is that techniques in numerical 
taxonomy are sufficiently precisely stated to allow passionate argument. As Gower 
says after Cormack (1971), 

"No doubt much 'numerical taxonomic' work is logically unsound, but it has 
acquainted statisticians with some new problems whose separate identities are only 
now beginning to emerge. If statisticians do not like the formulations and solutions 
proposed, they should do better, rather than denigrate what others have done. 
Taxonomists must find it infuriating that statisticians, having done so little to help 
them, laugh at their efforts. I hope taxonomists who have real and, I think, interesting 
problems find it equally funny that so much statistical work, although logically sound, 
and often mathematically complicated (and surely done for fun), has little or no 
relevance to practical problems." 

Well then, clustering is vulnerable on two fronts; the first, that the classifications 
delivered are not sufficiently compelling to convince the experts, who believe that 
detailed knowledge is more important than fancy manipulation; the second, that the 
techniques themselves are not based on sound probability models and the results are 
poorly evaluated and unstable when evaluated. 

It may be that statistical methods are not appropriate for developing clusters, 
because some classification is often a prerequisite for statistical analyses. For example, 
crime statistics are based on the classification of crimes by police officers and on the 
geographical division of a country into various areas. There is a standard metropolitan 
area for each city to be used routinely in the collection of statistics. The important 
thing about these classifications is that there be clear rules for assigning individuals 
to them, rather than that they be optimal. Demographers worry about the classification 
process, since discovery of a trend is frequently only discovery of a change in classi-
fication practice. The New Haven police were accused in 1973 of classifying crimes 
benevolently to show an improvement in the serious crime rate, which would justify 
receiving a Federal grant. Likewise, the Yale grading system shows a self-congratu-
latory tendency to give students higher and higher grades so that of the four grades 
fail, pass, high pass, and honors, high pass is now a disgrace and pass and fail are 
regarded as extreme and unusual punishment. Thus, without a stable and appro-
priate classification scheme, statistical analyses are in vain. On the other hand, 
clustering techniques require raw data from some initial classification structure also, 
so it is doubtful whether formai techniques are sufficient for organizing the initial 
data gathering structure. Perhaps a mixture of informai and formai classification 
techniques is required. 

Correspondingly, probability judgements depend basically on classifications and 
similarity judgements. The probability that it will rain an hour from now requires 
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identification of "rain" (and rules for when rain occurs) and identification of "an 
hour from now." The numerica] computation of this probability will require looking 
into the past for weather circumstances similar to the present one and counting how 
frequently it rained an hour later than those circumstances. Thus probability judgements 
arise from the principle of analogy that "like effects likely follow from like causes." 

In some areas, such as in clustering of stars or in clustering of animals, the ap-
propriateness of clustering is not in question. What about clustering used as a genera] 
purpose tool for data analysis? For one-dimensional data, the analogous procedure 
is to compute histograms. So one meaning of clustering is the computation of multi-
variate histograms, which may be useful and revealing even if there are no "real" 
clusters. Another humble and primitive use of clustering is the estimation of missing 
values, which may, be more accurately done from the similar values in a cluster than 
from the complete set of data. The summary function of clustering may save much 
computer time in later more sophisticated analyses. 

1.5 TYPES OF DATA 

1.5.1 Similarities 
A cluster is a set of similar objects. The basic data in a clustering problem consist of a 
number of similarity judgements on a set of objects. The clustering operations attempt 
to represent these similarity judgements accurately in terms of standard similarity 
structures such as a partition or a tree. Suppose that there are M objects, 1 S I  S  M. 
The similarity judgements might come in many forms. For example, 

(i) There is a real-valued distance D(I, J) for each I, J. 

(ii) The distance D(I, J) takes only two values O and 1, and D(I, I) = O, 
I S 15 M. Thus each pair of objects is either similar or dissimilar. 

(iii) The distance 	takes only values O and 1, and D(I, J) s  D(I, K) 
D(K, J). In this case, the similarity relation expressed in (ii) is transitive, and the set 
of all objects is partitioned into a number of clusters such that D(I, J) = O if and only 
if I and J are in the same cluster. 

(iv) Triadic similarity judgements of the form "I and J are most similar of the three 
pairs (I, J), (I, K), and (K, J)." 

1.51 Cases by Variables 
The standard data structure in statistics assumes a number of cases (objects, indi-
viduals, items, operational taxonomic units) on each of which a number of variables 
(properties, characters) is measured. This data structure is almost always assumed in 
the book. 

The variables may, in principle, take values in any space, but in practice there are 
five types of variables classified according to arbitrariness of the underlying scale: 

(i) Counts (e.g., the number of eyes on an ant) with no scale arbitrariness. 

(li) Ratio scale (e.g., the volume of water in a cup), which is determined only in 
ratio to a standard volume. 

(iii) Interval scale (e.g., the height of a mountain) which is determined only from 
a standard position (sea level, say) and in terms of a standard unit (feet, say). 
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(iv) Ordinal scale (e.g., socioeconomic status), determined only by an ordered 
classification that may be changed by any monotonic transformation. 

(v) Category scale (e.g., religion), determined by a classification that may be 
changed by any one-to-one transformation. 
A given set of data may be mixed (containing variables of different types), it may be 
heterogeneous (variables of the same type but of different scales, such as temperature, 
rainfall, and corn production), or it may be homogeneous (variables measured on the 
same scale, such as percentage Republican vote for President in various years). There 
are a number of techniques transforming variables of -one type to another or con-
verting all variables to the same scale. 

One special type of data has an identity between cases and variables. An example is 
imports, in dollars, from one country to another or the scores in a football con-
ference where each team plays every other team. A distance matrix (or similarity 
matrix) is of .this type. A standard approach in clustering (for example, Sokal and 
Sneath, 1963 and Sardine and Sibson, 1971) computes a distance matrix on the cases 
and then constructs the clusters from the distance matrix (see Chapter 2). In the 
distance approach, the two questions of the computation of distances from the cases 
by variables matrix and the computation of clusters from the distance matrix are 
separated. This causes a serious dilemma in that variables must be weighted before 
distances can be computed, yet it is desirable to have the weights depend on the 
within-cluster variability. An aesthetic objection to the distance;approach is that the 
distance matrix is just a middle step between the actual data and the final clustering 
structure. It would be better to have algorithms and models that directly connect the 
data and the desired clustering structure. 

Sometimes cases are clustered and sometimes variables are clustered. The tra-
ditional classification schemes in biology explicitly connect clusters of animals and 
clusters of characters; thus vertebrates are animals with backbones, two eyes, bi-
lateral symmetry, four limbs, etc. A number of "two-way" algorithms in this book 
simultaneously produce clusters of cases and clusters of variables without a once-
and-for-all distance calculation. 

1.5.3 Other Data Stractares 
The cases-by-variables structure may be extended by the use of "not applicable" or 
"missing" values to include very generai types of data. There are types of data which 
do not fit easily into this structure. One difficulty is the homology problem, in which 
it is not clear how a variable is to be measured on different objects. For example, the 
wings of a bird correspond to the arms of a man. The wings of a bee do not correspond 
to the wings of a bird, but there are more basic variables, such as the amino acid 
sequences in cytochrome-c molecules, which do correspond between a bird and a bee. 
The homology question makes it clear that the selection of variables and their measure-
ment from object to object requires intimate knowledge of the objects and perhaps a 
preliminary informai classification. 

A second difficulty arises when numerous measurements are applicable if some 
other condition is met. For example, if an insect has wings, the pattern of venation, 
the angle of repose, the relative size of the first and second pairs, whether or not the 
wings hook together in flight, and so on, are all useful measurements. It would be 
desirable to indicate explicitly in the data structure that these measurements are 
applicable only to insects with wings. 
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1.6 CLUSTERING STRUCTURES AND MODEIS 

There are only two clustering structures considered in this book, partitions and trees. 
A cluster is a subset of a set of objects. A partition is a family of clusters which have 
the property that each object lies in just one member of the partition. Algorithms for 
constructing partitions are considered in Chapters 3-7. 

A model for cases-bx-variable data, given a partition of the cases, is that within 
each cluster each variable is constant over cases. This model is made probabilistic by 
allowing cases to deviate randomly from the constant value in each cluster. A par-
tition model for distance data is that all distances between pairs of objects in the same 
cluster are less than distances between pairs of objects in different clusters. 

A tree is a family of clusters, which includes the set of all objects and for which any 
two clusters are disjoint or one includes the other. A partition, with the set of all 
objects added, is a tree. 

A model on a distance matrix, given a tree, requires that the distance be an ultra-
metric. Thus if I, J, K are three objects, D(I, J) max [D(I, K), D(J, K)]. An ultra-
metric uniquely determines a tree for which D(I, .1) D(K, L) whenever the objects 

J lie in the smallest cluster containing K and L. Thus a tree may be constructed 
from a distance matrix by finding the ultrametric closest to the distance matrix in some 
sense (see Chapter 11). 

A weaker model requires that D(I, J) < D(K, L) whenever / and J lie in a cluster 
strictly included in the smallest cluster containing K and L. This is similar to a model 
for triads which requires that / and J are more similar than K if / and J lie in a cluster 
that excludes K. An algorithm using triads is given in Chapter 10. 

A tree model that applies directly on the data matrix requires that each variable be 
constant within clusters of a partition conforming to the tree; the partition is possibly 
different for different variables (see Chapters 14 and 18). 

For clusters of both cases and variables, the basic unit is the block, which is a 
submatrix of the data matrix. The row margin and column margin of this submatrix 
form a case cluster and a column cluster. There are now three trees to consider: the 
tree formed by the case clusters, the tree formed by the row clusters, and the tree 
formed by the blocks themselves. Within a block, a variety of models are available. 
For example, for homogeneous data all values within a block might be assumed equal, 
or nearly so, as in Chapters 14 and 15. Or, for heterogeneous data, it might be assumed 
that the homogeneous model holds for some scaling of the variables to be discovered 
during the course of the algorithm, as in Chapter 16. 

1.7 ALGORITHMS 

All clustering algorithms are procedures for searching through the set of all possible 
clusterings to find one that fits the data reasonably well. Frequently, there is a numerical 
measure of fit which the algorithm attempts to optimize, but many useful algorithms 
do not explicitly optimize a criterion. The algorithms will be classified here by mode 
of search. 

1.7.1 Sorting 
The data are in cases-by-variables form. Each variable takes a small number of 
distinct values. An important variable is chosen somehow, and the objects are par- 
titioned according to the values taken by this variable. Within each of the clusters of 
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the partition, further partitioning takes piace according to further important variables. 
Examples of this type of algorithm are given in Chapters 3, 17, and 18. These al-
gorithms are quick in execution but are unsatisfactory in handling many variables, 
since only a few variables affect the classification. 

1.7.2 Switching 

A number of objects are to be partitioned. An initial partition is given, and new 
partitions are obtained by switching an object from one cluster to another, with the 
algorithm terminating when no further switches improve some criterion. Algorithms 
of this type occur in Chapters 4 and 6. These algorithms are relatively quick in 
execution but suffer from the uncertainty of the initial partition. There is always the 
possibility that a different initial partition might lead to a better final partition. 

1.7.3 Joining 

Initially begin with a number of clusters each consisting of a single object. Find the 
closest pair of clusters and join them together to form a new cluster, continuing this 
step until a single cluster containing all the originai objects is obtained. This type of 
algorithm appears in Chapters 11-13, 15, and 16. These algorithms have gained wide 
acceptance in numerica! taxonomy. The search for closest pairs is rather expensive, 
so that the algorithms are only practicable for moderately large (<1000) numbers of 
objects. There is often an embarrassingly rich overflow of clusters in the output from 
the algorithm, which must be reduced in number, often by ad hoc methods. 

1.7.4 Splitting 

Inversely to joining algorithms, splitting algorithms begin by partitioning the objects 
into severa! clusters and then partitioning each of these clusters into further clusters, 
and so on. Sorting algorithms are a special subset of splitting algorithms. Other 
splitting algorithms occur in Chapters 6 and 14. These algorithms have found less 
acceptance than joining algorithms because it is dilficult to decide on a compelling 
splitting rule. The splitting may also require an expensive search. 

1.7.5 Adding 
A clustering structure (a partition or a tree) already exists, and each object is added 
to it in turn. For example, a typical object is initially selected for each cluster, and 
each object is added to the cluster to whose typical object it is closest. Algorithms of 
this type appear in Chapters 3, 9, and 10. 

1.7.6 Searching 

It sometimes happens that mathematical considerations rule out many possible 
clusterings for a particular criterion, and it becomes feasible to search over the re-
maining clusterings for the optimal one. Such an algorithm appears in Chapter 6. 

1.8 INTERPRETATION AND EVALUATION OF CLUSTERS 

An algorithm has been applied to the data producing these many clusters. Suppose 
that the clusters are subsets of cases for cases-by-variables data. At this point, all that 
is known is that the cases in clusters are similar in some way, and the clustering is not 
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useful until the ways of similarity are made clear. It is therefore important to sum-
marize the behavior of variables within clusters. (These summaries are an intrinsic 
part of the two-way algorithms in Chapters 14-16. Summaries for category variables 
appear in Chapter 13 and for continuous variables in Chapter 18.) 

For continuous variables the summaries might be mean, standard deviation, 
minimum, and maximum for each variable for each cluster. If the clustering structure 
is a partition, an analysis of variance will reveal which variables distinguish well 
between clusters and which distinguish poorly. This information is useful for weighting 
variables in later analyses. More generally a discriminant analysis will reveal which 
combinations of variables distinguish best between clusters. The usual significance 
tests of analysis of variance are not valid because the clusters will have been chosen 
usually to maximize approximately a between-cluster sum of squares. Approximate 
significance tests are known only in very few cases (see Chapters 4 and 11). 

For category variables, agreement of a sing,le variable with a partition is expressed 
by a contingency table in which one margin is the variable and the other margin is the 
partition. The partition is nothing but a category variable itself which is an amalgama-
tion of all the category variables in the data, a category version of the first principal 
component for continuous variables. The measure of agreement should be the pro-
portion of correct predictions from the partition to the variable, under the predicting 
rule that each member of the partition predicts that value of the variable that occurs 
most frequently within it. 

Between two partitions, the above measure of agreement ig undesirable because it 
is asymmetrical. There are many measures of association between category variables 
in Goodman and Kruskal (1959). Suppose that the first variable takes values I , 2, . . . , 
M and the second variable takes values I , 2, . . . , N. Let L(I , denote the number 
of times the first variable takes the value / and the second variable takes the value J. 
Let L(I, O) be the number of times the first variable talces the value /, let L(0, be 
the number of times the second variable takes the value J , and let L(0, O) be the total 
number of observations. One measure of association is the information measure 

{1 / M, 1 J N} L(I, J) log L(1 ,J) 
- {l I M} L(I, O) log L(I, 
- {1 J N} L(0, .1) log L(0, J) 
+ L(0, O) log L(0, O). 

(Here, and throughout the book, 	{1 / M} denotes summation over the 
index / between the values 1 and M.) This is just the log likelihood ratio of the general 
multinomial hypothesis against the hypothesis of independence between variables. 
A measure that is more directly interpretable is the proportion of disagreed similarity 
judgements, 

{1 / M} L(I, 0)2 + {1 J .< N} L(0, J) 
— 21{1 I M, 1 J N} L(I, J)2 

divided by L(0, O) [L(0, O) — l]. 
Between two trees, a similar measure is the proportion of disagreed triads, the pro-

portion of triples J, K in which / is more similar to J than to K according to the 
first tree, but / is more similar to K than to J by the second tree. 

One method of assessing the stability of clusters is to estimate the probability that 
an object belongs to a cluster. In Wiley (1967) and in the mixture model in Chapter 5, 
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these probabilities are components of the model. For category variables amalgamated 
into a partition, each value of a variable has a frequency distribution over clusters. 
For each variable, a case has a frequency distribution over clusters according to the 
value of the variable. For a particular case, the frequency distribution is averaged 
over variables to form an estimated probability distribution that the case belongs to 
various clusters. A similar technique works for trees. 

Clusters will be stable if all variables conform to the same clustering and unstable 
if different sets of variables suggest quite different clusters. This idea of stability may 
be applied directly by repeating the clustering on different sets of variables. The choice 
of sets might be made on prior knowledge; for example, classify insects by mouth 
parts, or by wing venation, or by genitalia, and assess the similarity of the classifica-
tions. In the absence of such knowledge, it is plausible to select variables from the 
originai set so that each variable has, independently, probability 0.5 of appearing in 
the trial set. The selection and clustering are repeated several times, and agreement 
between the various clusterings is assessed. Examination of stability is useful in 
elimination of the many, only slightly different, clusters produced by joining methods. 

1.9 USING THIS BOOK 

Every chapter in the book with the exception of Chapter 2 has the same organization 
around a main algorithm, as follows: 

(i) concept and purpose of algorithm; 

(li) step-by-step description of algorithm; 
(iii) execution of algorithm on a small data set; 
(iv) discussion and evaluation of algorithm and sometimes description of al-

ternative strategies and algorithms; 
(v) suggestions for applying the algorithm, and various exercises, further tech-

niques, and unsolved problems; 
(vi) a discussion of relevant literature; 
(vii) listing of Fortran programs. 
Each chapter is more or less self-contained; one type of user of this book will be 

looking for a particular algorithm for a particular problem and should need to look 
at only two or three chapters. A second type of user will be learning about clustering 
in general, perhaps in a course. The book gets steadily more difficult, but there are 
some ridges in Chapter 4, 5, and 11 that perhaps should best be avoided in the first 
reading. These are starred. This second type of user is strongly urged to apply the 
techniques to his own small data sets and to try some of the problems in the THINGS 
TO DO sections. The difficult and impossible problems are starred. A sequence of 
chapters covering nearly all areas is 1-4, 8, 11,13,15,18. 

REFERENCES 

GENERAL REFERENCES 

BLACKWELDER, R. A. (1966). Taxonomy: A Text and Reference Book, Wiley, 
New York. A survey of classical biological taxonomy. 
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CORMACK, R. M. (1971). "A review of classification." J. Roy. Stat. Soc., A 134, 
321-367. This is a careful and complete survey of the recent literature of classification, 
with reference to over 200 papers. The author is somewhat skeptical about the uses of 
classification, beginning "The availability of computer packages of classification 
techniques has led to the waste of more valuable scientific time than any other 
`statistical' innovation" and ending with a quotation from Johnson: "Anyone who 
is prepared to learn quite a deal of matrix algebra, some classical mathematical 
statistics, some advanced geometry, a little set theory, perhaps a little information 
theory and graph theory, and some computer technique, and who has access to a good 
computer, and who enjoys mathematics . . . will probably find the development of new 
taximetric method much more rewarding, more up-to-date, more 'generai,' and hence 
more prestigious than merely classifying animals or plants or working out their 
phylogenies." Beneath this bitter skin lies sweet flesh. Cormack distinguishes between 
identification or assignment, which allocate an individuai to known classes, and 
classification, which constructs the classes. He considers three types of classification-
hierarchical, partitioning, and clurnping—in which the classes or clumps may overlap. 
There is a brief (and rather unsatisfactory) discussion of the purposes of classification. 
Similarity measures are listed, and the difficult problems of scaling are discussed; in 
particular, if within-cluster measures are used to scale, "there appears to be a cir-
cularity in trying to transform data by properties of the cluster that it is hoped to 
determine." The homology problem is discussed, wherein "it is not clear what 
variable in one entity corresponds to a particular variable in another." 

"There are many intuitive ideas, often conflicting, of what constitutes a cluster, 
but few formai definitions." Sometimes, "the resulting clusters are defined only by 
the algorithm by which they were obtained." He divides algorithms into three types: 
agglomerative (joining dose pairs), divisive (successive splitting), and clustering 
(reallocation of individuals between members of a partition. Another technique is the 
formation of single clusters, each of which is completed before another is initiated. 
The few known comparative and evaluative studies are reported. Measures of dis-
tance between a tree and similarity structure are given. 

Searching for modes is closely related to single linkage. Overlapping clusters are 
discussed, following the Jardine and Sibson generalization of single linkage. A number 
of papers treat entities and variables simultaneously. 

GOOD, I. J. (1965). "Categorization of classification." Mathematics and Computer 
Science in Biology and Medicine, H. M. Stationery Office, London. Many interesting 
remarks on problems in classification. In particular, a method of two-way splitting 
is proposed for a data matrix {A(1, J), 1 5 15 M, I S J S N}, according to row 
vectors {R(/), 1 S  I  S  M} and column vectors {C(./), I S  J  S  N} that take the values 
I I and maximize R(I)C(J)A (1 , J). 

GOODMAN, L. A., and KRUSKAL, W. H. (1959). "Measures of association for 
cross classification II: Further discussion and references." J. Am. Stat. Ass. 54, 
123-163. An earlier paper introduced some measures of association, and some further 
measures are discussed in the first section of this paper. The major part of the paper is 
an extensive and careful survey of the ancient and diverse literature of measures of 
association. 

JARDINE, N., and SIBSON, R. (1971). Mathematical Taxonomy, Wiley, New 
York. The first part of the book develops various measures of dissimilarity. The 
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central measure is based on information theory; t his leads to Mahalanobis' D with 
normal subpopulations. The second part of the book assumes a dissimilarity matrix 
given and regards a cluster method as a function fro m dissimilarity matrices to trees 
(or dendrograms, or equivalently to dissimilarity matrices satisfying the ultrametric 
inequality). The single-linkage method corresponds to a continuous function on the 
space of dissimilarity matrices, whereas the other joining techniques are discontinuous. 
Overlapping clusters are suggested as a generalization of the single-linkage technique, 
which avoids chaining. The book concludes with some remarks on applications, with 
particular attention to problems in biological taxonomy. 
SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical Taxonomy, 
Freeman, London. The book is divided into three parts. The first part is a general 
introduction to numerical taxonomy, including criticism of then current taxonomic 
practices. The second part discusses data preparation including selection of organisms, 
characters, and coding of characters. In this part also, methods of measuring similarity 
are proposed, with particular attention given to category data. There is some dis-
cussion of weighting and sc,aling. 

A technique for shading similarity matrices yields clusters visually. Average- and 
single-linkage algorithms are discussed. 

In the third part of the book, implications of these techniques for developing 
evolutionary connections are considered, and also applications to classification in 
other areas. 

AREA REFERENCES 

Biology 

BORRADAILE, L. A., and POTTS, F. A. (l 958). The Invertebrata: A Manual for 
the Use of Students. Cambridge U. P., London.. 
Metazoa: At least two body layers. The inner layer, the endoderm, contains cells for 
digestion of food. The outer layer, the ectoderm, contains nerve cells, sensors, and 
cells forming a protective sheet. 
Arthropoda: Bilaterally symmetrical, segmented. Paired limbs on the somites, of 
which at least one pair functions as jaws. A chitinous cuticle. A nervous system like 
the Annelida. The coelom in the adult much reduced and replaced as a previsceral 
space by enlargement of the haemocoele. Without true nephridia, but with one or 
more pairs of coclomoducts as gonoducts and often as excretory organs. Without 
cilia. 
Insecta: The body is divided into three distinct regions, the head, thorax, and ab-
domen. The head consists of six segments and there is a single pair of antennae. The 
thorax consists of three segments with three pairs of legs and usually two pairs of 
wings. The abdomen has 11 segments typically and does not possess ambulatory 
appendages. Genital apertures are situated near the anus. 
Pterygota: Young stage born with full complement of adult segments. No abdominal 
locomotory appendages. Simple metamorphosis. Malphigian tubes present. Mouth 
parts free. 
Endopterygota: Wings folded in repose. Holometabolous. Endopterygote. Usually 
with few malphigian tubes. 
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Hymenoptera: Head orthognathous. Mouth parts for biting or fluid feeding. Mandibles. 
First abdominal segment fused to thorax. Four membranous wings, anterior wings 
linked to posterior wings by a groove and hooks. Tarsus pentamerous. Female with 
ovipositor. Numerous malphigian tubes. Legless larva with well-formed head capsule. 
Formicoidea: Social polymorphic insects in which two segments form the abdominal 
petiole. Females have a sting. 
DARLINGTON, P. 	JR. (1971). "Modern taxonomy, reality and usefulness." 
Systematic Zoology 20, 341-364. The ultimate purpose of taxonomy is a classification 
useful in storing and retrieving information. Some numerical taxonomists seem to be 
"slipping off into a kind of scientism which brings an appearance of precision by the 
abandonment of reality." As an example of modern practical taxonomy, Lindroth's 
taxonomy of ground beetles is discussed in detail. 
DUPONT, P. F., and HEN DRICK, L. R. (1971). "Deoxyribonucleic acid base com-
position, and numerical taxonomy of yeasts in the genus trichosporon." J. Gen. 
Microbiol. 66, 349-359. The DNA base was determined for each of 10 species of 
trichosporon, and the species were divided into 4 groups according to the percentage 
of quanine and cytosine in each species. This classification was compared to a "hands-
off" numerical taxonomy of 25 strains of trichosporon, based on 81 charactcristics. 
There was only slight agreement between the two classifications. 
SMALL, E., BASSETT, I. J., and CROMPTON, C. W. (1971). "Pollen phylogeny in 
Clarkia." Taxon 20, 739-749. Electromicroscopy is used to measure 16 charac-
teristics of 42 species of pollen. There are twelve continuous variables measuring 
geometric properties of the trilobed grains and four discrete variables measuring 
presence or absence of patterns, etc. This poses an interesting difficulty in the com-
bination of different types of data. 
STEARN, W. T. (1971). "A survey of the tropical genera Oplonia and Psilanthele 
(Acanthaceae)." Bull. Brit. Museum (Nat. Hist.) Bot. 4, 261-323. Uses numerical 
taxonomy conservatively in a revision of the genera. 

Medicine 

BARON, D. N., and FRASER, P. M. (1968). "Medical applications of taxonomic 
methods." Brit. Med. Bull. 24, 236-240. A number of clustering algorithms were 
tested on 50 patients with liver disease, with 330 characters recorded for each patient. 
In conforming to previous diagnoses of the patients, the single-linkage algorithm 
was less accurate than the average-linkage technique. Weighting characters to give 
more weight to rarely appearing characters also improved conformity to previous 
diagnoses. 
BOORMAN, K. E., and DODD, B. E. (1970). An lntroduction to Blood Group 
Serology, Churchill, London. In 1900, Landsteiner described the agglutination that 
oe,curred when red cells of one individuai were exposed to the action of serum from 
another and so discovered the A, B, O blood group system. The four groups are 
determined by the presence or absence of the antigens A and B in the red blood cells. 
Corresponding to the antigens A, B are antibodies —A, —B which occur in the sera 
of individuals lacking the corresponding antigens. Thus a person of type AB has 
serum containing no antibodies, which is acceptable to all. A person of type O has 
serum containing antibodies —A and —B, acceptable only to another person of 
type O. 
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BOUCKAERT, A. (1971). "Computer diagnosis of goiters: I. Classification and 
differential diagnosis; II. Syndrome recognition and diagnosis; III. Optimal sub-
symptomatologies." J. Chronic Dis. 24, 299-310, 311-.320, 321-327. The single-
linkage and complete-linkage algorithms are applied to a grouping of 85 patients with 
goiters, using 30 symptoms. The complete-linkage algorithm gives results in accord-
ance with conventional nosology. Distance between patients is measured in a number 
of ways; for example, one measure is the proportion of symptoms they have in 
common. 

Symptoms are grouped into symptom classes called syndromes, measuring distance 
between symptoms by correlation. Using single linkage, three syndromes are ob-
tained, which are more or less coincident with the common descriptions of simple 
goiter, hyperthyroidism, and cancer. 
BURBANK, F. (1972). "A sequential space-time cluster analysis of cancer mortality 
in the United States: etiological implications." Amer. J. Epidemiol. 95, 393-417. 
Tumor types are defined in the International Classification of Disease either by celi 
type or by anatomical site. The correlations between death rates in the 50 United 
States are used as a measure of similarity between types. The most highly correlated 
types are amalgamated, until no pair of types have correlation exceeding 0.45. This 
yíelds 10 clusters of tumors which have different patterns of geographical distribution. 
The time trends for different tumor types are also considered. A common causai agent 
is postulated for tumor types with similar geographical distribution and time trend. 
CHAKRAVERTY, P. (1971). "Antigenic relationship between influenza B viruses." 
Bull. World Health Org. 45, 755-766. Single-linkage clustering is used to determine 
whether antigenic groupings could be demonstrated among a wide variety of strains 
of influenza B virus. The data are characteristic immunological data, with a corre-
spondence between the rows (viruses) and columns (antisera). No clearly distinct 
groups were discovered. 
"Criteria for the evaluation of the severity of estabiished renal disease" (1971). Ann. 
Intern. Med. 75, 251-252. The severity of the disease is classified in each of three 
categories: signs and symptoms, renai function impairment, and level of performance. 
The class assigned to each category is the highest class within which the patient falls. 
Signs and Symptoms 

I. No symptoms directly referrable to renal disease plus one or more of (a)-(e) 
(a) fixed proteinuria 
(b) repeatedly abnormal urine 
(c) radiographic abnormality in upper genito-urinary tract 
(d) hypertension 	 . 
(e) biopsy proved parenchymal renai disease 

II. Two or more of 
(a) symptoms referrable to renal disease 
(b) radiographic evidence of osteodystrophy 
(c) stable anemia 
(d) metabolic acidosis 
(e) severe hypertension 

III. Two or more of 
(a) osteodystrophy 
(b) peripheral neuropathy 
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(c) nausea and vomiting 
(d) limited ability to conserve or excrete sodium and water, tending to sodium 

depletion, dehydration, congestive heart failure 
(e) impaired mentation 

IV. Any two or more of 
(a) uremic pericarditis 
(b) uremic bleeding diathesis 
(c) asterixis and impaired mentation 
(d) hypocalcemic tetany 

V. Coma 
Renal Function Impairment 

Glomerular filtration rate (secondarily, on serum creatinine with a different set of 
interv. als) 
(a) normal 
(b) 50-100% 
(c) 20-50 % 
(d) 10-20 % 
(e) 5-10 % 
(f) 0-5 % 

Performance 
What the patient thinks he can do: 
(a) All usual activity 
(b) No strenuous activity 
(c) No usual daily activity 
(d) Severe limitation of usual activity 
(e) Semicoma 

FEINSTEIN, A. R. (1972). "Clinical biostatistics. 13. Homogeneity, taxonomy and 
nosography." Clin. Pharmacol. Ther. 13, 114-129. One of a series of papers on the 
philosophy of classification. Homogeneity of a group must be established before 
statistical techniques are applicable. Measures of similarity must depend on final 
purposes. N osology differs from traditional biological taxonomy because the taxonomy 
of disease must be oriented to diagnosis and treatment. 
GOLDWYN, R. M., FR1EDMAN, H. P., and SIEGEL, J. H. (1971). "Iteration 
and interaction in computer data bank analysis—case study in physiological classi-
fication and assessment of the critically ill." Comp. Biomed. Res. 4, 607-622. In 
assessing the physiological status of critically ill patients, three stages of the septic 
process are identified, each characterized by its own pattern of homeostatic com-
pensation. The principal variables used are the following (measured in logarithms): 

(i) cardiac output/body area, 
(11) mean blood pressure, 

(iii) arterial venous difference in oxygen, 
(iv) heart rate, 
(v) ejection time, and 

(vi) centrai venous pressure. 
A base group of patients not critically ill is used as a background. The Friedman- 
Rubin algorithm is used to maximize trace B/trace W, where B denotes the covariance 
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matrix between groups, and W the covariance matrix within groups. The three groups 
discovered represent stages with markedly different prognosis. Transitions of patients 
between the stages support the ordering of the stages. 
GOODFELLOW, N. (1971). "Numerical taxonomy of some nocardioform bacteria." 
J. Gen. Microbiol. 69, 33-80. There are 283 bacteria and 241 characters, some bio-
chemical, some physiological, and some nutritional. Using two measures of similarity 
and two joining algorithms (the single- and average-linkage methods), seven major 
clusters are detected. These correspond to groupings already known. Many new 
characters are shown to be suitable for identifying bacteria. 
HAYHOE, F. G. .I., QUAGLINO, D., and DOLL, R. (1964). "The cytology and 
cytochemistry of acute leukemias." Medical Research Council Special Report Series 
No. 304, H.M. Stationery Office, London. Single linkage identified four groups in 
140 cases of acute leukemia. Diagnostic criteria are proposed for distinguishing the 
groups. 
KNUSMAN, R., and TOELLER, M. (1972). "Attempt to establish an unbiased 
classification of diabetes mellitus." Diabetologia 8, 53. Using factor analysis, three 
groups are discovered closely related to age. 
MANNING, R. T., and WATSON, L. (1966). "Signs, symptoms, and systematics." 
J. Amer. Med. Assoc. 198, 1180-1188. Clustering techniques were tested on 99 patients 
with heart disease characterized by 129 items. The three clusters obtained agree sub-
stantially with physicians' diagnoses of univalvular lesions, multivalvular lesions, and 
arteriosclerotic, hypertensive, or pulmonary disease. 
Manual of the International Statistical Classification of Diseases, Injuries, and Causes 
of Death (1965). World Health Organization, Geneva, V ols. 1 and 2. "Classification 
is fundamental to the quantitative study of any phenomenon. lt is recognized as the 
basis of all scientific generalization, and is therefore an essential element in statistica' 
methodology . . . There are many who doubt the usefulness of attempts to compile 
statistics of disease, or even causes of death, because of difficulties of classification. 
To these, one can quote Professor Major Greenwood: The scientific purist, who will 
wait for medical statistics until they are nosologically exact, is no wiser than Horace's 
rustic waiting for the river to flow away'." 

There are seventeen principal categories of disease, beginning with "Infective and 
Parasitic Diseases" and ending with the inevitable leftovers, such as "Certain Causes 
of Perinatal Morbidity and Mortality," "Symptoms and III-defined Conditions," and 
"Accidents, Poisonings and Violence." Each disease is represented by a three-digit 
code. All diseases of the same type have the same first two digits. There may be several 
types of diseases in a category. For example, the first category includes the following 
types: Intestinal infectious diseases (00), Tuberculosis (01), Zoonotic bacterial dis-
eases (02), Other bacterial diseases (03), through Other infective and parasitic dis-
eases (13). The type Tuberculosis includes Silicotuberculosis (010), Pulmonary Tuber-
culosis (011), through Late effects of tuberculosis (019). 

The accident category is treated somewhat differently, with a separate code: E908 
is "accident due to cataclysm." 

Finally, there is a fourth digit which further breaks down each of the disease 
categories. For example, Late effects of tuberculosis (019) is divided into Respiratory 
tuberculosis (019.0), Central nervous system (019.1), Genito-Urinary system (019.2), 
Bones and joints (019.3), and Other specified organs (019.9). 
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PREVOT, A. H. (1966). Manual for the Classification and Determination of the 
Anaerobic Bacteria, Lea and Febiger, Philadelphia. Establishes the following classi-
fication scheme: 
Schizomycetes 

Eubacteria (no true branching) 
Non-spore-forming 

spherical 
cylindrical 
spiral 

Spore-forming 
spherical 
cylindric,a1 
spiral 

Actinomycetaceae (tendency to form branches) 
SCHREK, R., KNOSPE, W. H., and DONNELLY, W. (1972). "Classification of 
chronic lymphocytic leukemia by electron microscopy." Fed. Proc. 31, A629. Blood 
lymphocytes from 43 patients with chronic lymphocytic lymphosarcoma cell leukemia 
were examined. The cross-sectional areas were classified A and B. This yields four 
groups: I A, I B, 11 A, II B. Groups I A and I B were mostly lymphocytic, groups 
II A and II B frequently had lymphosarcoma, I A were benign, and II B were 
aggressive. 
STARK, L., OKAJIMA, M., and WHIPPLE, G. M. (1962). "Computer pattern 
recognition techniques: Electrocardiographic diagnosis." Commun. Assoc. Comp. 
Mach. 6, 527-532. An electrocardiogram has three phases, PQ, QRS, ST-T, corre-
sponding to different stages in the electrical excitation of the heart. Abnormal 
patterns are associated with pathological conditions. Techniques are described for 
recognizing abnormal patterns by computation rather than by expert judgement. 
TEMKIN, O. (1970). "The history of classification in the medicai sciences," in Katz, 
M. M., Cole, J. O., and Barton, W. E., eds. Classification in Psychiatry and Psycho-
therapy, National Institutes of Mental Health, Chevy Chase, Md. The Egyptians di-
vided diseases according to anatomical location, and medical practitioners specialized 
accordingly. A number of ancient classification chemes are sketched, the four humors 
of the Greeks, the function-oriented classification of Galen, and Boissier de Sauvage's 
classes-orders-genera scheme in 1790, which parallels Linnaeus' systematics for animals 
and plants. Boissier de Sauvages believed that "species and genera of disease ought 
to be distinguished on a purely factual basis in contrast to causai theories. [A] 
disease was to be defined by the enumeration of symptoms which suffice to recognize 
its genus or species, and to distinguish it from others." 
WILDY, P. (1971). Classification and Nomenclature of Viruses: First Report of the 
International Committee on Nomenclature of Viruses, Karger, New York. Provides a 
classification scheme for recording important data about viruses. The classification 
lies more in identifying types of properties of viruses than in identifying groups of 
viruses. Each virus type is represented by a cryptogram recording 

(i) Type of nucleic acid 
(ii) Strandedness of nucleic acid 
(iii) Molecular weight of nucleic acid 
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(iv) Percentage of nucleic acid in infective particles 
(v) Outline of particle 
(vi) Outline of nucleocapsid 

(vii) Kinds of host infected 
(viii) Kinds of vector 

WILNER, B. I. (1964). A Classification of the Major Groups of Human and Other 
Animai Viruses, Burgess, Minneapolis. Viruses are sorted by five variables, with the 
most important variables used first (see Table 1.4). 

Table 1.4 Classification of Viruses (Wilner, 1964) 

SORTINGVARIADM  

manie Capeidal Envelope 	Tirai 	Acid 	Family 
Acid 	Oymetry 	 Parbicle Lability 
Core 	 Bigia 

WINKEL, P., and TYGSTRUP, N. (1971). "Classification of cirrhosis: the resolu-
tion of data modes and their recovery in an independent material." Comp. Biomed. Res. 
4, 417-426. Sneath's single-linkage method and Wishart's mode-seeking method are 
used to classify 400 patients with cirrhosis. Both methods identified two groups with 
distinct characteristics. Both methods left 70% of the patients unclassified. 

Psychiatry 
EVERITT, B. S., GOURLAY, A. J., and KENDELL, R. E. (1971). Attempt at 
validation of traditional psychiatric syndromes by cluster analysis. Brit. J. Psychiat. 
119, 399-412. "In spite of ali the elegant and complex manipulations to which in-
numerable sets of data have been subjected, the classifications used by psychiatrists 
remain much as they were before the computer was invented." The K-means algorithm 
and a mixture algorithm are applied to two different sets of patients. There are 250 
American patients and 250 British patients on which are measured 45 mental state 
items and 25 history items. These measurements are reduced to 10 factors by principal 
components and factor analysis. The clusters constructed corresponded to standard 
syndromes such as depression, schizophrenia, mania, drug abuse, and depressive 
delusions. 
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HAUTALUOM A , J. (1971). Syndromes, antecedents, and outcomes of psychoses: 
a cluster analytic study. J. Consult. Clin. Psychol. 37, 332-344. "Current psychiatric 
mental illness description and classifications have a questionable status . . .. The 
entities called illnesses have low interjudge reliabilities. Frequently symptoms are un-
classifiable." Clusters of symptoms are discovered empirically on 333 patients and 
validated on two more sets each of 333 patients by checking that symptoms within 
the clusters remained highly correlated. The clusters agree with the Lorr syndromes 
of excitement, hostile belligerence, paranoid projection, grandiose expansiveness, 
perceptual distortions, anxious intropunitiveness, retardation and apathy, dis-
orientation, motor disturbance, and conceptual disorganization. It is noted that 
antecedent symptoms and outcomes of treatment are not highly related to any one 
of the clusters. 
KANT, I. (1964). The classification of mental disorders, Charles T. Sullivan, ed., 
Doylestown Foundation, Doylestown, Pa. is difficult to impose an orderly classifica-
tion on that which is essentially and irreparably disordered. Kant recognizes four 
categories: 

(i) senselessness, the inability to bring one's thoughts into that cohcrence which is 
necessary even for the mere possibility of experience; 

(ii) madness, subjective impressions of a falsely inventive imigination are taken for 
actual perceptions; 

(iii) absurdity, a disturbed capacity for judgement, whereby the mind is given to 
excessive analogies; 

(iv)frenzy, the disorder of a disturbed reason. 
KATZ, M. M., COLE, .1. O., and BARTON, W. E., eds. (1970). The Role and 
lifethodology of Classification in Psychiatry and Psychopathology, National Institutes 
of Mental Health, Chevy Chase, Md. All aspects of classification are considered in 
this confcrence report. As part of the editors' summary (p. 4), "psychoanalysts found 
grave difficulties in assigning patients to specific diagnostic categories and preferred 
to describe the presenting symptoms, while hospital psychiatrists felt that the assigning 
of diagnosis, if carefully done, had real clinical meaning and was a necessary pre-
requisite to good clinical practice. Even at the end, the position was by no means that 
diagnosis in its present form dictated treatment, but that the study of the individual 
case necessary to determine and arrive at a diagnosis brought with it an increase in 
the clarity with which the case was understood, and this study, plus the diagnosis, 
suggested certain directions for treatment and management." 
LORR, M., KLETT, C. J., and McNAIR, D. M. (1963). Syndromes of Psychosis, 
Pergamon, New York. lncludes a comprehensive review ofearlier studies. By clustering 
symptoms, suggests 10 syndromes or clusters of symptoms. 
PAYKEL, E. S. (1970). "Classification of depressed patients—cluster analysis derived 
grouping." Brit. J. Psychiat. 118, 275. There are 165 depressed patients on which are 
measured 29 symptom ratings from a clinical interview, and six historical variables—
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and stress score. These variables are reduced to six principal componcnts. The patients 
are divided into four groups to maximizc det T/det W in the Friedman-Rubin tech-
nique. The four groups are characterized as psychotic, anxious, hostile, and young 
depressive. 
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Swadesh list). A sophisticated probability model is employed in which it is assumed 
that each pair of languages is separated in time by an unknown constant (twice the 
time since divergence from a common ancestor), and each meaning has a different 
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physician is classified as a light or heavy reader of each of 19 medicai journals. 
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MILLER, G. A. (1969). "A psychological method to investigate verbal concepts." 
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measured by the number of times they are sorted into the same pile. If each student 
partitions the nouns consistently with some common tree, this measure of similarity 
corresponds to an ultrametric. The single- and complete-linkage algorithms recovered 
very similar clusters. The complete-linkage method suggests five clusters of nouns, 
living things, nonliving things, quantitative terms, social interaction, and emotions. 
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CHAPTER I 

Profiles 

1.1 1NTRODUCTION 

In the crime data in Table 1.1, the categories of crime (murder, rape, robbery, etc.) 
will be called "variables," and the cities will be "cases." (The values in the table are 
directly comparable within categories.) First analyses consist of single-variable 
summaries such as the minimum, maximum, mean, median, mode, standard 
deviation, and skewness; then come single-variable plots such as histograms and 
norma] plots, and finally, plots of the variables talcen two at a time. 

The profile technique simultaneously plots several variables. It is useful in giving a 
feeling for the numbers without commitment to any mode of analysis. It is especially 
useful, in clustering, in informally suggesting possible clusters of similar cases and 

Table 1.1 City Crime 

MONDO 	RAZ RORIZMY ASSAVIM 193RGIARY LARczrir AUTO THOPT MANSIAUGSTER 

ATIAIMA 	16.5 	24.8 	:06 	il:7 	ni2 	905 	494 

BOSTCRI 	 4.2 	13.3 	122 	90 	982 	669 	954 

CHICAdO 	 11.6 	24.7 	340 	242 	8o8 	6o9 	645 

DAMMI 	 18.1 	34.2 	184 	293 	1668 	901 	602 

DENVER 	 6.9 	41.5 	173 	191 	1534 	1368 	78o 

DETROT2 	 13.0 	35.7 	477 	220 	1566 	1183 	788 

HARITORD 	2.5 	8.8 	68 	io3 	io:7 	724 	468 

BONOIDIU 	 3.6 	:2.7 	42 	28 	1457 	1102 	637 

NOUSTON 	16.8 	26.6 	289 	186 	1509 	787 	697 

KANSAS CITY 	10.8 	43.2 	255 	226 	1494 	955 	765 

IOS Allat728 	9.7 	51.8 	286 	355 	1902 	1386 	862 

NEW ORINATE 	10.3 	39.7 	266 	283 	1056 	1036 	776 

NEW YORK 	9.4 	19.4 	522 	267 	:674 	1392 	848 

PORTIAMO 	 5.0 	23.o 	157 	144 	1530 	1281 	488 

TUCSON 	 5.1 	22.9 	85 	148 	1206 	756 	483 

WASHINGTON 	:2.5 	27.6 	524 	217 	1496 	loo3 	739 

From the United States Statistica' Abstract (1970) per 103,000 population. 

28 
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also clusters of similar variables. It is sometimes necessary, before clustering, to decide 
the weights to be given to the different variables, and profiles may suggest reasonable 
weights. 

Profiles are best described as histograms on each variable, connected between 
variables by identifying cases (usually the case name is ignored in plotting a single 
histogram). As with other plotting techniques, the imprecise objectives of the profiles 
technique make it difficult to give completely explicit instructions for constructing 
profiles. There seems to be an unavoidable subjective element in the scaling and 
positioning of the variables. Three techniques are described: The first is an iterative 
one which demands judgement in rescaling and repositioning the variables; the second 
uses ranks to solve the scaling problem and a measure of complexity of profiles to be 
minimized in ordering the variables; the third uses the first two eigenvectors of the 
data matrix. 

1.2 PROFILES ALGORITHM 

sTEP 1. Choose a symbol for each case, preferably only one or two characters and 
preferably mnemonic so that the case can readily be identified from its symbol. 

siEP 2A. For each variable, plot the cases along a horizontal line, identifying each 
case by its symbol. If a number of cases have identical values, their symbols should be 
placed vertically over this value as in a histogram. 

sin,  2B. The horizontal scale for each variable is initially set so that the minima 
for different variables coincide and the maxima coincide, approximately. 

STEP 2c. The vertical positions of the horizontal scales for each variable are 
assigned so that "similar" variables are in adjacent rows. This may be a subjective 
decision, or more formai measurements of similarity between variables such as 
correlation might be used. 

mi> 3. A prode for each case is drawn by connecting the symbols for the case in 
the various horizontal scales, one for each variable. For many cases, drawing all the 
profiles gives you spaghetti. So just draw a few at a time, with different sets of profiles 
on different copies of the horizontal scales, or draw different sets in different colors. 

STEP 4. Rescale and reposition the variables to make the case profiles smoother. 
For example, minimize the number of crossings of profiles. An important option in 
this step is to reverse a variable, using a negative scale factor. 

STEP 5. Clusters of cases will correspond to profiles of similar appearance, and 
clusters of variables will be positioned closely together. The final scaling of the 
variables might be an appropriate weighting in later distance calculations, and several 
variables positioned dose together might each be down-weighted. Finally, trans-
formations of the variables might be suggested. 

13 PROFILE OF CITY CRIME 

STEP 1. Two symbols will be used for each city, although a single symbol code is 
possible for 16 cases. There are six ambiguities in a first-letter code, but the two-letter 
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code consisting of the first and last letter in each name, except for two-name cities 
where it consists of the first letters in the two names, is unambiguous. 

ATLANTA 	AA 	BOSTON 	BN 
DENVER 	DR 	DETROIT 	DT 
HOUSTON 	HN 	KANSAS CITY KC 
NEW YORK 	NY 	PORTLAND 	PD 
CHICAGO 	CO 	DALLAS 	DS 
HARTFORD 	HD 	HONOLULU 	HU 

	

LOS ANGELES LA 	NEW ORLEANS NO 
TUCSON 	TN 	WASHINGTON WN 

suP 2. The initial scales appear in Table 1.2. A 20-cell histogram is drawn for 
each variable. It is not necessary to agonize at this stage over the scaling or positioning 
of the variables. Grossly rounded minima and maxima are adeguate. The periods 
marking the boundaries of the cells are useful in visually separating the symbols. 

Table 1.2 lanciai Proffies of City Crime 

M/RUM 	01 . .11D.BN.PD1 .DR. .tri.ulco.ww.vr. . i .AA.DS. . i 20 

HIT TN 	 NO RC 	 NN 

RAPE 	 ol . . .11D.BNI . .NY.PD.AMBN. .DS.DT. 1DR.DC, . .LAI 5o 
HU 	TN CO WN 	 NO 

RODBERY 	ol .HU.HD.AA.BN1PD.DS. . . 1KC.M. .CO. I • • • •tel 500 
TN 	DR 	NO TA 	 sy 

lez 

ASSAULT 	o1HU. . 	.RN1 .AA. •WN.DSj DT.CO•NroNO.DS I o •TA. 	i 400 
IfD 	PD 	ICC 

	

TN 	WN 

BURGLART 	01 	• 	• i • • oCO.BNIAA•TN. • .DR1 DT .DS • .IA. 1 2 000 
KD 	 in.r 
NO 	 BN 

KC 
PD 
WN 

LARCENY 	50°1 . .BN.ILD.TN1HN. .AA. .14CI NO.HU. .DT. PD.DR.IA. . 1 5 oo 
CO 	 DS WN 	 Ny 

AUTO THEFT 	ol 	. . 	 .HD.AA 	.DS.00.1,1N.KCIDR.IA. .BN. Il000 

PD 	HU WN DT NY 
NO 

sTEP 3. Profiles are drawn for selected cities (Figure 1.1). It will be seen that there 
is a distinct low-personal-crime group (HD, BN, PD, HU, and TN) and that this 
group is also low, though less distinctly, in property crime. Except for robbery and 
murder, LA is high on most crimes. The cities WN, DT, and NY have a similar 
pattern, moderate except in robbery. 

STEp 4. Burglary needs rescaling to range from 500 to 2000. Auto theft needs 
rescaling to range from 500 to 1000. This will bring the low-crime groups co-
incidence on all variables. A slight increase in smoothness of profiles is obtained by 



.CO. BN 1AA TN. . • DR !DT .DS • • LA. 12000 
HD 	 H 	NY 
NO 	 HN 

KC 
PD 
WN 

Burglary 	01 	• 	• 	• 	• 	I 	• 	• 

HN• •AA• „ KC 'NO. HU. •DT. 
DS 	

PD. DR. LA . . 11500 
7.slY 

• . • HD. AA1 • DS CO • HN. KC 1DR • LA7---• SN• 11000 
.13D 	 HU 	WNI DT NY 
TN 	 NO 

Larceny 5001 	. . BN. H 
CO 

Auto theft 01 	• 	• 	• 

Murder 	01 . . HD.BN. PD 	.DR. .NY. LA 1CO.WN. DT. . 	I .N. DS • . 1 20 

	

\-IU\TN 	 NO KW- -- -...-- ..... --.... -............. ......__ 
Rape 	01 • . .HD.BN 	. .NY. PD. AA I HU. .DS. DT. 	I DR.DC. • ....LA I 50 

	

HU 	 TN COI WN 	 --NO _.... ' ...- -- ..- -- .... 
Robbery 	 PD.DS. . . 	1KC.HNx .CO. 	1 	. • . • DT I 500 

\DR 
	

NO LA "".._ 	
WN 
NY i 

L ASSallit 	O HU• • . • BN 	.AA. .HN. DS 1 DT. CO. NY . NO. DS I i • LA • • I 400 

	

HD 	PD 	 i KC 	 \ 
TN 	 WN 	 ‘ 

\ 

Figure 1.1 Initial profiles of city crime. 

Table 1.3 Rescaled Casse Data 

/OMR BAIE ASSAUIT ROBBERY BORGIARY IARCENY AUTO TEM 

HARTFORD 
	

m 

TUCSON 	- 	• 	- 	- 	- 	- 	- 

BOSTON 	- 	- 	- 	- 	 + 

HONOIULU 	- 	- 

PORTIAND 	- 	. 	- 	- 	. 	+ 	- 

ATIANTA 	+ 	• 	- 	- 	- 	 - 

CHICAGO 	 • 	• 	• 	- 	- 

DENVER 	- 	+ 	• 	- 	• 	+ 	• 

NEW ORIEANS 	 + 	• 	• 	- 

ICANSAS CITY 	 • 	• 	• 	 • 	• 

DALIAS 	+ 	• 	. 	- 	 . 	. 

HOUSTON 	+ 	• 	• 	• 	 - 	. 

DETROIT 	 • 	• 	+ 

WASHINGTON 	 • 	• 	+ 	 • 	• 

NEW TOPI 	• 	 • 	+ 	 + 	. 

1.426 ANGEIES 	. 	+ 	+ 	 + 	+ 	. 

In each crime category, cities are divided into three clusters, low, average, and high 
denoted by 	and 	respectively. (See Table 1.2 for the basis of the clusters.) 

31 
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interchanging robbery and assault, and this is good on outside grounds because 
robbery is both a personal and property crime and should be the border between the 
personal and property variables. 

srEP 5. The histograms for each variable seem to be multimodal (an easy thing to 
be deceived about for a small number of cases). There is a very pronounced low-
personal-crime cluster, which fragments for property crimes. The final scales suggest 
the following weights for variables: murder (50), rape (20), robbery (2), assault (2), 
burglary (1), larceny (1), and auto theft (1). 

It would be worthwhile to cluster cities separately on personal and property crimes 
to check for discordances between the clusterings. 

A complete rescaling of each variable could be effected by measuring high, average, 
or low in each crime category. This procedure is suggested by the three modes ap-
pearing in nearly every category. There is no suggestion that a log transformation 
(almost routine for rate data like this) would be useful. The rescaled data are given 
in Table 1.3. 

1.4 RANK PROFILES ALGORITHM 

Preliminaries. A data matrix {A(I, J), 1 5 I S M, 1 S J s N} is given with M 
cases and N variables. The rank profiles algorithm transforms the values of each 
variable to ranks and in this way solves the scaling problem. (The solution is a 
draconian one, since the multimodality characteristic of well-clustered variables is 
not visible when the variables are transformed to ranks.) The second important 
decision is the positioning of the variables. For a given order of variables, define a 
crossing to take piace if A(I,J)> A(K, J) but A(I, J 1) < A(K, J 1). The 
total number of crossings for all I , K (1 s I < K S  M) and all J (1 S J < N) is a 
measure of complexity of the profiles. [This measure is equivalent to {1 S J < N} 
T(J , J 1), where T(J , J 1) denotes Kendall's rank correlation r between variables 
J and J 1.] The algorithm orders the variables to minimize the total crossings. 
Maurer suggested some parts of this algorithm. 

sui. 1. Define a name for each case I (1 5 I s M). 

STEP 2. To avoid ties, take a very small random number U and add U x l to each 
data value A(I, J). Then define R(K, J), for I S K S M,1,1 S  N, to be the name 
of the case which is greater than exactly K — 1 of A(I, J") (1 S  I s M). 

srEP 3. Define a distance D(J, K) between each pair of variables J, K for 1 S J, 
K S N, to be the number of pairs I, L with I S  I, LM and A(I,J)> A(L,J) 
and A(I, K) < A(L, K). 

STEP 4. The array NR states for each variable which variable is to its right in the 
final order. Initially, NR(J) = 0 (1 S J S N). It is convenient to invent bounding 
variables O and N -F 1 with D(0, J) = D(N 1,J) = O. 

STEP 5. Find variables J(1) and J(2) whose distance is minimum. Set NR(0) = J(1), 
N R[J(1)] = J(2) , N R [J(2)] = N + 1, N R (N + 1) = 0. 
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STEP 6. For each variable / (1 / N) with NR(/) = O and for each variable 
J(0 J N) with NR(J) O, compute E(I, J) = D(I, J) D[I, NR(J)] — 
D[J, NR(J)]. This is the increase in sum of distances due to adding / between J and 
NR(J). The quantities ETI,J) need not all be recomputed after each addition. 

STEP 7. Find J minimizing 	Set NR(/) = NR(J), then set NR(J) = L lf 
any variables / (1 / /V) with NR(I) = O remain, return to Step 6. 

STEP 8. Define K(15 = NR(0), and for each J (2 J N) define K(J) = 
NR[K(J — l)]. Then K(1), K(2), 	, K(N) is the final order of the variables. 

sTEP 9. The transformed array is printed as follows: 

{R[1, K(L)], 1 	L N} 	(first row) 
{R[2, K(L)], 1 L N} 	(second row) 

	

{R[I, K(L)], 1 L N} 	(/th row). 

The rank profiles algorithm, applied to the crime data, is shown in Table 1.4. Note 
that the procedure for ordering variables does not guarantee that the number of 
crossings is minimal. For small numbers of variables (<7) it is feasible to minimize 
exactly by examining all permutations. 

Table 1.4 Rank Profiles of Crirne Data 

MIRDE;R RAPE ROBRERY ASSAUTIP 13(112GLARY IARCENY AUTO TEEPI 

IIMITORD 	ED RD ED ED M 	nu 	co 	co 	M) 111) 

110NODSLU 	EU 	HU 	IlD IED BN BN BR /3N BII 1311 	TI 

nomi 	BN BN BN 13N TN 	RD ED ID) RD HD ED PD 

PORTIAND 	PD 	NY 	AA 	PD 	NO 	TN 	AA 

TUCSON 	Tli 	TN 	BN 13N AA 	AA 	BR 	DS 

DENVER 	DR 	PD 	PD 	TN 	TN 	DS 	HU 

NEW YORK 	NY 	CO 	DR 	EN 	HU 	AA 	CO 

ICS ANGELES IA 	AA 	DS 	DR 	KC 	ICC 	MI 

NEW CELEANS NO 	EN 	KC 	WN 	NN 	WN 	WN 

1CANSAS CITY KC 	NN 	NO 	DT 	M 	NO 	KC 

CHICAGO 	CO 	DS 	LA 	KC 	PD 	III1 	NO 

WASIIINGTON 	WN 	DT 	M 	CO 	DR 	DT 	DR 

DETROIT 	DT 	NO 	CO 	n 	DT 	PD 	DT 

ATIANTA 	AA 	DR 	DT 	NO 	DS 	DR 	IA 

HOUSTON 	HN 	KC 	NY 	DS 	NT 	LA 	NY 

DALLO 	DS 	IA 	WN 	IA 	/A 	NY 	BN EACI 

Boston and Hartford emphasized to show that Bostonians are good, 

except they can't resist an unattended automobile. 



-13(2) + C(2) A(1, 2) = 
D(1) + E(1) F(2) 
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The computer program given for reordering the data values is a slow one for large 
numbers of objects, requiring M(M — 1) comparisons when an efficient sorting 
program talces 0(M log M). The program given should not be used for M > SO. 

1.5 LINEARLY OPTIMAL PROFILES ALGOFtITHM 

Preliminaries. In drawing profiles, the scaling and positioning of the variables 
are determined to make the profiles for all cases as "smooth" as possible. The defini-
tion of "smooth" used in the rank profile technique is the number of crossings of the 
profiles. However, this technique becomes prohibitively expensive for many variables 
(say, more than six) and, since it only orders the variables, does not reveal clusters of 
very similar variables. 

Another definition of smoothness requires that the profiles be as nearly linear as 
possible. Ideally, if A(I, J) denotes the value of the /th case for the Jth variable 
(1 / M, 1 J N), then 

B(J) C(J)A(I , J) = D(I) E(I)F(J). 

Here B(J) and C(J) are the scale parameters for the Jth variable, F(J) is the position 
of the Jth variable, and D(I) and E(1) determine the straight-line profile of the /th 
case (see Figure 1.2). In fitting real data to such a model, it is necessary to define 
thresholds for each variable, proportional to the desired error variance of the observed 
values from the fitted values. An initial estimate of such thresholds is the raw variance 
for eaeh variable. The weighting decision is somewhat subjective; a variable that you 

Variable 1 	Variable 2 

Figure 1.2 Linear profiles. 
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want to have little influence is given a large threshold. In the following, all variables 
will be presumed prestandardized to have equal thresholds. 

The problem is to choose B(J), C(J), F(J), E(I), and D(I) to minimize the sum of 
squared errors, 

[E(I)F(J) + D(1) — B(J)1 
{1 s I S M, 1 S J 5 N}( A(1, J) 

C(J) 

This eigenvector problem is discussed in Section 1.7. The coefficients B(J), C(J), 
F(J), E(I), and D(I) are not uniquely determined by the requirement that they 
minimize the sum of squares. Ignore the profile parameters E(I) and D(I) and con-
centrate on the scale and position parameters B(J), C(J), and F(J). Let 1(J) denote 
the mean of the Jth variable, and let {E1(J)} and {E2(J)} denote the first two eigen-
vectors of the covariance matrix (1/M) {l S I  S  M} [A(I, J) — ir(J)][A(I, —
1(K)]. Then 

B(J) 
—1(J), 

C(J) 

F(J) 
E2(J), 

C(J) 

is a solution of the "linearly optimal" fitting problem. 
Thus the variables are shifted to have mean zero, and the values for the Jth variable 

are divided by E I (J), the coefficient of the Jth variable in the first eigenvector. The Jth 
variable is positioned at E2(J)1E1(.1). This technique is useful in providing precise 
scaling and positioning instructions, but the linearity of the model implies that the 
data can be represented in two dimensiona, which is a rare occurrence. Of course, 
using the first two eigenvectors, both cases and variables may be represented on the 
piane, the variables by plotting EI(J) and E2(J) and the cases by plotting the corre-
sponding eigenvectors A (I , J)E1(J) and A (I , J)E2(J). The "linearly optimal" 
profile technique is a new way of using the first two eigenvectors, in which the variables 
and cases are represented by lines rather than points. It is possible to represent the 
data values exactly in this new technique. 

srEP 1. Prestandardize variables so that an error of size I is equivalent across all 
variables. 

STEP 2. Compute the covariance matrix S, 

S(J, K) = 	(1 S  I  S  M}[A(1, .1) — i(J)][A(I, K) — i(K)}, 

where 

1(.1) = 1{1 S  I S M} 21( 	. 

Let {E1 (J), 1 S  J  S  N} be the first eigenvector of S, that solution to the equations 

{1 S K S  N} S(J, K)E1(K) --= CE1 (J) 	(1 S  J S IV), 

which maximizes C. Let {E2(J), 1 5  J  S  N} be the second eigenvector of S. 

C(J) 
1 

= E1(J) 
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STEP 3. Replace A(I, J) by [A(I, J) — i(J)11E1(J). Position the variable J at 
E2(J)IE1(J). 

STEP 4. The fitted profile, for the /th case, is the line 

y = F1(1) F2(I) 

where 
Fl (/) = o J N} A(I, J)E1 wa {i J N} El(J)2)-1, 

and 

F2(I) a {i J N} A(I, J)E2(J))(1 {1 J N} E2(J)2)-1. 

Thus the fitted value of the ith case and the Jth variable is Fl (/) F2(I)E2(J)IE1(J) 
since the Jth variable is in position E2(.01E1(J). 

1.6 LINEARLY OPTIMAL PROFILES OF CRIME DATA 

In Table 1.5, scale and position parameters are computed with thresholds equal to 
variances. Standardization then requires that the eigenvectors be computed on the 
correlation matrix of the variables. The scale for the Jth variable transforms A(I, J)to 
[A(I, J) — A(J)]1 S D(J)E1(J) and the position is E2(J)IE1(J), where A-9) and SD(J) 
are the mean and standard deviation of the Jth variable. The corresponding case 
eigenvectors Fl (/) and F2(I) determine the line y F1(1) F2(I) x, which corre-
sponds to the /th case; see Table 1.6. 

Profiles based on these eigenvectors are given in Table 1.7. The corresponding point 
representation based on the first two eigenvectors is given in Figure 1.3. The scales 
are not much different from those guessed at crudely from the minima and maxima. 

Table 1.5 Scale and Position Based on Eigenvectors 

VARIABIE 	MEAN 	SD 	1ST EIGENV 2ND EMERY 	SCA113 	FOSIT/ON 

MURDER 	lo 	5 	. 28 	 . 61 	(X-10)/1.4 	2.2 

RAPE 	 28 	12 	.44 	 .06 	(X-28)/5.2 	0.1 

Rosami. 	244 	150 	.38 	 .19 	(X-244)/57 	0.5 

ASSAULT 	196 	8o 	.46 	 .27 	(x-196)/37 	o. 6 

BURGLART 	1378 	3 o o 	. 39 	 -.4o 	(X-1378)/117 	-1. o 

IARCENY 	1004 	250 	. 35 	-. 59 	(X-1004)/87 	-i . 7 

miro TIIEFT 	689 	1 50 	„ 31 	 ■ .12 	(X.489)/46 	- . 4 

Note: The scale divisor is the product of the standard deviation and the 

first eigenvector. The position is the 2nd eigenvector divided by the 

first. 

Thresholds are raw variances; the eigenvectors therefore are computed from the 
correlation matrix. 



Table 1.6 Case Eigenvectors Detennining Profiles 

	

CASE 	P i 	F2 	 CASE 	 Ft 	Y2 

ATLANTA 	.-1.2 	1.2 	 HOUSTON 	 o. 3 	1.2 

BOSTOW 	-.2.2 	-o. 2 	 ICANSAS CITY 	1.1 	0.2 

CH/CAGO 	-0.9 	2.2 	 LOS ANGELES 	3. 5 	-1.0 

DALIAS 	1.2 	1.3 	 NEW ORLEANS 	o. 8 	o.7 

DENVER 	',o 	-i. 5 	 NEW YORK 	 2.0 	-0.9 

DETROIT 	i. 9 	0.1 	 PORTIAND 	-o.8 	-1.6 

HARTFORD 	-3.5 	- .2 	 TUCSON 	 -2.1 	.•0.0 

IWWOLULII 	-.2.3 	-2.0 	 WASHINGTCIN 	1.2 	o. 6 

The intercept is the first eigenvector, the slope is the second; the profile for the /th 

	

case is § 	F2(I)x. 

Table 1.7 Profiles Using Eigenvectors 
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Positions and scales of variables determined by the first two eigenvectors of the 
correlation matrix. To avoid overwhelming you with a welter of symbols, only Dallas 
is recorded throughout. 
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Cases 
	

Variables 
+1 

4 —1 
First eigenvector 

Icriminality1 

Figure 1.3 Cases and variables as points, using first two eigenvectors. 

The positions of the variables are interesting; murder is separated from all other 
variables, assault and robbery are quite close. Possibly the crimes are ordered by 
increasing severity? All personal crimes are together, and all property crimes are 
together. 

1.7 THINGS TO DO 

1.7.1 Eigenvalues 

The data matrix A(I, J)is to be approximated by a sum 	K L} R(I, K)C(J, K). 
If the sum of squared residuals 

{1 / M, 1 J N} (A(I, .1) — R(I, K)C(J, K))2 

is minimized, then R(.1, K) and C(J , K) satisfy the equations 
{1 / M} R(I , K)A(I , = C(J , K)1 {1 I M} R2(I, K) 

and 
(l J N} C(J , K)A(I , J) = R(I, K)1 {1 J N} C2(J , K). 

The eigenvalues E(K) = 	R2(I, K)1C2(J, K)P12 (1 K L) are unique up to a 
permutation. If E(K) differs from other eigenvalues, eigenvectors {R(I, K), 1 I M} 
and {C(J , K), 1 J N} are unique up to a scale factor. Two row eigenvectors 
{R(I, K)} and {R(I, KK)} with E(K) E(KK) are orthogonal with {1 / 
R(I, K)R(I, KK) = O, and similarly for two column eigenvectors. Now let L = 
min (M, N). Even if some two eigenvalues are equal, it is possible to write 

A = R D C' , 
JUN MxL LxL LxN 

where R and C have orthogonal columns and D is a diagonal matrix. The eigen-
values of A are the diagonal elements of D. The row eigenvectors R are also eigen-
vectors of AA', and the column eigenvectors C are also eigenvectors of A' A. 

For L = 2, the eigenvalues E(1) and E(2) are the two largest eigenvalues of A. The 
fitted-data matrix {R(I ,1)C(J , 1) + R(I,2)C(J , 2)} may be regarded as M vectors 
of dimension N, the vectors R(I , 1)(C(J , 1), 1 J N} + R(I,2){C(J , 2), 

4 

ta 

a 

e 
à 

T 

—4 
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1 S  J  S  N}. These vectors lie in the piane spanned by {C(J, 1), 1 5 J S N} and 
{C(J, 2), 1 S J S  N}. Regarding the data as M points in N-dimensional space, this 
piane is closest to the data. 

The M fitted points on the piane are obtained by orthogonal projection of 
the observed points onto the piane. Setting 	{1 S J S N} C(J, 1)2  = 1 and 

{1 S  J  S N} C2 (J, 2) = 1, these points are (after a rotation) the points 
{[R(I, 1), R(I, 2)], 1 5 I s M}. The orientation of the piane in N-dimensionai space 
is best seen by projecting the vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1), 
corresponding to the axes, onto the piane. The ends of these projected axes are the 
points {C(J, 1), C(J, 2), 1 S J 5 N}. Thus plotting the two eigenvectors for each 
row and each column gives a view of the data from an angle where they most appear 
to lie in a piane (equivalently, they appear to have the largest covariance matrix from 
this angle). The distribution of points is determined by the row eigenvectors; the angle 
of view, by the column eigenvectors. 

It is usually desirable to remove column means, so that the best fitting piane is not 
required to pass through zero but through the mean point. If the columns are measured 
on different scales, they should be rescaled to have variance one or to reflect a desired 
weighting. It is sometimes sensible with many variables, ali measuring the same thing, 
to remove a row mean also. 

1.7.2 Linea 

This technique is the transpose of the profiles method. A horizontal line is drawn for 
each case. An upper and lower value is given for each variable, corresponding to the 
ends of the line. For each case, variables are plotted on the line according to their 
values for the case. A different symbol is used for each variable. The positioning of 
the cases now becomes important. Similar optimality criteria to those used in "linearly 
optimal profiles" might determine the positioning of the cases. 

1.7.3 Bilines 

In the profiles and lines methods, first the variables are represented as parallel lines 
with the cases as generai lines, the cases are then represented as parallel lines with the 
variables as generai lines. Obviously, both cases and variables might be generai lines 
laid down on a piane. Two marks are set on each variable line. The value of a case is 
then determined by the intersection with a case line, relative to these marks. Theoretical 
and computational aspects need work. 

1.7.4 Faces 

Each case is a face and the variables are features such as mouth, nose, eye position, 
and eye width. Extreme values of variables are assigned to extreme values of features. 
This technique was invented by Chernoff [1973]. 

1.7.5 Boxes 

If three variables are measured on each case, the case may be represented by a box 
whose three sides correspond to the three variables. This is a blander version of 
"faces" that is easy to implement on a printer using the symbols l, —, and /. For 
more than three variables, divide the variables into three similar sets and assign each 
set of variables to a side of the box. The visus) effect is of a box with strings wrapped 
around it parallel to the edges. 



40 	ProMes 

1.7.6 Block Histovams 

A block histogram may be computed in two (or more) dimensions by finding the 
smallest rectangular block that contains (say) 20 points, then the smallest rectangular 
block that contains 20 of the remaining points (discounting area included in the first 
block), and so on. 

REFERENCES 

CHERNOFF, H. (1973). Using Faces to Represent Points in k-Dimensional Space 
Graphically. J. Am. Stat. Ass. 68, 361-368. Six measurements of the dimensions of 
88 fossil specimens of the Nummulitidae shellfish group were represented by the 
width and height of a face, the eccentricity of the upper face, the vertical position and 
curvature of the month, and the size of the eyes. One face is given for each specimen. 
A compelling clustering of the 88 specimens into 3 distinct groups is then possible 
by visual sorting of the drawn faces. 
TRYON, R. C., and BAILEY, D. C. (1970). Cluster Analysis, McGraw-Hill, New 
York. In this book there is a technique of representing correlations between variables 
by profiles, with one profile giving the correlations between a single variable and all 
other variables. Variables are permuted to smooth the profiles, and similar profiles 
signal clusters of variables. 

PROGRAMS 

IN 	reads a data matrix, with row and column labels. The data format is 
specified by the user. 

OUT 	prints data matrix with row and column labels. 
PROF 	draws profiles, given positions and scales for the variables. 
RANK 	prints row labels in the order of each variable, one column of labels for 

each variable. 
LINE 	represents each case by symbols distributed over an interval, one symbol 

for each variable. 
PLOT 	plots several pairs of variables on the same page. 
EIGEN computes first two row and column eigenvectors of a matrix using a 

crude but quick iterative method. 
HIST 	computes and prints univariate histograms. 
KC 	discretizes a value, used in plotting. 
RANGE finds minimum and maximum of vector. 
PMANY draws many pairwise plots on the same page. 
TABL 	computes contingency table between two variables. 
MODAL finds blocks of minimum area containing given number of points. 
PLACE used by MODAL for identifying blocks already removed. 
DENSITY used by MODAL to evaluate a given rectangular block. 
BDRAW draws bivariate block histograms. 
TRY1 	finds best set of multivariate blocks, changing one at a time. 
PICK 	changes a given side of a given block. 
LOB 	computes log likelihood for a given set of blocks. 
MHIST 	represents multivariate block histogram. 
LBOX 	draws vertical, horizontal, or sloped line in constructing boxes. 
BOXES represents each case as a box, with several variables assigned to each 

side of the box. 



SUBROUTINE IN(ApMeN1 
C•• • . 	 20 NAY 1973 
C.... READS IN BORDERED ARRAY IN STANDARD FORMAT 
C.... M = NUMBER OF ROWSp INCLUDING ONE ROW FOR CDLUMN LABELS 
C.... N = NUMBER OF COLUMNS, INCLUDING GNE COLUMN FOR R3W LABELS 
C.... A . BORDERED APRAYp FIRST ROW CONTAINS TITLE AND COLUMN LABELS1 
C 	 FIRST COLUMN CONTAINS TITLE AND ROW LABELS. 
C.... DATA SHOULD BE ARRANGED AS FOLLOWS.... 
C.... FIRST CARD TITLE,NUMBER OF ROMS, NUMBER OF COLUMNSe IN FORMAT(A5e2I5) 
C 	THE NUMBERS WROWS AND COLUMNS REQUESTED IN THE SUBRUTINE CALL MAY BE 
C 	LESS THAN THESE NUMBERS. 
C.... SECOND CARD FORMAT FOR ONE ROW OF THE DATA MATRIX,FIRST WORD BEING THE 
C 	ROW LABEL. FOR EXAMPLE. (A5p2F10.6). 
C.... THIRD CARD(S) COLUMN LABELS IN FORMAT 16(1XyA4) 
C.... NEXT CARDS DATA ACCORDING 70 FORMAT IN SECOND CARD 
C..  	 • 	 

DIMENS1ON A(MyN) 
DIMENSION FMT(20) 

1 FORMAT(1)(pA4,2151 
WRITE(6,61A(1,1) 
READ(5,1) A(1.1),MMeNN 

6 FORMAT(20H READING DATA MATRIX 	pA5) 
WRITE(6p7) MhipM 

7 FORMAT(15H ACTUAL ROWS = y15,18H REQUESTED ROWS = p15) 
WRITE(6.6) NNyN 
FORMAT(18H ACTUAL COLUMNS = 915.21H REQUESTED COLUMNS 	eI5) 
IF(M.GT.MM.OR.N.GT.NN) RETURN 
READ(512l(FMT(1)tI01,20) 

2 FORMAT(20A4) 
READ(594)(A(11J),J=2,N) 

4 FORMAT(16(1X014)) 
WRITE(6,9)(A(leJleJ=.2pN) 

9 FORMATUX,10(8X.A41) 
DO 20 1=20.1 
READ(5,FMT)(A(IpJ),J=leN) 
WRITE(6,5)(A(Ipyl).J.1,N) 

5 FORMAT(12(pA4p1OG12.4/(5X,10G12.4)/ 
20 CONTINUE 

RETURN 
END 

SUBROUTINE OUT(AyMeN) 
C... 	  
C 	PRINTS OUT A BORDERED ARRAY A 	 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A = M BY N BORDEREQ ARRAY 
C••.• 

DIMENSION A(MyN) 
WRITE(691) A(Ipl) 

1 FORMAT(6H ARRAYelX.A4) 
WRITE(6,21(A(1,J),JneN) 

2 FORMAT(10)(e5A10,2Xe5A101 
DO 20 I=2pM 
WRITE(6,3)(A(I,J),J=IeN) 

3 FORMAT(1XpA415X15F10.4,2X95F10.4/(10X,5F10.4,2X95F10.411 
20 CONTINUE 

RETURN 
END 

20 M&Y 1973 
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SUBROUTINE PROF(11.11.A.B) 
C.• • 	 20 MAY 1973 

PROFILE OF BORDERED ARRAY A.ACCORDING TO SCALE AND POSITION VECTOR 
C.... M - NUMBER OF ROMS 
C.... N . NUMBER OF COLUMNS 
C.... A . M BY N BOROERED ARRAY 
C.... B - 3 BY N POSITION VECTOR 
C 	 111I,J/ IS PLOTTEO AT 113(3.J) 	11(1,J1+8120)*A1I0/ 1 
C • • • 

DIMENSION A(M.141,1113,N1 
DIMENSION AAI251 
DATA BB.EIL/11-PelH / 
DATA YMINFYMAX.XMIN,XMAX/4*0./ 

C.... MINIMUM AND MAXIMUM 
DO 10 I=2.14 
DO 10 J.204 
KK=I*J-4 
YY.11(101+1112gMA11101 
XX-B1301 
IF(YY.LT.YMIN.OR.KK.EQ.0) YMIN-YY 
IF(YY.GT.YMAX.OR.KK.EQ.0) YMAX .VY 
IFIXX.LT.XMIN.DR.KX.E0.0/ XMIN.XX 
IF1XX.GT.XMAX.OR.KK.EQ.01 XMAX-XX 

10 CONTINUE 
C.... SET SCALES 

NP-M/20+1 
FY.(NP*501/(YMAX—YMIN+.0000011 
FX=25/(XMAX—XMIN+.0000011 

C.... WRITE TITLES 
WRITE16,11 A1121/ 

I FORMATII3N1PROFILES OF ,A41 
WRITE(6,2) 

2 FORMAT(32HOVARIABLE 	MINIMUM 	MAXIMUM 	1 
DO 30 J.2.N 
Y1.IYMAX-11(11011/812.0 
Y2.(YMIN—B(leM/812.J1 
WRITE(6.3) A(1..1).Y2.Y1 

3 FORMATOX.A4e4X,2F10.41 
30 CONTINUE 

C.... WRITE PROFILES 
IL--1 

45 IL=IL+1 
C.... INITIALIZE LINE 

DO 40 1=1,25 
40 AAII1.BL 

DO 43 J-2,11 
J.1.11313,J1—XMINDITX+1 
AA1.1.0.1111 

43 IF1IL.EQ.01 AAIJA.A11.J1 
IF(IL.EQ.0) GO TO 44 

C.... FILL IN VALUES ON LINE 
DO 41 .1■204 
DO 41 1.2,M 
K.(1111..11+1112..1)*A11,0.YMIN)*FY+1 
IFIK.NE.ILI GO TO 41 
JJ.11113.0—XMIN1*FX+1 
IF(JJ.LT.1.OR.JJ.GT .251 GO TO 41 
AA(.1.1).A11.1/ 
AA1JJ)=A(1.1) 

41 CONTINUE 
44 CONTINUE 

WRITE(6.5) ILgIAA(I1.1.1.25) 
5 FORMAT(1X.I3e1X.2511X.A41) 

IF(IL.LE.NP*501 GO TO 45 
RETURN 
END 
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SUBROUTINE RANK(MeN,A.SCI 
C..   	 20 MAY 1973 
C.... ORDERS EACH COLUMN OF A AND REPLA:ES VALUES BY ROW NAMES 
C.... M . NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A . M BY N BORDERED ARRAY 
C.... SC 	M BY 1 SCRATCH VECTOR 
C • • • 

DIMENSION AINNIFSCIMI 
DO 20 J=2,N 

C.... ORDER VALUES OF THE JTH COLUMNi 
DO 10 102,M 
SCCD=ACIglà 
DO 10 II=2.I 
IPIA(I,J).GE.AIII,J)) GO TO 10 

AIII,J1=C 
C=SC(I) 
SC(I)=SCIIII 
SC(III=C 

10 CONTINUE 
C.... REPLACE VALUES BY CORRESPONDING ROW NAMES 

DO 11 1.2,M 
11 AII,J)=SC(11 
20 CONTINUE 

WRITE ARRAY OF NAMES 
WRITE(6.11 Alla) 

1 FORMAT(18H1RANKING OF ARRAY 0141 
WRITE(6,211lA(1,JieJ=2,NJ 

2 FORMATI25(1X,ASk) 
WRITE(6f3) 

3 FORMATt1H01 
DO 40 1=2,14 
WRITE(6,2JIALI,JNJ=2,N1 

40 CONTINUE 
RETURN 
END 
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SUBROUTINE LINE(M.N.A.R.S) 
L•• • 	 20 MAY 1973 
C.... PRINTS EACH CASE AS A SET OF SYMBOLS. ONE FOR EACA VARIARLE 
C.... M = NUMBER OF ROMS 
C.... N = NUMBER OF COLUMNS 
C.... A = RORDERED DATA MATRIX 
C.... R = N RY 2 ARRAY. FOR ITH VARIARLE. R(I.1i /S MAPPED INTO Ot 
C 	 R(I,21 IS MAPPED IRTO 100. 
C 	 IF Mal = O ON INPUT, THE PROGRAM COMPUTES THE ARRAY R. 
C.... S = N RY 1 SYMBOL ARRAY, COMPUTED IN PROGRAM 1F S(1)=0 ON INPUT. 
C•• 

DIMENSION A(MeN),R(Ne2)15(N) 
DIMENSION SA(361,AA(105) 
DATA PlIP2/1H(g1H1/ 
DATA SA/IHIF1H2,1H3,1H4,1H5g1H6.1H7,1H8,1H9, 

IHAelHENIHC.IHD.IHEs1HFIAMG.1HH.IHIP 
IHJ,1HKelHL,1HM,1HNIHOw1HPFINCI.IHR. 
1HS11HT,IHU,IHVIIIHW,1HX.1HY,1HZ11H., 

C.... COMPUTE RANGES AND SYMBOLS IF REQUESTED 
IF(R(1111.NE.01 GO TO 30 
DO 20 J=211)1 
R(J.1)=A(2,J) 
R(.1.2i=A(211J) 
DO 21 I=2,M 
IF(A(1,J),I.T.R(J,11) R(J.I)=A(IeJi 

21 IF1A(10).GT.R(Jall R(.1.21=AlltA 
IF(R(J.11.EQ.R(Je2)) R(J.1)=R(J211-1 

20 CONTINUE 
30 IF(S(là.NE.0) GO TO 40 

DO 31 J=2,14 
JJ=J—M-1)/351*35 
JJ=JJ—I 

31 S(J)=SA(JJ) 
40 CONTINUE 

C.... TITLES 
WRITE(6,2) A(1,11 

2 FORMAT(21H1LINE PRINT OF ARRAY tA4) 
WRITE(Rp3i 

3 FORMAT(40HOVARIABLE SYMBOL 	MIN 	MAX 
MRITE(6.4)(A(ItJhS(J).R(Jel)eR(JaltJ=2eN) 

4 FDRMAT(3X.A4,5X,A1,5X,2F10.4) 
WRITE(6,51 

5 FORMAT(IHO) 
C.... PRINT CASES 

DO 49 1=M 
DO 41 J=1,105 

41 AAGIDESA(361 
DO 42 J=2,N 
JJ=.100*(A(I.J/—R(J.131/(R(J12/—R(Jell/+3 

44 IF(JJ.LT.31 JJ=I 
IF(JJ.GT.103) JJ=105 
IF(AA(JJ).EQ.SA(36,1) GO TO 42 
IF(JJ.L.7.51) JJ=JJ+1 
IFIJJ.GT.511 JJ*JJ-1 
IF(JJ.NE.511 GO TO 44 

42 AA(JJ)=S(JI 
AA(21101 
AA(104I=P2 

WRITE(6.1) A(III1),(AA(J),J=1,105) 
I FORMAT11X.A4,5X.105Alà 

49 CONTINUE 
RETURN 
END 



C.. . • • • 

SUBROUTINE PLOTIX.NN.N) 
C..  	 20 M&Y 1973 
C.... PLOTS A CORDERED 3 BY N ARRAY.X. 
C 	THE NAMES OF THE POINTS ARE IN THE FIRST ROW. THE X VALUES ARE IN THE 

SECOND ROW. THE Y VALUES ARE IN THE THIRD ROW. 
C 	SEVERAL ARRAYS MAY BE PLOTTED ON THE SAME PAGE BY SETTING N NEGATIVE. 
C 	SET RANGES BY CALLING PLOT WITH N . O. 
C.... NN = DIMENSION OF ARRAY. 
C.... N = CONTROL PARAMETER. 
C.... X = 3 BY N ARRAY. 

DIMENSION XI3,NNi 
DIMENSION T(20/.11(51.261 
DATA BlIC/1H .0/ 
DIMENSION Et7.101 

C.... INITIALIZE PLOT MATRIX A. 
IFIIC.NE.01 GO TO 15 
IU.51 
JU-26 
DO 11 I.1,IU 
DO 11 J.1eJU 

11 AII.J1.5 
15 CONTINUE 

C.... SET RANGES 
IF(N.NE.O.AND.IC.NE.0) GO TO 20 
Xl.X(2,21 
X2.X12,3) 
YI.X(3,2) 
Y2.X(3,3) 
IFINN.EQ.3i GO TO 20 
DO 10 JohNN 

Xl.XI201 
IFIX(2.n.GT.X2I X2=X(2,JI 
IF(X(9eJ).LT.Y1) V1.X(3.J) 
IF(X(30/.GT.Y2) Y2.X(30) 

10 CONTINUE 
IFIN.E0.01 RETURN 

20 CONTINUE 
PLOT POINTS IN X ARRAY ON A MATRIX 
DO 21 J.2,NN 

IFIII.LT.11 II=I 
IFIII.GT.261 11=26 
JJ.(X(311J/—YII*(IU--1)/(Y2—Y1)*1 
IFIJJ.LT.II JJ.1 
IF(JJ.GT.51I JJ.51 
JJ ■ 52—JJ 

21 AIJJ,II).X(1.J) 
ICI1C+I 
E(1eIC/RX(1,1) 
EI2p1C).XI2.1) 
E(3,1C).X1 
E(4,1C)=X2 
EI5.1C1.X(3,1) 
EI6.10.Y1 
E(7.1C)=Y2 
IFIN.L7.01 RETURN 

C... PRINT A MATRIX 
WRITE(6,11 

1 FORMATI 
*62H1PLOT5 OF ARRAY X—AXIS 	MIN 	MAX 	Y—AXIS 	MIN 	MAXI 
WRITEI6p2MEII,J).1.1.71,J=1.1C1 

2 FORMAT(11X.A4,2X.A4,2F10.4,2X,A4,2F10.43 
WRITE(6,41 

4 FORMATIIHOI 
WRITEI6,61 

6 FORMAT(10X.106I1H—I1 
WRITE(6115/(01(1,JleJ.1.26/.1.1,51) 

5 FORMAT(10X,1H',26A4.1Hq 
WRITE16,61 

RETURN 
END 

45 



SUBROUTINE EIGEN1M.N.AgX,Y1 
C••• 	 20 MAY 1973 
C.... FINDS FIRST TWO EIGENVECTORS OF A BY CRUDE BUT GUICK ITERATION 
C.... M NUMBER OF ROWS 
C.... N NUMBER OF COLUMNS 
C.... A 0 BORDERED ARRAY 
C.... X 	BORDERED 3 BY M ARRAY' FIRST TWO ROW EIGENVECTORS 
C.... V m BORDERED 3 BY N ARRAY, FIRST TWO COLUMN EIGENVECTORSOISSQ 01. 
C•••• 	 

DIMENSION AINNitX131pM),Y13eN/ 
DIMENSION BB(6/ 

C.... INSERT X AND V BORDERS 
DATA 515/4HEIGC,4HCOL1,441COL2,4HEIGR,OIROW1,4HROW2/ 

DO 12 J01.3 
YIJ91/05840 

12 X1.19110881J+3) 
DO 10 J02,N 

10 1.11,J)0A11,J3 
DO 11 IO2tM 

11 XI1,1)0A1b1/ 
C.... INITIALIZE COLUMNS 

DO 20 J0204 
DO 20 K02,3 

20 Y1KpJ100 
DO 21 J02tM 
DO 21 K02,3 

21 X1K,J/0J**X. 
DO 60 IT01,5 

C.... ITERATE ON Y 
DO 32 K02.3 
KK05-•K 
DO 50 .102eN 

VAK,J100 
DO 50 102eM 

50 YIKeJ10Y1K.JMA1I,J1—XIKK,U*Y1KKeJ)/*X1Ken 
C.... STANDARDIZE V 

SY00 
DO 30 J02.N 

30 SY0SY+Y(KeJ1**2 
SY0(SYMN-1/1**(0.5/ 
DO 31 .102,N 

31 IF1SY.NE.01 VIK,00VINJUSY 
SX00 
DO 33 .10204 

33 SX0SX+X(K,J/**2 
DO 34 J02eM 

34 IF1SX.NE.0/ X(K.A0X(KeJ/9SY/SX 
32 CONTINUE 

C.... 1TERATE X 
DO 40 K02.3 
KK05—K 
DO 40 10201 
XIKI,1100 
DO 40 J021IN 

40 XIK11/0X1K,IMAIIM—XiKKeI1*Y1KX,J11*Y1K.J)/1*-1/ 
60 CONTINUE 

RETURN 
END 



suBRourna HIST IN, X, T, Xl, X2i NI, P ) 
C 	  
C.... SUBROUTINE FOR PRINTING HISTOGRAMS 
C.... N . NUMBER OF DATA VALUES 
C.... X ■ VECTOR TO BE COUNTED 
C.... T m TITLE 
C.... X1 = MINIMUM 
C.... X2 ■ MAXIMUM 
C 	 IF X1 ..LE.X2 THESE ARE COMPUTED FROM X 
C.... NI m NUMBER OF INTERVALS( O IS CHANGED TO 1001 
C.... P = DIVISOR FOR VERTICAL SCALE( O CHANGED TO 1.) 
C•• 

DIMENSION X(N) 
DIMENSION A(102),AA(1021 
DATA B.C,HgV/1H g1H0,1H,...1Hli 

C.... DEFAULT OPTIONS 
IF(P.EQ.0) P=1 
IF(NI.EQ.0) NI.100 
CALL RANGE(XeNtX1tX2) 
DO 20 I=1,102 

20 Mimi, 
C.... COMPUTE FREQUENCIES 

DO 30 .1.1,N 
K.KCIX(J),X1lX2.1014 

30 AlKl.AlK)+1 
L..0 
L.100/NI 
IF(L.LT.11 L.1 

C.... ADJUST FOR INTERVALS 
DO 40 J.11,NeL 
JU.J+L-1 
S.0 
IFIJU.GT.N, JUmN 
DO 41 Km.J.JU 

41 S.S+AIKI 
DO 42 K.J.JU 

42 A(K1.5/(P*Li 
40 CONTINUE 

C.... FIND MAXIMUM VALUE 
AM.0 
DO 50 K.10102 

50 IF(AlK).GT.AMI AM■Alki 
C.... PRINT HISTOGRAM 

MM.AM 
WRITE(6.11 T 

1 FORMATI1H gA4e. HISTOGRAMil 
WRITE(6,2) 

2 FORMATI1H+.19X,10211H_II 
DO 60 K.1,MM 
AA(11.V 
DO 61 1.1,102 
IF(I.GT.1) AA(I1.8 
AA(1021.V 

61 IFIA(Ii+K.GT.MM) AAIII.0 
Két.MM—X+1 

60 WRITE(6.31 KK.(AA(Ii.I.1.102) 
3 FORMATI10X,15.5X.102All 

HRITE(6,2) 
WRITE(6,511 X1pX2 

5 FORMATIF25.4,5X,8(1H1,9X1,1HigF14.4) 
RETURN 
END 

20 NOV 197, 

FUNCTIUN KC(ApAleA2pNCI 
KC.AA—A1)*NCMA2—A1)+1.00001 
IF(KC.LT.1,1 KC.1 
IF(KC.GT.NCi KC.NC 
RETURN 
END  

SUBROUTINE RANGEIX.N,X1TX2l 
DIMENSION X(N, 
Xl.Xlli 
X2.X(1) 
DO 20 I.1,N 
IFIX(Ii.LT.Xli Xl.XII) 

20 IF(X(Ii.GT.X2i X2.X(11 
RETURN 
END 
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SUBROUTINE PMANY(A,MeNgA1eA2,NC) 
C.. 	 20 NOV 1973 
C.... PLOTS MANY PAIRS OF VARIABLES SIMULTANEOUSLY 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A . M BY N BORDERED ARRAY 
C.... Al . 1 BY N ARRAY OF MINIMA FOR EACH VARIARLE 
C.... A2 . 1 BY N ARRAY OF MAXIMA 
C....IF A1.GE.A2 COMPUTE ACTUAL RANGE 
C.... NC - I BY N ARRAY OF CELL NUMBERS ( (1 . O CHANGED TO NC .101 
C... 	  

DIMENSION A(MgN),Al(NigA2(N1ACIN).AA1122),AH1122) 
DATA 0,140,011T.P/1H p1H_g1H1.1H.g1H:p1H4/ 

C.... AOJUST RANGES 
DO 10 J.204 
IFINC(J).LE.01 NC(J) ■ 10 
IF(A1(J).LT.A2(41) GO TO 10 
A1(J) ■A(2,J) 
A2(J)=A(21.) 
DO 20 I.2,M 
IF(A(I01.LT.A1(J)I Al(Jl.A(Iga 

20 IFIAII,Ji.GT.A2(J)1 A2(.).A(IpJl 
IFIAI(J1.EQ.A2(J1) RETURN 

10 CONTINUE 
WRITE(6,1) A11,1) 

I FORMAT(16H ALL PAIRS FROM ,A4) 
C.... SET UP STARTING POINT OF BLOCKS 

NC(1)=2 
DO 60 J.2,14 

60 NCIJI.NC(J-11+NC(J142 
C.... HORIZONTAL LINE OF CHARACTERS 

DO 31 1=1,122 
31 AH(I)=13 

N1.N1 
DO 33 J.1041 
JL.NC(J) 
JU*NCIJ+11-3 
DO 33 JJ.JLIRJU 

33 AH(J.11.H 
C.... PLOT A, LIME AT A TIME 

DO 30 JC=2,11 
WRITE(6.3)(AllpJ),J.2,N1 

3 FORMAT(10)(p10(47(014,4X1) 
WRITE(6,61(AH(Ilid=1,122) 

C.... FINO VALUES CONDITIONAL ON JC 
JU.NC(JCP-4C(JC-11-2 
DO 50 JP-1,JU 
DO 53 K■ 1,122 

53 AA(KI.0 
DO 51 1=204 
IF(KCIA(I,JChA1(JCI,A2(JCI,JUI.NE.JP ) GO TO 51 
DO 52 J.2IN 

JJ.NC(J)...-NC(J-1)-2 
K=KC(A(IgJI,A1(J),A2(J),JJ)4.NC(J-.1)• 1 

52 AA(K1.AA(K)41 
51 CONTINUE 

C.... RECODE AA 
JL.NC(JC11 
L.AA(JL+JP-11 
L.L+JL-1 
JJU.NC(JCI ■3 
DO 63 K.JL,JJU 

63 AA(K)=0 
DO 61 KK=1,3 
DO 62 K.JLIOJU 

62 IF(K.LE.L) AA(K)=AA(K)+1 
61 L ■L-JJU4JL-1 

DO 54 K.1,122 
IF(AA(KI.GT.31 AA(K1.3 
IF(AA(Kl.EQ.01 AA(K)=B 
IF(AA(KI.EQ.1) AA(K)=0 
IF(AA(K).EQ.2) AA(Kk.T 

54 IF(AA(K1.EQ.31 AA(K)=P 
AA(11=V 
DO 55 J.2,N 
AA(NC(J)-110V 

55 AA(NCI,J)-21.V 
AAINC(Nl=11.8 
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C.... TYPE AA 
IFAJP.E0.1) WRITE(6.41 AIIJCI.IAAIJ1.J.1.122/ 
IFIJP.EQ.JUI WRITE(6.4) A2IJCI.IAAIJI.J=1.1221 
IFIJP.EQ.JU/2.1) WRITE(6,2) ACI.JC),(AAIJI,J=1,1221 
IFIJP.NE.1.AND.JP.NE.JU.AND.JP.NE.JG/2.11  

*WRITE(6,5/ IAAIJI.J.1.122à 
2 FORMATC5X.A4,1X.122A1/ 
4 FORMATIF10.3p122A1/ 
5 PORMATI10X,122A1/ 
50 CONTINUE 

WRITE(6,6MHIIIII=1.122) 
6 FORMATI1H+.9X.122A11 

IFI4*(IJC-11/4).EQ.JC-1) WRITEI6,71 
7 FORMATIMI./ 
30 CONTINUE 

RETURN 
END 

SUBROUTINE TABLIM.N.AFNI,N2,B.IIIJJpX1.X2.Y1,Y2I 
	20 NOY 1973 

C.... COMPUTES CONTINGENCY TABLE BETWEEN II AND JJ COLUMNS OF ARRAY A 
C.... M = ROWS OF DATA ARRAY A 
C.... N m COLS OF DATA ARRAY A 

C.... A = DATA ARRAY A 
C.... NI 	ROWS OF CONTINGENCY TABLE 
C.... N2 	COLUMNS OF CONTINGENCY TABLE 
C.... 	CONTINGENCY TABLE 
C.... II . DATA COLUMN TO BE ROW OF TABLE 
C.... JJ = DATA COLUMN TO BE COLUMN OF TABLE 
C.... X1 = MINIMUM POINT OF II 
C.... X2 = MAXIMUM POINT OF IIIIF XI.GE.X2 COMPUTEI 
C.... Y1 = MINIMUM POINT OF JJ 
C.... Y2 	MAXIMUM POINT OF JJ 
C • • • 

DIMENSION AIMeN/eBIN1,N21 
M1=M-1 
CALL RANGEIAI2e1IhMleX1,X21 
CALL RANGEIA112.1»,MlipYl.Y2/ 
DO 30 1=1,N1 
DO 30 J=1,N2 

30 BII,J)=0 
DO 40 Is2,M 
KI=KCIA(1.111.X1.X2,Nlì 
KJ=KCIAII,JJI,YI,Y2,N21 

40 BIXI,KJI=BIKI,KJI11.1 
RETURN 
END 
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SUBROUTINE MODALIM.N.PePT,B,NB,Ki 
C 	. 
C.... FINDS BLOCKS OF MINIMUM AREA CONTAINING FREQUENCY PT. 
C.... M = NUMBER OF ROWS 
C.... N 	NUMBER OF COLUMNS 
C.... F 41 M BY N ARRAY OF CELL FREQUENCIES 
C.... PT = FREQUENCY THRESHOLD 
C.... N8 	BLOCK BOUNDARIES 
C 	 N811.100 FIRST RUN 
C 	 N8(2eK/ 	FIRST COLUMN 
C 	 NB13,10 = LAST ROW 
C 	 NBI4,10 = LAST COLUMNS 
C 	 BIlipK/0 FREQUENCY 
C 	 8900 AREA 
C 	 B(3eKi= DENSITY 
C•• 

DIMENSION F(M.NieNB(4,50).513.50/ 
C.... FINO TOTAL FREQUENCY 

PPw0 
PTOT=0 
DO 9 IalrM 
DO 9 JaleN 

9 PTOT=PTOT+F(I.JI 
K=0 

C.... INITIALIGE BLOCK SIZE 
FM=0 
DO 70 I=1,M 
DO 70 J=IgN 

70 IF(FlIp.O.GT.FM ) FM=FII,J/ 
IF(FM.8Q.01 RETURN 
LI=PT/FM 
IFILI.LT.11 LI=1 
LJ=1 

10 K*K+1 
C.... INITIALISE BLOCK PARAMETERS 

NBI1.10=1 
NB(2,K)=1 
NBI3,K]=M 
NB44eK)=N 
B(1,Ki=0 
51210001*N 
B(3,K)w0 
IF(PP+PT.GT.PTOT/ RETURN 

52 CONTINUE 
DO 21 11•10,4 
12•114.L1-1 
IF(I2.GT.Mi GO TO 21 
DD 20 J1.1eN 

C.... FINO BLOCK EXCEEDING THRESHOLD OF MINIMUM AREA 
J2=J1+LJ-1 
IFIJ2.GT.Ni GO TO 20 
CALL DENSTY(11,I2.J1.J2,M,N,F,P,A1 
IF(P.LT.PTI GO TO 20 
IFIP/A.LT.813.KbpOR.A.GT.B12.KlI GO TO 23 
NB(1,K)=11 
NBI2sK)=J1 
NB(300=I2 
NBI4,10=J2 
841.10wP 
1142,K1mA 
813,K)=P/A 

23 CONTINUE 
20 CONTINUE 
22 CONTINUE 
21 CONTINUE 

C.... REPLACE DENSITIES BY BLOCK DENSITY 
IF(BIleKI.NE.01 GO TO 51 
11=LI 
JJ=LJ 
MIN=M*N 
DO 50 I=IpM 
DO 50 J..leN 
IFII*J.LT.LI*LJAR.I*J.GT.MINI 	GO TO 50 
IF(I*J.EQ.LI*LJ.AND.J.LE.L.1/ GO TO 50 
II=I 
J.JuNi 
MINaIN 

50 CONTINUE 

31 DECEMBER 1973 
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LI.11 
LJ.JJ 
IF(MIN.LT.M*N/ GO TO 52 

51 CONTINUE 
CALL PLACE(~11,KbpNB(3.K).NBI2,KI.N5(4,KI.M.N.F.B(3,Kl) 
PP.PP+BlIeK) 
IFIK.LT.501 GO TO 10 
RETURN 
END 

SUBROUTINE PLACE(I1,12.J10.12eMeN,F,D) 
C.. 	 
C.... REPLACES DENSITIES IN BLOCK bY —D 
C.... SEE DENSTY FOR ARGUMENTS 
C•• • 

DIMENSION FIM.N) 
DD 10 1.11,12 
DO 10 J=J1g.12 
IFIF(10).LT.0/ GO TO 10 

10 CONTINUE 
RETURN 
END 

.... 31 DECEMBER 1973 

SUBROUTINE DENSTYI11,12.J102,MeN,F.P.Al 
C.. 	  31 DECEMBER 1973 
C.... FINOS PROBABILITY AND AREA FOR A BLOCK,WITH PREVIOUS BLOCKS INDICATED BY 
C 	A NEGATIVE FREQUENCY. IF A .NE.0 ON INPUT 1T WILL REPLACE DENSITIES BY 
C 	A NEGATIVE BLOCK DENSITY. 
C....I1 = FIRST ROW OF BLOCK 
C.... 12 . SECOND ROW OF BLOCK 
C.... J1 . FIRST COLUMN OF BLOCK 
C.... J2 . SECOND COLUMN OF BLOCK 
C.... M 	NUMBER OF ROW CELLS 
C.... N = NUMBER OF COLUMN CELLS 
C.... F . M BY N ARRAY OF CELL FREQUENCIES 
C.... P = TOTAL BLOCK FREQUENCY 
C.... A = AREA OF BLDCK 
C ... 	  

DIMENSION FIMeNi 
A.0 
P.0 
DO 10 I=11,12 
DO 10 J.J102 
IF(F(I.JI.LT.01 GO TO 10 
A=A+1 
P.P+F(I,JI 

10 CONTINUE 
RETURN 
END 

31 DECEMBER 1973 
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SUBROUTINE BORAWINB.K.A.M.NINP) 
C...    31 DECEMBER 1973 
C.... DRAWS OVERLAPPING BLOCKS IN GIVEN ORDER 
C•• • 

DIMENSION AIM.Nh 
DIMENSION NBI4.KI 
DATA B.H.V/1H qp1H....1Hiée 

C.... CONSTRUCT BLOCKS IN REVERSE ORDER 
DO 5 Meli 
DO 5 J=1.N 

5 AII,J)=B 
DO 10 KK.10( 
L.K.•.KK+1 
11.015(1,Là*2-1 
I2=NB(3,L)*2 
J1.NB(2,L)4.2.-1 
J2=NBI4,LI*2+1 
dO 20 I.IlyI2 
DO 20 ..10.#1,J2 
IFII.LT.I2.AND.I.GT.I1.AND.J.LT.J2.AND.J.GT.J11 AII,J)=B 
IFII.EQ.II.AND.I.I.EQ.J1.0R.J.EQ.J2)/ GO TO 20 
IFII.EQ.I1.0R.I.EQ.I21 
IFIJ.E0.J1.0R.J.EQ.J2/ AtI,M=V 

20 CONTINUE 
10 CONTINUE 

Ml.M■ 1 
DO 30 1=1041 

30 WRITEI6,31(AII.JJ.J.1,NI 
3 FORMATI5X,120Alà 

RETURN 
END 

SUBROUTINE TRYIIAIMeN,B.KIL,XLL.VID,NV/ 
C •• • 
C.... FINDS BEST SET OF K BLOCKS, CHANGING ONE AT A TIME 
C.... A = M BY N BORDERED ARRAY 
C.... M = NUMBER OF ROMS 
C.... N . NUMBER OF COLUMNS 
C.... B = 2 BY N BY K BLOCK ARRAY 
C.... L . BLOCK OPTIMIZED BY PROGRAM 
C.... XLL = LOG LIKELINOOD AFTER OPTIMIZATION 
C.... V . 2 BY K SCRATCH ARRAY 
C.... D = I BY N SCRATCH ARRAY 
C.... NV = 1 BY N ARRAY DEFINING ORDER OF VARIABLES 
C•• 

DIMENSION NV(N) 
DIMENSION AIM,N),BI2eNgKi 
DIMENSION In2,100(N) 
DIMENSION XX(5) 
CALL 
DO 51 LD=1,3 
DO 20 JJ=2pN 
.1=NVIJO 
Bl.BIleJeL) 
B2=BI22.J.L) 
VM=0 
KM=1 
DO 30 KK=1,5 
CALL PICKIKK,B1,B218(1.J.LI.B(2,JeL)/ 
CALL 
IFIVI2pLi.NE.0) VI2eL)=V(IgWVI2eL) 
IFIVI2pLi.LE.VM/ GO TO 30 
KM=KK 
VM=VI2gLI 

30 CONT/NUE 

BI2rJeLP.B2 
IF(XXIKMI.LT.XM) GO TO 20 
KM.XXIKM) 
CALL PICK(KM.B1.82,84111JeLJ.BI2eJ,LI/ 

20 CONTINUE 
51 CONTINUE 
52 CONTINUE 

RETURN 
END 

52 

23 DECEMBER 1973 



SUBROOTINIC PIM 81, 82, BB1, 882 ) 
C 	  31 ma NEER 1973 
C.... SUBROUTINE TO CHANGE RANGE OF INTEPVAL WHILE SEARCHING FOR BEST BLOCK 
C.... K = INDEX OF TYPE OF CHANGE 
C.... 81 = ORIGINAL MINIMUM 
C.... 82 = ORIGINAL MAXIMUM 
C.... BB1 . NEW MINIMUM 
C.... 882 . NEW MAXIMUM 
C.. 

85.1B2-511/2. 
IF(K.EQ.1.0R.K.EQ.2) 851=B14.B8 
IFIK.EQ.3.0R.K.EQ.4) 882=82-88 
IF(K.E0.4.0R.K.EQ.5) 881.81—B8 
IFIK.B1.1.0R.K.(i2.5) 851.82+68 
IFIK.EQ.31 881=81 
IF(K.E0.2) BB2.82 
IFIK.EQ.5I 8B1.51+88/2 
IF(K.EQ.5) B82.82-55/2 
RETURN 
END 

SUBROUTINE LOBIA,MeN.B.K.XLLpV) 
C... 	  
C.... COMPUTES LOG LIKELIHOOD FIT FOR GIVEN SET OF BLOCKS 
C.... M = NUMBER OF ROWS 
C.... N - NUMBER OF COLUMNS 
C.... A = M BY N BORDERED ARRAY 
C.... 8 - 2 BY N BY K ARRAY UEFINING BLOCKS 
C.... XLL = LOG LIKELIHOOD 
C.... V . 2 BY K SCRATCH ARRAY 

DIMENSION AtMa1a(2,NeKieVI2 ■ 10 
C.... COUNT NUMBER IN EACH BLOCK 
C • • 

DO 20 KK=1,K 
20 VlIEKK).0 

DO 30 1.2,M 
DO 32 KK.10( 
DO 31 J.2,N 
IFIAlIrJI.GT.8(2.J,KKi.OR.A(Isji.LT.8(1,J,KK1) GO TO 32 

31 CONTINUE 
GO TO 30 

32 CONTINUE 
30 V11.KKI.V(1.KK)+1 

C.... COUNT VOLUME IN EACH BLOCK 
DO 33 KK-1,K 
VI2,KK).1 
DO 34 J.2,14 

34 VI2pKKi.V(2,KK/ 4 (812,J.KK).-5(1.J.KK1) 
C.... ADJUST FOR TWO BLOCKS OVERLAPPING 

DO 35 X1.1,KK 
IFIK1.EQ.KKi GO TO 33 
XV.1 
DO 36 J.204 
XL ■ AMAX101110,KKI,BI1ejeK1/) 
X~MIN1[8(2.J,KKI.8(2.jpK111 
IFIXL.GE.Xill GO TO 35 

36 XV.XV*(XU—XL) 
1112.KKi.V12,KKI—XV 
DO 37 KK1.1,K1 
IF(KK1.EQ.K1) GO TO 35 
XV01 
DO 38 J.2,144 
XL.AMAX1(8(1.J.KKhell.J.K1).8(1wjeKK1li 
X~MINIABI20.KKi.512.j.K11e8(210.KK11) 
IF(XL.GE.XU! GO TO 37 

38 XV.XV41XU=XL) 
V(2.KK) ■ 1112,KKi+XV 

37 CONTINUE 
35 CONTINUE 
33 CONTINUE 

C.... COMPUTE LOG LIKELIHOOD 
XLL-0 
DO 50 KK01,K 
IFIVII.KKI.EQ.0.0R.V(2.KKi.E0.0) GO TO 50 
XLL.XLLI>V11,KK/*ALOGU11eKKIFV(2.KKJ) 

50 CONTINUE 
RETURN 
END 

23 DECEM3ER 1973 
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SUBROUTINE MHISTILA.BABIINA,NC,X1,X2,KM.NMeNV/ 
C.. 	 12 DECEMBER 1973 
C.... DRAWS MULTIVARIATE HISTOGRAN BASED ON BLOCKS IN B 
C.... A • M BY N BORDERED ARRAY 
C.... B • 2 BY N BY K ARRAY 	511.J.K1,1112.J,K) IS RANGE FOR JTH MAR. 	KTH BLK. 
C.... M • NUMBRR OF ROMS 
C.... N NUMBER OF COLUMNS 
C.... NC 	NUMBER OF CELLS 
C.... X1 	1 BY N ARRAY : Xl(J, 	LOWER BOUND OF JTH VARI:ME 
C.... X2 = 1 BY N ARRAY : X21.1/ • UPPER LINIT OF JTH VARIABLE 
C.... KN • MUMBER OF MODES 
C.... NN = 1 BY M SCRATCH ARRAY 
C.... NV • 1 BY N ARRAY DEFINING ORDER OF VARIABLES 
C,•• 

DINENSION AA(1121 
DIMENSION NVIN/ 
DIMENSIDN NB(201,KM1 
DIMENSION A(MeN1.5(2,N,KM)gX1(N1.X21N).NMIM1 
DATA BLeVipH/1H 
DATA P/1H./ 
WRITE16.1/ AilgligIAIltMeXIIJJ,X21JhJ•2*N/ 

1 FORMAT121H1 MODAL HISTOGRAM OF ,A4/ 
*60H INTERVALS 	 FOR EACH VARIABLE DEFINE MODAL BLOCKS/ 
*61H RECTANGLES TO RIGHT HAVE AREA PROPORTIONAL TO NUMBER IN MODE/1 
*16H VARIABLE RANGES/11X,A4,F9.3,2X/1611H.111X,F10.31/ 
WRITE16.2à 

2 FORMATI1H+,15X,1011H-.11 
DO 9 Is2.14 

9 NM(I)•0 
DO 10 K.1,KM 

C.... COUNT NUMBER SATISFYING CONDITIONS 
N10.0 
DO 20 De2pM 
IF(NMID.NE.01 GO TO 20 
DO 31 J•2,N 
IF1A1Ipa.GT.BUIRJeKil GO TO 30 
IFIAII.J1.LT.811.J.K11 GO TO 30 

31 CONTINUE 
NM11J=1 
NK•NK*1 

30 CONTINUE 
20 CONTINUE 

C.... GENERATE HEIGHT 
NKOIK*19 
DO 40 I•1,112 

40 AAII)=BL 
DO 41 1•3,11K 

41 IF11.NE.17.AND.I.NE.1B.AND.I.NE.NK/ AA1Ii« 
WRITE(6,51 1AA111,1.1g112/ 

5 FORMAT415X,112A11 
DO 42 I•19,NK 

42 AA111*BL 
C.... WORK ON PROF1LE 

DO 50 JJ.2.N 
J•NV(JJ) 
DO 53 101,1B 

53 AA11)=EIL 
AA119/•V 
AA1NKI•V 
Kl•NB(1,J,K1+1 
K2041512.J.K/+1 
AAIK1I=V 
AA1K2i*V 
JI=JJ+1 
IF1JJ.EO.N/ J1•JJ 
J1.11111J1/ 
K3~41.J1sK/4.1 
K40,01(2,J1,K/+1 
DO 51 KK.2.17 
IFIKK.EQ.KI.DR.KK.EQ.K2/ GO TO 51 
IF(KK.LT.K1/ AA(KKI•P 
IFIKK.GT.K2) AAIKKDO 
IFIIKK....K3)*(KK—K11.LT.0) AA(KK)0H 
IFICKK—K4)*(KK—K2à.L7.0,1 AA1KK~ 

51 CONTINUE 
C.... PRINT A LINE 

WRITE16.6/ 1111,AelAAILI1e1.1,112,1 
6 FORMAT(10X1014,1X,112A11 
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SO CONTINUE 
DO 61 I=3,NX 

61 IFil.NE.17.AND.I.NE.18.AND.I.NE.NXI AA(I/=H 
10 WRITE(6,MAA(I),I=1.112/ 
7 FORMATi1H+.14X,112Ali 

WRITEI6,3) 
3 FORMATUH11 

RETURN 
END 

SUBROUTINE LROXligJeNL.A,15/ 
C .. 	 23 NOV 1973 
C.... DRAWS LINE IN MATRIX A 
C.... I = START ROW 
C.... J = STARTING COLMAI 
C.... NL 	LENGTH OF LINE 
C.... A =218V 132 DATA MATRIX 
C.... IS a 1:LEFT 
C 	 2:DORN 
C 	 34SLOPE 
C•• 

DIMENSION A(21.1321 
DATA DANHIRS/1H.,1Hilp1H_AH// 
IFII.LT.1.0R.1.0T.132à RETURN 
IF(J.LT.1.0R.J.GT.1321 RETURN 
IF(Allin.NE.140 
GO TO (10,20eS0hIS 

10 DO 11 A=1,AIL 
II=I 
JJ=J-K 

11 IFIJJ.GT.0i 
RETURN 

20 DO 21 Km1,NL 
JJ=J 
II=I+K 

21 IHII.GT.0) AIII.JJDEV 
RETURN 

30 DO 31 X=1,NL 
II=I-K 
J4=J+X 

31 IFIK.NE.NL ) AIII,JJ)=5 
RETURN 
END 
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SUBROUTINE BOXES(A.M.N.AlgA2pNCENN) 
C.. 	 23 NOV 1973 
C.... PRODUCES ONE BOX PER CASE WITH VARIABLES DIVIDED INT() 3 SETS 
C.... A = M BY N BORDEREO DATA ARRAY 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... Al = 1 BY N LOWER LIMITS FOR EACH VARIABLE 
C.... A2 = 1 BY N UPPER LIMITS FOR EACH VARIABLE 
C.... NC = 1 BY N CELL SIZES 
C.... N C . I BY N NUMBER OF INTERVALS FOR EACH VARIABLE 
C.... NN = 3 BY N SIDE DIVISIONS: NN(K,I) IS THE ITH VARIABLE IN THE KTH DIMENSI 
C.... NN 	3 BY N SIDE DIVISIONS: 	 IS THE ITH VARIABLE IN THE KTH SIDE 
C.. 

DIMENSION A(M iph)gAl(N),A2(N),NC(NI.NNI3gN) 
DIMENSION NCS(3) 
DIMENSION P(21.132).NW(3) 

C.... DIMENSIONS OF BOX 
DATA 8/1H / 
N1.41-1 
DO 10 J.2,N 

10 CALL RANGE(A(2,JJ,N1,A1(JbA2(J11 
DO 11 K.1.3 
NW(10.0 
DO 11 I-1,N 

11 IFOIN(K.O.NE.0, NWOO.NW(Kh*NCOU 
C.... WRITE RANGE AND BOX ASSIGNMENTS 

WRITE(6,53 
5 FORMATI22HI VARIABLE ASSIGNMENTS/ 

WRITE(6,6) 
6 FORMAT(5H 	2/4H X-//4H 	11441 Y) 
17 FORMAT(12H VARIABLE : ,A4,13H 	MINIMUM : ,F8.2,13H 	MAXIMUM : 
* FB.3,25H 	NUMBER OF INTERVALS 	,14) 

DO 13 W.1,3 
8 FORMAT(//18H X VARIABLE RANGES/1H .17(1H--11 
9 FORMAT(//18H Y VARIABLE RANGESIIH .17(1H1) 
7 FORMAT(//18H Z VARIABLE RANGES/1H .17(11(// 

IF(X.EQ.1) WRITE(6.8) 
IF(K.EQ.21 WRITE(6.9! 
IFOC.EG.31 WRITE(6.7) 
DO 14 J.10N 
IFINN(K.JI.EQ.01 GO TO 13 
JL.NN(K.0 
WRITE(6,17/ A(leJL/, A1ialeA2GMA.NC(JLi 

14 CONTINUE 
13 CONTINUE 

WRITE(6,3) A(1,1) 
3 FORMATOMI/ 

NOD.NW(3)+NW(2)*1 
IF(NDO.GT.601 RETURN 
NR=132/INWI1J+NWI31+1J 
1F(NR.EQ.0) RETURN 

C.... LOOP THROUGH CASES 
NLIN.0 
DO 20 II.2.M.NR 
IL.II 
IU=II+NR-1 
IF(IU.GT.M) 
DO 30 101,21 
DO 30 J.1,132 

30 P(I..005 

DO 31 S.IL.IU 
JS.(I-IL*14*(NWill+NW(31*Ii•NW(31 
IS.NW(3)*1 
DO 41 K=1.3 
NCS(1000 
DO 41 J=1,N 
IFINNIK.M.EQ.01 GO TO 41 
JN.NN(KgJJ 
NCH.KCIA(IIIJN)yA1IJNI.A2(MeNCLIN)) 
NCS(K).NCS(K/+NCH 

41 CONTINUE 
NNI 	NCS(21+NCS(31*2 
IF(NNI.GE.NDDI NDD-NNI 
00 32 K=1,3 

32 CALL 1.80X(IS.JSpNCSOOpPeK) 
C.... INSERT BOX FOR CASE I 

DO 40 KO.1.3 
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ISS•IS 
J55mJS 
DO 50 J.1.N 
IF(NN(K.Ji.E0.0) GO TO 40 
J~INIKen 
NCH.ACIA(I.JN).A1IJNI.A2IJNI.NC(JN)i 

J55.J55-NCH 
IF(K.EU.21 ISS.I5S+NCH 
IFIK.EQ.31 J55=JSS+NCH 
IFIK.E0.3) 
DO 51 KK■1.3 
IFIKK.EQ.A3 GO TO 51 
CALL LBOMISS.J55,NC5(KKIJP:KKI 

51 CONTINUE 
50 CONTINUE 
40 IFIK.ECI.3à PlISS.JSM=B 
31 CONTINUE 

NLIN*NLIN+NDD 
C.... PINALLY, PRINT OUT ARRAY 

DO 70 1.1.21 
DO 71 J=1,132 
IFIP(I.Ji.NE.B) GO TO 72 

71 CONTINUE 
GO TO 70 

12 WRITE(6,11(PII,J),J=1,132/ 
70 CONTINUE 
1 FORMATI1X,132Ali 

WRITE(6.2)(A111.13,I.IL.IU) 
2 FORMAT(4116X.A4.11M 

IFINLIN+NW12i+NW(3).LE.1001 GO TO 20 
NLIN.0 
WRITEI6.3) Allell 

20 CONTINUE 
WRITE(6,3) Allyll 
RETURN 
END 
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CHAPTER 2 

Distances 

2.1 1NTRODUCTION 

From Table 2.1, it is desired to select clusters of similar Southern States. What does 
similar mean? No one thing. If the interest is in evaluating a govemment health 
program, the variables age, births, income, doctors, and infant mortality might be 
selected to base the clustering on and the others ignored. If the interest is in locating 
an industrial plant, the variables might be manufacturing, cars, telephones, and 
school years completed. Different measures of similarity and different clusters will be 
appropriate for different purposes. 

A standard way of expressing similarity is through a set of distances between pairs of 
objects. Many clustering algorithms assume such distances given and set about con-
structing clusters of objects within which the distances are small. The choice of dis-
tance function is no less important than the choice of variables to be used in the study. 
A serious difficulty in choosing a distance lies in the fact that a clustering structure 
is more primitive than a distance function and that knowledge of clusters changes the 
choice of distance function. Thus a variable that distinguishes well between two 
established clusters should be given more weight in computing distances than a "junk" 
variable that distinguishes badly (see Friedman and Rubin, 1967). 

2.2 EUCLIDEAN DISTANCES 

There are M objects or cases, N variables, and the Jth variable has value A(I, .1) for 
the /th case. Consider, for example, the demographic data for cases Alabama, Arkan-
sas, Delaware, and Florida and for variables age and altitude. Here M = 4, N = 2, 
and a typical data value is A(3, 2) = 6, the value of the second variable for the thírd 
case (see Table 2.2). 

Detinition. The euclidean distance between case / and case K is 

D(I, K) = (I {l J N} [A(I, J) — A(K, ./)]2)1/2. 

In one, two, or three dimensions, this is just "straight-line" distance between the 
vectors corresponding to the Ith and Kth cases. For the data in Table 2.2, consider 
the distance between the first case, Alabama, and the third case, Delaware: 

D(1, 3) = {[A(1, 1) — A(3, 1))2 + [A(1, 2) — A(3, 2)]2W2 
-= [(26 — 29)2 + (50 — 6)2P/2 
= 44.1. 
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2.2 Eaclidean Distancea 	59 

Table 2.1 Demographic Data for the South (1960-1965) 
Avr Mem altitude above :ma level, in tane of feet 

TEM t Mean annusi t.emperature, in degrees fahrenheit 

P22 : Mban annual precipitation in inches 

POP ~ber of persone per square mila 

1120 : Nbaber of Negroes per !00 of total population 

AGC Mbdian age 

URB : Un= population as percentage of total 

BIR I Number of birthe per 1000 population 

RUR Rural farm population as percentage of total 

MAN : Employeent in manufacturing aa percentage of total 

CAR 	Automobiles per :oo population 

TEL : Telephone' per 100 population 

INC : Income in hundreds of dollaro 

: Federal revenue per 100 dollaro of state and local revenue 

LAW 	Lawyers per 100,00 persona 

SCH : School years completed, in tenths of a year 

EDX : Expenditure on education in tens of dollari: per pupil per year 

DOC : Physicians per :oc,oeo persone 

INF : /nfant mortality of mhitee per 100o births 

ECU Percentage of houses with sound plumbing 

R60 : Percentage Republican votes in Presidential election 1960 

264 	Percentage Republican votes in Presidential election 1964 

GCV 	Percentage Republican votea in :962-64 atate governor elections 

ALT TEM P22 POP MEG AGE BIR URB RUR MAN CAR TEL INC 	IAW DOC INF SCH EDX HOU R60 R64 GOV 

AL 50 68 68 64 )0 26 22 55 12 31 39 33 19 22 82 79 25 89 28 54 42 70 	4 

AS 65 62 49 34 22 29 22 43 17 29 )3 30 18 24 79 9! 2) 87 32 48 43 43 43 

m 	6 54 45 226 14 29 23 66 4 37 40 53 3) 15 115 1)5 20 108 54 80 49 39 49 

• zo 72 56 gi ze 31 20 74 	2 15 45 45 24 	150 142 23 Io6 41 78 52 49 44 

GA 60 62 47 68 29 26 24 55 9 32 37 )6 22 19 125 102 23 88 33 58 37 54 o 

• 75 56 41 76 7 ze 22 45 17 27 38 )2 20 21 108 95 26 es 32 53 54 36 49 

LA 10 70 63 72 32 25 25 63 7 17 32 )6 21 21 128 114 21 86 k2 61 29 57 39 

MD 35 58 44 314 17 29 20 73 31 25 37 48 30 11 175 158 22 10 5o 81 46 35 44 

W/ 30 65 49 46 42 24 24 38 23 31 29 25 16 21 101 76 23 86 27 45 25 87 38 

MO 80 56 35 63 )2 21 67 12 ze 37 47 26 17 72 149 21 9, 45 66 50 36 38 

WC 70 60 44 93 25 26 22 40 16 42 35 31 20 15 77 leo 22 85 32 57 48 44 4) 

SC 35 64 47 79 35 23 22 41 14 43 35 28 10 16 72 8o 22 84 28 54 49 59 	O 

TE 90 61 47 85 17 28 22 52 15 35 )5 35 20 22 116 11) 24 86 30 57 53 45 49 

TS 170 67 29 37 12 27 22 75 7 20 42 41 23 15 144 	26 101 40 69 49 37 26 

VA 95 59 44 loo 21 27 21 56 9 27 34 38 24 16 114 108 24 92 38 66 52 46 36 

2V 150 56 44 77 	5 29 20 )8 7 27 31 )4 20 18 57 103 26 87 33 57 47 32 45 

Notice that the variable altitude makes the major contribution to all the distances 
in Table 2.2 and that almost the same distance matrix would be obtained if age were 
ignored entirely. This distance calculation is a silly one because the squared distance 
is in units of squared years plus squared feet, and why should one year equal one 
foot? Age would dominate the calculations if it were measured in fine enough units, 
say months or weeks. 

It is necessary then, when variables are measured in different units, to prescale the 
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Table 2.2 Eaclidean Distances 
DATA 	 DISTANCE 

AGE (YRS) 	ALTITUDE (FT) 	 AL 	AS 	DE 	FL 

MADAMA 	26 	 50 	 o 	15.3 	44.1 	40.3 

ARKANSAS 	29 	 65 	 15.3 	0 	59.0 	55.0 

DELAWARE 	29 	 6 	 44.1 	59.0 	0 	4.5 

FLORIDA 	31 	 10 	 40.3 	55.0 	4.5 	o 

WEIGHTZD DISTANCE 

VAR (AGE) . 4.25 YR8
2 	

AL 	AS 	DE 	FL 

VAR (ALT) - 857 FT
2 
	 AL 	o 	1 .6 	2.1 	2.8 

W(1) . 1/4 	 AS 	1.6 	0 	2.0 	2.1 

W(2) . 1/900 	 DE 	2.1 	2.0 	0 	1.0 

FL 	2 . 8 	2.1 	1.0 	0 

variables to make their values comparable or, equivalently, to compute a weighted 
euclidean distance 

D(I, K) =-- (I {1 S  J S N} W(J)[A(I, J) — A(K, J)]2)2/2. 
This form of distance is not necessary if all variables are measured on the same scale-
for example, the percentage Republican in the three elections. But even in this case, 
weights might be used to increase or decrease the importance of some variable, 
perhaps on subjective or a priori grounds. For example, if the next presidential 
election is the reason for organizing the data, the two presidential votes may be 
given more weight than the gubernatorial vote. 

There are a number of unsatisfactory methods of choosing the weights W(J). 

(i) Subjective. Just as the investigator selected the variables to be used in the 
data, he is free to weight the variables according to considerations outside the data. 
He thinks to himself, I yr in age is equivalent to about 10 ft in altitude, and this 
implies a weight I yr-2  for age and a weight ft-2  for altitude. He expects variation 
within clusters to be about 1 yr in age to 10 ft in altitude. 

Measurement error. Weights are chosen inversely proportional to measure-
ment variance. (The units of weights are always the inverse square of measurement 
units.) For example, in the demographic data, the measurement variance for each 
variable is the average variance within states. Thus altitude might have a measure-
ment variance of 45 2  on average, age about 15 2, and the relative weights of age to 
altitude would be 9 to 1. The measurement error is estimated from "replications" 
of the cases—that is, from a subjective preclustering of cases. This weighting scheme 
is used in the coefficient of racial likeness (Pearson, 1926). It may happen that there 
are no replications for the cases, so that this technique is unavailable. Even with the 
preclustering, there may be a tendency to overweight variables that are measured with 
great precision but are useless for clustering. 

(iii) Equa! variance scale. Weights are inversely proportional to variance and are 
thus chosen from the data. In Table 2.2, 

VAR(AGE) = ì[262  + 292  + 292  + 31 2  — ì(26 + 29 -F 29 + 31)2] = 4.25 yrs2 



2.2 Eudidean Distances 	61 

and VAR(ALT) = 857 ft2; therefore, by rounding, WT(1) --= and WT(2) = 
Doing one cakulation in detail, 

D(1, 3) = [i(26 — 29)2 + ar,(50 — 6)91/2 = 2.1. 

With this variance weighting, the distances are invariant under change of the units of 
measurement, and all, variables make the same average contribution to the squared 
distances (see Sokal and Sneath, 1963). 

Look at Table 2.3 and Figure 2.1 to see a serious defect in scaling to equalize 
variances. The percent Republican for president is taken for Georgia, Louisiana, 
South Carolina, West Virginia, Missouri, Kentucky, and Maryland in 1960 and 1964. 

Table 2.3 Bad Weighting by Variances of Percent Republican for President 

DATA 	 UNWEIGHTED DISTANCES 

196o 	1964 	 GA 	LA 	SC 	WV 	MO 	KY MD 

GA 	37 	54 	 o 	9 	13 	24 	22 	25 	21 

IA 	29 	57 	 9 	o 	20 	31 	3o 	33 	28 

SC 	49 	59 	 13 	2o 	o 	27 	23 	24 	24 

WV 	47 	32 	 24 	31 	27 	o 	5 	8 	3 

MO 	50 	36 	 22 	3o 	23 	5 	o 	4 	4 

KY 	54 	36 	 25 	33 	24 	8 	4 	o 	8 

le 	46 	35 	 21 	28 	24 	3 	4 	8 	0 

WEIGHTED DISTANCES 

VAR (1960) .. 74 	 GA 	IA 	SC 	W 	MO 	KY 	MD 

VAR (1964) . lin 	 GA 	o 	12 	18 	26 	26 	3o 	23 

W(i) . 2 	 LA 	12 	o 	28 	36 	36 	42 	33 

w(2) . i 	 SC 	18 	28 	O 	27 	23 	24 	24 

W 	26 	36 	27 	o 	6 	n 	3 

MO 	26 	36 	23 	6 	o 	6 	6 

KY 	3o 	42 	24 	11 	6 	o 	ii 

MD 	23 	33 	24 	3 	6 	ii 	o 

MAHAIANOBIS DISTAR= 

COV (1960, 1964) . -62 	 GA 	IA 	SC 	W 	MO 	KY 	MD 

W(1, i) . 2 	 GA 	o 	9 	21 	16 	14 	17 	13 

W(1, 2) . W(2, 1) . 1 	IA 	9 	o 	30 	19 	21 	25 	18 

W(2, 2) . 1 	 Se 	21 	30 	o 	29 	22 	19 	27 

WV 	16 	19 	29 	o 	e 	13 	2 

MO 	14 	21 	22 	8 	o 	6 	6 

KY 	17 	25 	19 	13 	6 	o 	12 

MD 	13 	18 	27 	2 	6 	12 	o 
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Figure 2.1 Decreased clarity of clusters after rescaling to equal variances—Republican 
voting data. 

By using the unscaled data or the unweighted distances, two very distinct clusters are 
seen, GA, LA, SC and WV, MO, KY, MD. All the within-cluster distances (just) 
are smaller than the between-cluster distances. If the data are rescaled to have equal 
variances (or, equivalently, if weights are inversely proportional to variances in the 
distance calculation), the clusters become much less clear cut. The ratio of between-
to within-cluster average distance is decreased and seven of the between-cluster dis-
tances become less than the within-cluster distance for SC and LA. The correct 
location of SC becomes uncertain. 

To see the problem, suppose the variables were initially scaled so that within-
cluster variances are equal. If all variables are now rescaled to have equal variances, 
those variables that have relatively large between-cluster variances will be reduced in 
importance. Therefore overall between-cluster variance will be reduced relative to 
within-cluster variance, which means that the clusters become less distinct. 

Ideally, the scaling should be done so that the within-cluster variances are ap-
proximately equal. (The measurement error approach equalizes variances within a 
preclustering of the cases.) There is a basic circularity here: 

(i) In order to cluster objects, it is necessary to propose a measure of distance 
between objects. 

(IO In order to define distance, it is necessary to weight the variables. 
(iiI) In order to weight the variables, it is-necessary to know the clusters of objects 

so that within-cluster variances can be equalized. 

2.3 RELATIONS BETWEEN VARIABLES 

Suppose that the only data available were age, income, infant mortality, and the 
three voting variables. Even after standardization (say to equalize variances), the 
political effect has three times the weight of each of the demographic variables. 
would be reasonable to give each of the voting variables weight and each of the 
others weight I. 

More generally, if it is noticed that several variables are highly correlated, it might 
be desirable to down-weight each. Similarity between variables thus affects the com-
putation of similarity between cases (and vice versa). To accommodate relations 
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between variables, a generalized euclidean distance is defined as 

D(I, K) 2  =I {1 S J, L s N} W(J, L)[A(I,J) — A(K,J)][A(1, L) — A(K, L)]. 

The matrix W(J, L) of weights, one for each pair of variables, must be positive 
semidefinite; that is, the above expression must be nonnegative for every possible A. 

The choice of weights W is even more difficult than the previous case when only the 
diagonal elements werè nonzero. There is a natural extension of the "equal variance" 
scale, in which W is the inverse of the matrix with (J, L) element: 

K S M} [A(I,J) — A(K,J)][A(1, L) — A(K, L)]. 

Equivalently, W is the inverse of the covariance matrix of the variables. (The co-
variance matrix may be computed over a reference class of cases other than the full 
data set—for example, within an initial clustering.) The distance is called the 
Mahalanobis distance, and arises naturally in multivariate normal theory (see Rao, 
1948). The distance is invariant under any linear transformation of the original 
variables, including transformations of the type (ALT, AGE) (2ALT AGE, 
3ALT — AGE). Invariance under this generai class of linear transformations seems 
much less compelling than invariance under the change of measuring units of each of 
the variables. 

The Mahalanobis distance based on the full data covariance matrix is even worse 
than the "equal variance" scale in decreasing the clarity of clusters. For the voting 
data in Table 2.3, the variances and covariances are VAR(1960) = 74, VAR(1964) = 
141, and COV(1960, 1964) = —62. And so the weight matrix, proportional to the 
inverse of the covariance matrix is W(1, 1) = 2, W(1, 2) = W(2, 1) = 1, and 
W(2, 2) = 1. To do one distance computation in detail, 

D(LA, SC) = [2(29 — 49) 2  + (29 — 49)(57 — 59) 
(29 — 49)(57 — 59) + (57 — 59)9 1/2  = 30. 

Notice that the within-cluster distances are increased compared to the between-
cluster distances, even from the already bad equalized variance case. The equalized 
variance technique is not too harmful to the clarity of clusters if all variables have 
about the same ratio of within- to between-cluster variance. The Mahalanobis dis-
tance reduces the clarity of clusters even in this case. Suppose there are two distinct 
clusters, equally well separating ali the variables. The first eigenvector is approxi-
mately the vector between the mean of the cases in the first cluster and the mean of the 
cases in the second cluster. If the clusters are well separated, the first eigenvector will 
have a large variance compared to the other eigenvectors. Stomping out the brush 
fire, the Mahalanobis distance standardizes all eigenvectors to have equal variance, 
thus reducing the between-cluster component in the distances principally contributed 
by the first eigenvector (see Cronbach and Gleser, 1953). 

The weights should be estimated from the within-cluster covariance of the variables 
(as with the equalized variance procedure). Of course, this involves the same cir-
cularity as before. The originai treatments of Mahalanobis (1936) and Rao (1948) 
define the distance between two groups, given the means and common covariance 
matrix of the groups. These groups are a preclustering of the data. 

Friedman and Rubin (1967) have considered a clustering technique that maximizes 
the average distance between clusters relative to the within-cluster covariance matrix. 
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This technique embraces the circularity by not assuming that distances are given once 
and for all. 

2.4 DISGUISED EUCLIDEAN DISTANCES 

(i) The distance between variables J and L is defined to be 1 — CORR(J, L), 
where 

(I {1 I M}[A(I , J) — A(J)][21(I , L) —  ,i(L)])  
CORR(J, L) — 

(I {1 / M}[A(I, J) — if(J)]2 1{1 I M)[A(I , L) — iT(L)}2)"a' 

where .Iosis M} A(I,J)I 1 f This rather horrible looking expression is 
just the usual definition of correlation. 

Let A* denote the matrix standardized to have mean zero and variance one for 
every variable. Let A *T denote the transposed standardized matrix. Then the euclidean 
distance between the Jth and Lth row of this matrix is (2M)1/2[1 — CORR(J, LA1/2. 
Thus many of the considerations relevant to computing distances between cases may 
be transferred to computing correlations. For example, the cases should be weighted, 
perhaps. 

(ii) Suppose that the responses to a variable are not numerical but categorical—
say, the religion or sex of a person. Define the distance between two cases / and K as 
the number of variables J for which A (I , J) A (K , J). This distance can also be cast 
as a euclidean distance by defining a new data matrix A* with number of variables 
equal to the total number of categories (over all variables) in the original data matrix. 
Each of the new variables corresponds to a single category of one of the old variables. 
The new variable takes value 1 if case / occurs in this category and value O otherwise. 
The euclidean distance between cases is then equal to the square root of the distance 
just defined. 

Weighting considerations apply as before, if desired, separately to each category. 

2.5 OTHER DISTANCES 

First consider distances for a single variable. A distance for the Jth variable, between 
cases / and K, will be denoted by D(I, K J). 

(i) 
D(I, K I J) = IA(I, J) — A(K, J)I. 

This is the usual univariate euclidean distance, and is only appropriate for numerically 
valued variables. 

(il) 
D(I, 	J) = IA(I,J)— A(K,J)1 	if A(/' , .1) — A (K , .1); T(J) 

T(J) 	 if IA (I, J) — A(K, J)1> T(J). 

This distance is a modification of euclidean distance that prevents any one variable 
from havins too much weight in a particular comparison. 

Off) 
D(I, K .1) = O 	if A(I , J) = A(K, J) 

if A(I , .1) A(K,J). 

This is a special case of (ii), appropriate for category variables. 
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There are a number of ways of combining distances over variables, each with its 
own way of weighting variables to make equal contribution to the distance. 

(0 
D(I, K) = I {1 J N} D(I, K I J)W(J). 

ln this case, a choice of weights analogous to the equal variance choice selects W(J), 
so that 	, 

I {1 I, K M} D(I, K I J)W(J) = 1. 

Thus each variable makes the same average contribution to the distances D(1, K). 

(ii) 
D(I, K) = [I {1 J N} D(I, K 1.02 WW11/2. 

This gives euclidean distance if D(I, K I J) = IA(I, J) — A (K, J)]. 

(iii) 
D(I, K) = max (1 J N} D(I, K i J)W(J). 

The weighting procedure here chooses W(J) so that 

max {1 I, K M} D(I, K I J)W(J) = 1. 

All three of these methods of combining distance are members of the Minkowski 
family, 	

D(I, K) = a {i J N} D(I, K I J)PW(J)P19 

with p = 1, 2, oo, respectively. 

2.6 PLOTTING DISTANCES TO DETECT CLUSTERS 

If the cases are distributed uniformly in M-dimensional space, the number of objects 
N within euclidean distance d of a given object will be Kdm . Thus, if d(N) is the 
distance of the object Nth closest to the given object, approximately 

log N = a + M log d(N). 

N=1 
	

N=2 	N=4 
	

N=8 
log N 

Figure 2.2 Clusters in plots of distances (based on Table 2.3, distances from Maryland). 
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If No  objects form a cluster near the given object, the distances d(N) for N > No  
will be greater than expected from the plot of objects within the cluster. Thus a break 
in the plot occurs at the boundary of the cluster. In Figure 2.2, distances are taken 
from Maryland using Table 2.3. The objects WV, MO, and KY are in a cluster about 
Maryland. The distances of GA, SC, and LA are greater than expected for a uniform 
distribution of objects. 

2.7 THINGS TO DO 

2.7.1 Distances between Variables 
Complications arise because the variables lie on different scales or are of different 
types. 

For two real variables measured on different scales, an appropriate rescaling gives 
them mean O and variance 1, and then euclidean distance is proportional to 1- 
correlation. 

For two ordered variables, a plausible distance is 

P(X < X* i Y< r*, x .x*), 
where X, Y and X*, Y* are randomly sampled from the two variables. 

For two category variables, let P(I, J) be the proportion of cases taking value I for 
the first variable and value J for the second variable. (Suppose I takes values 1, 2, . . . , 
M and J takes values 1, 2, . . , N.) Let 

P(I, O) = {1 S J S N} P(I, J) 
P(0, J) = {1 5  I  S  M} P(I, J). 

A measure of similarity is 

I S M, 1 S J s N} P(I, J) log P(I, J) 
— {1 S  I  S  M} P(I, O) log P(1, O) 

— {1 S  J  S  N} P(0, J) log P(0, J). 

For a category variable and a real variable, a natural measure of similarity (in-
variant under permutation of categories and linear transformation of the real variable) 
is the ratio of between-category mean square to within-category mean square. 

What is the relationship between ali these measures in the intersecting case of two 
0-1 variables? 

2.7.2 Distributions of Distances 
For many stochastically independent variables, the squared euclidean distance between 
cases I and K is a sum of independent components and the centrai limit theorem is 
applicable. The set of distances D(I, K) is approximately multivariate normal, with 
the same mean and variance for every D(I, K), with a certain covariance between 
D(I, K) and D(I, L) not depending on I, K, or L, and with all other covariances zero. 
It is assumed that the set of cases is fixed and that the number of variables is very 
large, much larger than the number of cases. 

The three parameters mean, variance, and covariance may be estimated in an 
obvious way from the observed distance matrix. 
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one relevant to spíders, the spiders would look unreasonably similar to each other 
using euclidean distance. 

They suggest that measured variables should be standardized to have variance 1 
across all cases. 

PROGRAMS 

DIST 	computes Minkowski (including Euclidean) and threshold distances. 
WCOV computes within-cluster covariance matrix. 
INVERT inverts a square matrix. 
WD1ST computes a euclidean distance with a general weight matrix (such as the 

inverse of the within-cluster covariance matrix). 
MISS 	replaces missing values by within-cluster means. 
TWO 	computes means and covariances of a data matrix. 
STAND standardizes an array so that each column has mean O and variance 1. 
MOM computes means and covariances when each row is weighted. 

FUNCTION DISTIX,YeMeN.Pi 
C••••  	 20 MAY 1973 
C.... COMPUTES VARIOUS MEASURES OF DISTANCE BETWEEN VECTORS Z AND Y 	 
C.... X . FIRST VECTOR 
C.... Y 	SECOND VECTOR 
C.... M . NUMBER OF ELEMENTS 
C.... N . SKIP FACTOR, FOR USE IN DISTANCES BETWEEN ROWS Or MATRIX. 
C.... TO CALL DIST BETWEEN ITH AND JTH ROW OF A BORDERED M BY N ARRAY,USE 
C•• •• 	CALL OISTIA(1,21,A(Je2I,M1IM2gPà WHERE M101*(N-..2)+1 f M2.M./ 
C... P = PARAMETER 
C 	 P.GT.0 PTH POWER DISTANCE 
C 	 P.LE.0 THRESHOLD DISTANCE COUNTIN PPOPORTION OF DEVIATIDNS 3VER ABS P 
C • • • 

DIMENS1ON XIMIpYIM1 
DD.0 
DP.0 
DO 10 I.I.M,N 
IFAXII).EQ.99999.0R.Y(1).EQ.99999.i GO TO 10 
DP.DP+1 
DIF.ABSiXII)—Y(1)/ 
IFIENGT.01 00.00+DIF**P 
IF(P.LE.O.AND.DIF+P.GT.01 DO.D0.1 

10 CONTINUE 
IFIDP.EQ.01 GO TO 20 
IFIP.GT.0) DD.IDD/DP/**(1./PI 
IFIP.LT.0) DO.DO/DP 

20 DIST.D0 
RETURN 
END 



SUBROUTINE WCOVIA,M,N,COViNC) 
C• • • 	 20 M4Y 1973 
C.... COMPUTES COVARIANCE WITHIN CLUSTERS. ASSUMING NO MISSING VALUES 
C.... M m NUMBER OF ROWS 
C.... N m NUMBER OF COLUMNS 
C.... A m M BY N BORDERED ARRAY 
C.... NC m M BY 1 ARRAY ASSIGNING CASES TO CLUSTERS 
C.... COV m M BY M BORDERED WITHIN CLUSTER COVARIANCE MATRIX 
C.. . 	  

DIMENSION AIMeN/gCOVINgNieNC(MI 
C.... INITIALIZE COVARIANCES AND COUNT CLUSTERS 

DATA AA/4HWCOV/ 
DO 10 Iml,N 
DO 10 Jm104 

10 COVII,J)=0 
Km0 
DO 11 1.2,M 

11 IFINCIII.GT.K1 KeNCIIi 
C.... COMPUTE MEANS 

Q*0 
DO 20 101,1( 
Pm0 
DO 26 Jm2,14 

26 COVO...Dm° 
DO 21 1.2,M 
IFINC(Ii.NEM GO TO 21 
PmP+1 
DO 22 Jm2eN 

22 COVIll.0mCOVIIAMAIIeJi 
21 CONTINUE 

DO 23 Jm2,14 
23 IFIP.NE.0) COVIlgJimCOVIlgJUP 

IF(P.GT.01 Q0Q+P-1 
C.... ADD ON TO CROSS PRODUCTS 

DO 24 Im2gM 
IFINCIll.NE.Là GO TO 24 
DO 25 J*2,N 
DO 25 JJ=2,J 

25 COVIJIIM*COVIjeJa+IAII.n+COVI1.0)*(AII,jjk-COVIlejAl 
24 CONTINUE 
20 CONTINUE 

C..... DIVIDE BY DEGREES OF FREEDOM 
DO 30 Jm2,N 
DO 30 JJm2FJ 
IFUNGT.0) COVIJOAmCOVIJOJia 

30 COVIJJ,J/*COVIJ AJI 
C.... LABEL 

DO 40 J=201 
COVI1,J)mAI101 

40 COVI•IglimA(1,Jà 
COVIblImAA 
RETURN 
END 
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SUBROUTINE INVERT(A,D,M) 
C*" 4  	 20 WILY 1973 
C.... INVERTS SQUARE BORDERED ARRAY, PREFERABLY POSITIVE DEFINITE 
C.... M = NUMBER OF ROWS 
C.... A . M BY N BORDERED ARRAY 
C.... D = DETERMINANT 
C 	.... 	  

DIMENSION AIM,MJ 
0.1. 
TH.10.**(.-61 	s  
DO 10 I.2gM 
D.D*AlIel) 
IF(A(IgO.LT.THI WRITE(6,1) AlIgI)gI 

I FORMATOMI **** ERROR IN INVERT, DIAGONAL VALUE eF15.10.7H IN ROW 
41 ,15) 
IFIAII.li.LT.TH ) 0.0 
IFID.EQ.01 RETURN 

DO 13 J.204 
IFIJ.NE.I) A(I0)=A(101*AtIrli 

13 CONTINUE 
DO 11 II.2eM 
IF(II.EQ.I) GO TO 11 
DO 12 .1■2RM 
IFIJ.EQ.IJ GO TO 12 

12 CONTINUE 
11 CONTINUE 

DO 14 J.2,M 
14 IFIJ.NE.I) 
10 CONTINUE 

RETURN 
END 

FUNCTION WDISTlX,Y,N,WTi 
C.. 	 
C.... EUCLIDEAN DISTANCE COMPUTED FROM A WEIGHT MATRIX MT 
C.... M . NUMBER OF ELEMENTS 
C.... X m M BY 1 VECTOR 
C.... Y . M BY 1 VECTOR 
C.... va = M BY M BORDERED WEIGHT MATRIX 
C •• • 

DIMENSION X(MitY(M),WT(M,M) 
DIST.0 
DP■0 
DO 20 1.2,M 
DO 20 J.2,11 
XM.99999. 
IFilXiI1-•XM)*(X(Ji=XMJ*OlI)-.XMI*(Y(J)—XMI.EQ.0.1 GO TO 20 
DIST.DIST+IX(11—Y(I))*(XI .11—Y(J))*WT(Iga 
DP.DP*WT(I,JI 

20 CONTINUE 
IF(DP.NE.0) DIST.(DIST/DP)**(0.51 
RETURN 
END 

20 MRY 1973 
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SUBROUTINE MISS(A,M,NeNC) 
C.. 	  
C.... REPLACfS MISSING VALUES BY WITHIN CLUSTER MEANS 
C.... M . NUMBER OF ROWS 
C.... N . NUMBER OF COLUMNS 
C.... A m M BY N BORDERED ARRAY 
C.... Ne . M BY I ARRAY ASSIGNING CASES TO CLUSTERS 
C... 	  

DIMENSION'A(M,N),Ne(M3 
FINO NUMBER OF CLUSTERS 

XM.99999. 
K.1 
DO 10 1.2pH 

10 IF(NCIII.GT.K) K.NC(I) 
DO 20 L.1pK 
DO 20 J.201 

C 

	

	 COMPUTE MEANS 
PR.0 
AV.0 
DO 21 1.2•M 
IFINC(I).NE.LI GO TO 21 
IF(A(Ip•O.EQ.XM) GO IO 21 
PR.PR+1. 
AV.AV+A(I.J) 

21 CONTINUE 
!FUMIAMO AV.AV/PR 
REPLACE MISSING VALUES 

DO 22 1.2,M 
IFINC(I).EQ.L) GO TO 22 
IF(A(I.J).EQ.XM1 A(11.110AV 

22 CONTINUE 
20 CONTINUE 

RETURN 
END 

20 MO' 1973 

SUBROUTINE TWO(DATA,M,N,COVIAVE) 
C•••  	 20 MY 1973 
C.... COMPUTES MEAN AND COVARIANCE, REFLACING MISSING VALUES BY COLUMN MEM 
C.... M . NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... DATA = M BY N BORDERED ARRAY 
C.... COV m M BY M BORDERED COVARIANCE MATRIX 
C.... AVE = 2 BY N BORDERED COLUMN MEANS 
C.• • 

DATA CCIAA/3HCOVg3HAVE/ 
DIMENSION COVIN,NleAVE(2~DATA(MeNh 

C.... REPLACE MISSING VALUES BY COLUMN MEANS 
DO 10 J.2,N 
AVE(20.1=0 
XP.0 
DO 20 1=2,14 
IF(DATA(1,J).EQ.99999.1 GO TO 20 
XP=XP+1 
AVE(2,A.AVE(22.11+DATA(10) 

20 CONTINUE 
IF(XP.NE.0) AVE(2,J).AVE(2,..11/XP 
DO 30 I=201 

30 IF(DATA(I,J).EQ. 99999.h DATA(11.11.AVE(2.J) 
10 CONTINUE 

C.... COMPUTE COVARIANCES 
DO 50 J=2,N 
DO 50 K=2,J 
COV(J,K1=0 
DO 51 1.2214 

51 COVIJ,K)=COV(J.K)+IDATA(I,J1—AVE(2pJli*(DATAIIIK)=AVE(2pK)à 
COV(J,Kh.COV(JeKl/(M-1) 

50 COV(K,J)=COV(J,K) 
C.... LABEL BORDERS 

DO 60 J.2,h4 
AVE(1.JI=DATA(1,J) 
COV(1,Jh.DATA(1•J) 

60 COV(Jelh.DATA(1,A 
COV(ILD.CC 
AVEllahmAA 
RETURN 
END 
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SUBROUTINE STAND(A.M.N) 
C•• • 	 20 MetY 1973 
C.... STANDARDIZES A BORDERED ARRAY A TO HAVE UNIT VARIANCE AND ZERO MEAN 
C.... M = NUMBER OF ROWS 
C.... A = M BY N ARRAY 
C.... N = NUMBER OF COLUMNS 
C•• • 	  

DIMENSION AIM.N/ 
C.... COMPUTE MEANS AND VARIANCES 

DO 20 .1=2,N 
SO=0 
51=0 
S2=0 
DO 30 I=204 
IFIAII.J/.EQ.99999.1 GO TO 30 
SO=S0+1 
51=51+AII.Jà 
52=52+A(1..1,1**2 

30 CONTINUE 
IF(S0.NE.01 51=51/S0 
IFISO.NE.0) S2=S2/50-51**2 
IFIS2.GT.0/ S2=S2**0.5 
IFIS2.EQ.0/ 52=1 
DO 40 I=204 

40 IF(AII.J).NE.99999.) AtIeJ/=IAII.J1-511/52 
20 CONTINUE 

RETURN 
END 

SUBROUTINE MOMIU.C.P.X.N.NI 
C..   	 .... 	20 MAY 1973 
C 	COMPUTES WEIGHTED MEANS AND COVARIANCES 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... X = M BY N DATA ARRAY 
C.... U = N BY 1 ARRAY OF MEANS 
C.... P = M BY I ARRAY OF WEIGHTS 
C.... C = N BY N ARRAY OF COVARIANCES 
C•• • 

DIMENSION 
SP=0 
DD 10 I=2.14 

10 SP=SP+P(II 
IFISP.EQ.0.1 SP=10.**I-101 
DO 20 J=2.N 
SS=0. 
DO 21 I=2.N 

21 SS=SSI-X[I.JI*PIII 
20 U(J)=S OS/SP 

DO 30 J=2,11 
DO 30 K=29.1 
55=0. 
DO 31 I=2,M 

31 S5=554-(XCI.Jà-•UIJI1*(XII.K1—U(K)h*P(II 
CI.1.1()=SS/SP 

30 CIK.J)=CIJ.K/ 
RETURN 
END 
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CHAPTER 3 

Quick Partition Algorithms 

3.1 1NTRODUCTION 

Figure 3.1 consists of the outlines of 20 pieces in a child's jigsaw puzzle. The assembly 
of jigsaw puzzles is an instructive example of human clustering ability. A standard 
strategy is to first select the pieces with straight-line edges and construct the border, 
then to select pieces with some significant color combination and assemble these and 
to continue this process until most pieces are incorporated. At the end, there is usually 
a blah background color and these pieces are incorporated on the basis of shape. 
Characteristically then, some "important" variable is used as a basis for an initial 
crude partition and other variables are used for more detailed work within the par-
tition. 

It is difficult to formalize the patterns of color that are frequently used, but the 
shapes of the edges are explicitly measurable. In this puzzle (and in many), every 
piece has four edges and four vertices and two pieces are joined together if and 
only if they have an exactly matching edge. Three measurements were made for each 
edge: 

(1) the length of the line between the two vertices, 
(11) the maximum deviation of the edge from this line into the piece, and 
(iii) the maximum deviation of the edge from this line out from the piece. 

There are thus twelve measurements for each piece. These measurements are given 
in Table 3.1. 

Let A(41), A(I, 2), and A(I, 3) denote the three measurements of the first edge 
of the /th piece. The first edge of the /th piece corresponds to the first edge of the Jth 
piece if A(I,1)= A(J,1), A(I, 2) = A(J, 3), and A(I, 3) = A(J, 2). A natural 
measure of distance between edges taking values X1 , X2, X3 and Yl, Y2, Y3 is thus 

D = [(XI — Y 1)2 + (X2 — Y3)2 -I- (X3 — Y2)92/2. 

This is not euclidean distance. The distance between two pieces is the minimum dis-
tance between any two edges. If any two edges exactly coincide, the distance between 
the pieces will be zero. 

3.2 LEADER ALGORITHM 

Preliminaries. It is desired to construct a partition of a set of M cases, a division of 
the cases into a number of disjoint sets or clusters. is assumed that a rule for com-
puting the distance D between any pair of objects, and a threshold T are given. The 

74 
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Figure 3.1 Jigsaw puzzle. 

algorithm constructs a partition of the cases (a number of clusters of cases) and a 
leading case for each cluster, such that every case in a cluster is within a distance T 
of the leading case. The threshold T is thus a measure of the diameter of each cluster. 
The clusters are numbered 1, 2, 3, ... , K. Case I lies in cluster P(I) [1 S P(I) S K]. 
The leading case associated with cluster J is denoted by L(./). 

The algorithm makes one pass through the cases, assigning each case to the first 
cluster whose leader is dose enough and making a new cluster, and a new leader, for 
cases that are not dose to any existing leaders. 

STEP 1. Begin with case I = 1. Let the number of clusters be K = 1, classify the 
first case into the first cluster, P(1) = 1, and define L(1) = 1 to be the leading case 
of the first cluster. 

STEP 2. Increase I by 1. If I > M, stop. If / S M, begin working with the cluster 
J= 1. 

sTEP 3. If D(I, J) > T, go to Step 4. If D(I, J) s T, case I is assigned to cluster J, 
P(I) = J. Return to Step 2. 
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Table 3.1 Jigsaw Puzzle Measurements 

Piece 
	

Edge A 	 Edige B 	 Edge C 
	

Edge D 

	

1 	142 	O 	O 	191 21 48 	125 40 12 	167 	O 	O 

	

2 	120 	O 	O 	183 59 16 	16o 16 50 	192 48 21 

	

3 	186 	o 	o 	208 17 51 	152 49 13 	183 17 59 

	

4 	138 	O 	O 	180 	O o 	157 13 42 	209 51 18 

	

5 	126 13 39 	138 	O 2 	125 20 43 	In 	o 	o 

	

6 	159 50 15 	163 4 	o 	152 47 17 	139 	2 	o 

	

7 	149 13 50 	142 	O 	6 	157 19 49 	163 	o 	3 

	

e 	157 42 13 	203 	O 	O 	152 50 25 	143 	3 	O 

	

9 	125 44 20 	190 	2 	o 	138 42 18 	159 	O o 

	

io 	152 17 46 	144 	2 	o 	147 19 56 	190 	o 	2 

	

11 	157 48 20 	161 	O 	O 	152 49 22 	143 	O 2 

	

12 	152 25 49 	139 	o 	o 	153 27 52 	160 	O 	O 

	

13 	138 19 42 	112 	o 	1 	143 10 41 	143 	O 	O 

	

14 	147 55 20 	150 	6 	1 	154 36 21 	113 	1 	o 

	

15 	151 22 48 	126 	O 	8 	137 14 51 	160 	o 	6 

	

16 	152 52 27 	141 	O o 	153 42 21 	128 	8 	O 

	

17 	143 42 	9 	149 	7 54 	117 	O 	O 	136 	O 	O 

	

18 	154 22 36 	130 77 	6 	192 	O 	O 	150 54 	8 

	

19 	134 52 13 	140 16 51 	123 	O 	O 	130 	6 78 

	

20 	151 21 43 	118 	O 	O 	150 	O 	O 	140 52 13 

Edges are in clockwise order. There are three measurements for each edge, in 
hundredths of an inch (the error in each measurement is approximately 1+,-6 in.): 
(i) the length of the line between the vertices, (ii) the maximum deviation of the edge 
from the line between vertices into the piece, and (iii) the maximum deviation of the 
edge from the line between vertices out from the piece. 

STEP 4. Increase J to J 1. IfJ K, return to Step 3. IfJ > K, a new cluster is 
created, with K increased by 1. Set P(I) = K, L(K)= I, and return to Step 2. 

3.3 LEADER ALGORITHM APPLIED TO JIGSAW PUZZLES 

The algorithm requires a measure of distance, which will be the one described in 
Section 3.1. A threshold T is needed also. Since the error in a single measurement is 
approximately l (in hundredths of an inch), a plausible distance between two matching 
edges is [22 + 22 + 22P/2 = 3.5. An initial threshold T = 4 will be used. 

STEP 1. habil)/ K = 1, P(1) = 1, L(1) = 1, and / = 1. 

sTEP 2. Increase / to / = 2. Try the first cluster J = 1. 
STEP 3. The distance D(2, 1) = 1 by matching edge B of 1 to edge D of 2. Since 

D(2, 1) 4, P(2) = 1. Return to Step 2. 

STEP 2. Increase / to / = 3. Try J = 1. 
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STEP 3. The distance D(3, 1) = 19 by matching edge D of 1 to edge A of 3. Since 
D(3, 1) > 4, go to Step 4. 

STEP 4. Increase J to 2. Since J = 2 > K = 1, a new cluster is created with K 
increased by 1. Set P(3) = 2, L(2) = 3, and return to Step 2. 

In this way, all cases are assigned to clusters as follows: 
Cluster 1: 	1 	2 	5 	13* 	16* 
Cluster 2: 	3 	4 	7 
Cluster 3: 	6 	10 	17* 
Cluster 4: 	8 	11* 	12 	15* 
Cluster 5: 	9 	18* 
Cluster 6: 	14 
Cluster 7: 	19 	20 

The pieces with asterisks do not truly have a matching edge with their cluster leader. 
The algorithm has identified seven true matches and five false matches. The false 
matches are mostly due to the algorithm rather than measurement error, because 
the algorithm assigns each case to the first leader to which its distance is within 
threshold, rather than to the closest leader. The difficulty is partly solved by reducing 
the threshold to T = = 2. 

Cluster 1: 	1 	2 	5 	13* 	16* 
Cluster 2: 	3 	4 	7 
Cluster 3: 	6 	10 
Cluster 4: 	8 	12 
Cluster 5: 	9 
Cluster 6: 	11 	15 
Cluster 7: 	14 
Cluster 8: 	17 	18 
Cluster 9: 	19 	20 

Here there are ten true matches, and two false matches. The false matches 13 and 
16 to 1 represent edges that are accidentally very dose and should not be blamed 
on the algorithm. 

It is sensible to consider clustering edges rather than pieces, since it is the similarities 
between edges that are used in matching pieces. The results of this clustering are given 
in Table 3.2. Ideally, there should be 31 clusters of pairs of matched edges, and 18 
clusters of single edges corresponding to the borders of the puzzle. The computed 
partition contains one cluster of four edges, two clusters of three edges, 25 clusters 
of two edges, and 19 clusters of single edges. There are 23 true matches and 12 false 
matches, all of which are due to dose similarities between edges without indentations. 
These errors seem unavoidable, whatever the algorithm. 

3.4 PROPERTIES OF LEADER ALGORITHM 

The positive feature of the leader algorithm is that it is very fast, requiring only 
one pass through the data. (It is thus not necessary to store the data in core, but it is 
sufficient to read it once from disk or tape.) 

Several negative properties follow from the indecent haste with which objects are 
assigned to clusters. The first of there is that the partition is not invariant under 
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Table 3.2 
Clusters of edges in a jigsaw puzzle using a leader algorithm with a threshold T = 2. 
False matches are denoted by an asterisk. 

CLUSUR 	 EDGE:3 	 CIUSTER 	 BIDGES 

	

1 	 lA 1 3D* 1 6W0 	 26 	 9C 1 3A 

	

2 	1B 2D 	 27 	 9D 1 1B• 12D* 

	

3 	1C 5A 	 28 	10B 

	

4 	1D 	 29 	10C 14A 

	

5 	2A 	 30 	11C i5A 

	

6 	2B 3D 	 31 	12C 1 6A 

	

7 	2C 6A 	 32 	13B 14D 

	

e 	3A 	 33 	1 3C 17A 

	

9 	3B 4D 	 34 	14B 1 5D 

	

1 0 	3C 	 35 	14C 18A 

	

11 	4A 	5B* 17D* 1213* 	 36 	15B 16D 

	

12 	 4B 	 37 	1 5C 

	

1 3 	4C 8A 	 38 	1 6C 

	

14 	5C 9A 	 39 	 17B 18D 

	

1 5 	5D 	 4o 	17C 208* 

	

1 6 	6B 7D 	 41 	 1 8B 9D 

	

17 	6C I OA 	 42 	1 8C 

	

18 	6D 	 43 	l 9A 

	

19 	7A 	 44 	19B 

	

20 	78 	 45 	19C 

	

21 	7C 11A 	 46 	20A 

	

22 	 8B 	 4, 	2 oC 

	

2 3 	8C 1 2A 	 48 	2 0D 

	

24 	8D 11D. 

	

2 5 	9B 1 OD 

reordering of the cases. For example, the first case is always a cluster leader. A second 
negative property is that the first clusters are always larger than the later ones, since 
they get first chance at each case as it is allocated. This property could be changed by 
allocating each case to the cluster whose leader it is closest to, but this change might 
require four or five times (or more) the distance calculations. 

3.5 SORTING ALGORITHM 

Prelbninaries. A threshold T(J) is given for the Jth variable (1 J N). Cases 
are partitioned into a set of clusters so that within each cluster the Jth variable has a 
range less than T(J). The thresholds should be chosen fairly large, especially if there 
are many variables. The procedure is equivalent to converting each variable to a 
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category variable (using the thresholds to define the categories) and the clusters are 
then the cells of the muitidimensional contingency table between all variables. 

STEP 1. Order all cases / (1 	/ M) according to the integrai part of A(I, DITO). 

S'TEP 2. Reorder all cases / (1 	/ M) according to the integrai part of A(I, 2)/ 
T(2). Then reorder according to the integrai part of A(1,32T(3), . . . , A(I, N)IT(N). 

sTEP 3. Crusters are now the sequences of cases which have identical values of the 
integral parts of A(I, J)IT(J) for all J. 

H1NT. Order by the least important variables first. 

3.6 SORTING ALGORITHM APPLIED TO JIGSAW PU7.7I.ES 

This algorithm will be used for an initial sorting of edges—the matching of opposite 
edges would be necessary in a later step. A threshold of 10 will be used for each 
variable to avoid an excessiveiy large number of clusters. 

STEP 1. (Tabie 3.3). Order by integral part of deviation into piece divided by 10. 
The minimum value is O; the maximum is 7. 

Table 3.3 

Inside deviation/I0 	Edges 

O 	lA 1D 2A 3A 4A 4B SB SD 6B 6D 7B 7D 8B 8D 9B 9D 
10B IOD 11B 11D 12B 12D I3B 13D 14B 14D 15B ISD 16B 16D 
17B 17C 17D 18C 19C 19D 2013 20C 

1 	2C 3B 3D 4C SA 7A 7C 10A 10C 13A 13C 15C I9B 
2 	1B SC 12A 12C 15A 18A 20A 
3 	14C 
4 	IC 2D 3C 6C 8A 9A 9C 11A 11C 16C 17A 
5 	2B 4D 6A 8C 14A 16A 18D 19A 20D 
6 
7 	18B 

STEP 2. (Table 3.4). Reorder by integrai part of deviation out from piece divided 
by 10. The minimum value is O; the maximum is 7. 

Table 3.4 

Outside deviation/10 	Edges 

O 	1A 1D 2A 3A 4A 4B SB SD 6B 6D 7B 7D 8B 8D 9B 9D 
10B 10D IIB IID I2B 12D 13B 13D I4B 14D 15B 45D 16B 16D 
I7C 17D 18C 19C 20B 20C 17A 18D 18B 

I 	1C 3C 6C 8A 9C 2B 4D 6A 19A 20D 
2 	14C 2D 9A 11A 11C 16C 8C 14A 16A 
3 	SA 18A 
4 	4C 7C 10A 13A 13C 1B 12A 5C ISA 20A 
5 	17B 2C 3B 3D 7A 10C 15C 19B 12C 
6 
7 	19D 
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Next reorder by the integrai part of the length divided by 10 (Table 3.5). The mini-
mum value is 11; the maximum is 20. 

Table 3.5 

Length/10 	 Edges 

11 	1313 14D 17C 20B 
12 	2A 15B 16D 19C 1C 9A 5A SC 
13 	4A 5B 6D 12B 17D 18B 9C 19A 13A 15C 19D 
14 	lA 7B 8D 10B IlD 13D 14B 17A 20D 14A 13C 17B 7A 10C 19B 
15 	9D 20C 18D 3C 6C 8A 6A 14C 11A 11C 16C 8C 16A 18A 4C 7C 10A 12A 15A 20A 12C 
16 	1D 6B 7D 11B 12D 14B ISD 2C 
17 	SD 
18 	3A 4B 2B 3D 
19 	9B 10D 18C 2D 113 
20 	8B 4D 3B 

grEP 3. Clusters are sequences of edges with identical integer parts of A(I,J)1T(J) 
for all J. Each sequence in a cluster is consistent with the ordering given above. 

The clusters are given in Table 3.6. This clustering is not comparable to the ones 
based on the leader algorithm, because possible candidates for matching are not 
clustered together. Almost all the nonsingleton clusters are ones with straight edges, 
including both boundaries and internai straight edges. The other clusters must be 
matched to find matching edges—for example, the (15, 4, 1) cluster should be matched 
with the (15, 1, 4) cluster. This yields 6C-10A and 8A-4C as true matches and 3C-7C 
as a false match. 

3.7 PROPERTIES OF SORTING ALGORITHM 

The sorting algorithm is fast, requiring as many passes through the data as there are 
variables. The final clusters are independent of the original order of the cases (unlike 
clusters from the leader algorithm). They have a simple interpretation in that each 
variable has a range less than a given threshold T(J) in every cluster. 

This algorithm has a peculiar drawback in producing extremely large numbers of 
clusters when there are many variables. For example, with 10 variables, if every 
variable has an effect on the clustering (if thresholds are not set larger than the ranges 
of variables over all cases), there are potentially 2 10  = 1024 clusters. Another difficulty 
is that the clusters are forced to be "rectangular" by the threshold property. Thus, if 
a cluster is spherical, its cases will be divided among a number of rectangular cells 
and the cluster will not show clearly. 

3.8 TH1NGS TO DO 

3.8.1 Running the Leader Algorithm 

The leader algorithm is most appropriate for very large numbers of objects for which 
a quick initial sorting is required. Suitable data might be the moons and planets, or 
life expectancies by age and sex, or the dentition of mammals. The threshold must be 
guessed by using the knowledge that all objects in a cluster are within threshold 
distance from the cluster leader. For summarizing, the cluster leader represents the 
cluster. 
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Table 3.6 Finsi Clusters from Sorting AJgorithm 

Inside 	onte ide 
Length/1 o deviation/1 o deviation/1 o 

11 	 O 	 O 	13)3 i 4D 17C 20B 
12 	 O 	 O 	 2A i 5B i 6D 19C 
12 	 4 	 1 	 1C 
12 	 4 	 2 	9A 	

. 

12 	 1 	 3 	 sa 
12 	 2 	 4 	5C 
13 	 o 	 o 	4A 5B Q 123 l'TD 
13 	 7 	 o 	18B 
13 	 4 	 1 	9C 
13 	 5 	 i 	19A 
I 3 	 i 	 4 	1 3A 
1 3 	 1 	 5 	I 5C 
i 3 	 o 	 7 	19D 
14 	 O 	 O 	1A 7B 8D 10B 11D i 3D 16B i 7A 20D 
14 	 5 	 2 	 14A 
14 	 i 	 4 	1 3C 
14 	 o 	 5 	17B 
14 	 1 	 5 	7A 10C 19B 
1 5 	 o 	 o 	9D 20C 
15 	 5 	 o 	18D 
15 	 4 	 1 	3C 6D 8A 
i 5 	 5 	 i 	6A 
15 	 3 	 2 	 14C 
1 5 	 4 	 2 	11A iiC 16C 
i 5 	 5 	 2 	 8C 16A 
15 	 2 	 3 	i M 
15 	 1 	 4 	4C 7C 1 0A 
15 	 2 	 4 	12A 1 5A 2 oA 
15 	 2 	 5 	12C 
1G 	 o 	 O 	 iD 6B 	7D liB 12D 14B 15D 
i 6 	 i 	 5 	2C 
17 	 o 	 O 	5D 
i e 	o 	 o 	3A 4B 
18 	 5 	 I 	2B 
18 	 i 	 5 	5.1) 
i 9 	 O 	 o 	9B 10D 18C 
19 	 4 	 2 	 2D 
19 	 2 	 4 	1B 
2 o 	 o 	 O 	8B 
2 o 	 5 	 i 	4D 
20 	 1 	 5 	3B 

3.8.2 Improved Leader Algorithm 
A one-pass leader algorithm that avoids infiated early clusters measures the distance 
of a new object to the leaders in reverse order and allocates it to the first leader to 
which it is close enough. A many-pass algorithm, which is invariant under a change of 
the input order and does not require the specification of thresholds, begins with an 
initial central object (say, the mean object on each variable). On the first pass the 
object furthest from this is discovered. On the second pass, objects are allocated to 
whichever of the first two objects they are closest, and the object furthest from its 
leader is discovered to be the new leader in the next pass. In this way, after K passes, 
K clusters will be discovered. This algorithm is analogous to the K-means algorithm, 
without updating of cluster leaders. 

3.8.3 Number of austers 
It is always difficult to estimate the threshold and the number of clusters to be ob-
tained for a given threshold. A very small initial threshold will produce a large number 
of small clusters after expensive computation. 

Edges 



SUBROUT1NE QUICKIA,MINeNC.THRESH.LC ,LL,XMISS/ 
:1•• •  	 20 MAY 1973 
C.... QUICK SUCCESSIVELY ASSIGNS EACH ROW TO THE LAST CLUSTER FOR WHICH THE 
C.... DISTANCE BETWEEN THE ROW AND THE CLUSTER LEADER IS LESS THAN THRES;IOLD. 
C.... IF NO CLUSTER HAS THIS PROPERTY. THE ROW BECOMES A CLUSTER LEADER. 
C.... A = M BY N BORDERED ARRAY 
C.... M = NUMBER OF ROWS 
C.... N • NUMBER OF COLUMNS 
C.... NC = NUMBER OF CLUSTERS 
C.... THRESH = THRESHOLD FOR ASSIGNING AN OBJECT TO A LEADER. 
C.... LL • 1 BY NC ARRAY LISTING LEADERS 
C.... LC . 1 BY M ARRAY SPECIFYING LEADER FOR EACH OBJECT 
C.... XMISS = VALUE TO BE TREATED AS MISSING 
C•• • 

UIMENSION AIMeN/eLLINCI.LCIM/ 
DIMENSION AA(201 
KC=1 
LLID=2 
DO 20 I=2.M 
LC(1/.0 
DO 21 KK=1.KC 
K=KC—KK+1 
L=LLIK) 

C.... CDMPUTES OISTANCE BETWEEN ROW AND CLUSTER LEADER 
DD=0 
DC00 
DO 22 J=2,N 
IF IAIL,Ji.EQ.XMISS.OR.AIIIJ).EQ.XMISS1 GO TO 22 
DC=DC+1 
DO=00+IAIL,J)—AII,J))**2 
IFIDD.GT.THRESH**2*IN—li/ GO TO 21 

22 CONTINUE 
IFIDC.NE.0) DD=OD/DC/**0.5 
IF IDD.GT.THRESHI GO TO 21 

C.... ASSIGN RUM I TO CLUSTER K IF DISTANCE BELOW THRESH 
LC(I)=K 
GO TO 20 

21 CONTINUE 
IF (KC.EQ.NO  GO TO 20 

C.... CREATE NEw CLUSTER AND LEADER 
KC=KC+1 
LCIIi=KC 
LLIKCI=1 

20 CONTINUE 
C.... OUTPUT CLUSTER LEADERS 

WRITE(6,4/ 
4 FORMATI16HOCLUSTER LEADERS) 

DO Bù K=1.KC 
I=LLIKI 

60 WRITEI6.31 KrIAII.J),J=1.N/ 
3 FORMATIBM CLUSTER,1412X.A4.10F11.4/IIBbIOF11.411 

C 	OUTPUT CLUSTERS 
KC=KC+1 
DO 50 K=IfKC 

J=0 
DO 50 1=2,M 
IF (J.EQ.20I J=0 
IF ILC(II.NE.KKI GO TO 50 
J=J+1 
AAIJI=AII.1I 

50 IF(J.E0.20.0R.II.EQ.M.AND.J.NE.01/ WRITE(6,1/ KK.IAAIJJI,JJ=1,Ji 
1 FORMATI' CLUSTER'.15.20I1X.A5)/ 

RETURN 
END 
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• 

For a metric distance [D(I, J) s  D(I, K) + D(J, K) for each I, J, K] there is a 
relationship between the threshold and the number of clusters. Suppose that the leader 
algorithm, for some order of the objects, produces K clusters at threshold T. Then, 
for any order of the objects, show that it produces no more than K clusters at threshold 
2T. 

3.8.4 Size of Clusters 

Let the data be real values with each point taken at random from [0, 1]. Then the 
size of the interval corresponding to the Kth cluster is smaller, in probability, than 
that of the (K — 1)th cluster; this means that for every x the Kth cluster is at least 
as likely as the (K — 1)th cluster to be less than x in size. It would be interesting to 
know by analysis or experiment the distribution of size of the Kth cluster. (This 
does not depend on the number of points, for large numbers of points.) 

PROGRAMS 

QUICK 	finds quick partition by assigning each object to the first leader. object 
to which its distance is less than a threshold. 



CHAPTER 4 

The K-Means Algorithm 

4.1 INTRODUCTION 

The principal nutrients in meat, fish, and fowl are listed in Table 4.1. The foods are 
classified by food type and method of preparation. In the source book, Yearbook of 
Agriculture (1959), there are more details on the mode of preparation, as well as 
amounts of vitamins and basic amino acids, given for dairy products, meats, fowl, 
fish, vegetables, fruits, grains, oils, and sugars. There is a ready-made weighting 
scheme for the nutrients in the estimated daily dietary allowances: food energy (3200 
cal), protein (70 g), calcium (0.8 g), and iron (10 mg). In Table 4.2, note that these 
foods deliver about 7 % of the daily allowances in calories but about 25% of iron, so 
that the iron component is rather heavily weighted. An argument could be made that 
iron is less important than calories or protein and so should be given less weight or 
ignored entirely. 

It is desired to partition the foods so that foods within clusters are dose, in some 
sense, and foods in different clusters are distant. The discordance between the data 
and a given partition P(M, K) of M objects into K clusters is measured by an error 
e[P(M, K)]. The very large number of possible partitions makes it impractical to 
search through all for the minimum of e. It is necessary instead to use the technique 
of local optimization. In this technique, a neighborhood of partitions is defined for 
each partition. Beginning with an initial partition, search through the set of partitions 
at each step, moving from a partition to that partition in its neighborhood for which 
e[P(M, K)] is a minimum. (If the neighborhoods are very large, it is sometimes 
cheaper computationally to move to the first partition discovered in the neighborhood 
where e[P(M, K)] is reduced from its present value.) A number of stopping rules are 
possible. For example, the search stops when e[P(M, K)] is not reduced by movement 
to the neighborhood. The present partition is then locally optimal in that it is the 
best partition in its neighborhood. 

As an example, consider partitions into three clusters of the beef foods BB, BR, BS, 
BC, and BH. A plausible neighborhood for a partition is the set of partitions obtained 
by transferring an object from one cluster to another. Thus, for the partition 
(BB BR) (BS) (BC BH), the neighborhood consists of the following ten partitions: 
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(BR) (BB BS) (BC BH), 
(BR) (BS) (BB BC BH), 
(BB) (BR BS) (BC BH), 
(BB) (BS) (BR BC BH), 
(BB BR BS) O (BC BH), 
(BB BR) O (BS BC BH), 
(BB BR BC) (BS) (BH), 
(BB BR) (BS BC) (BH), 
(BB BR BH) (BS) (BC), 
(BB BR) (BS BH) (BC). 

A typical search route beginning with (BB BR) (BS) (BC BH) might be 

(BB BR) (BS) (BC BH) 	with e = 8 
(BB BR) (BS BC) (BH) 	vvith e = 6 
(BR) (BS BC') (BB BH) 	with 	e = 5 
(BR BC) (BS) (BB BH) 	with e = 4. 

No neighborhood of this partition reduces e, and the search stops. 

4.2 K-MEANS ALGORITHM 

Preliminaries. The /th case of the Jth variable has value A(I, J) (1 	I M, 
1 J N). The variables are scaled so that euclidean distance between cases is 
appropriate. The partition P(M, K) is composed of the clusters 1, 2, . . . , K. Each of 
the M cases lies in just one of the K clusters. The mean of the Jth variable over the 
cases in the Lth cluster is denoted by B(L, J). The number of cases in L is N(L). The 
distance between the Rh case and Lth cluster is 

D(I, L) = a o J N} [A(I, J) — B(L, j)191/2. 

The error of the partition is 

e[P(M , K)] = I {1 I M} D[I, L(I)12, 

where L(I) is the cluster containing the /th case. The general procedure is to search 
for a partition with small e by moving cases from one cluster to another. The search 
ends when no such movement reduces e. 

STEP 1. Assume initial clusters 1, 2, . . . , K. Compute the cluster means B(L,J) 
(1 L K, 1 J N) and the initial error 

e[P(M, K)] =I {1 I M} D[I, L(I)]2, 

where D[I, L(I)] denotes the euclidean distance between / and the cluster mean of 
the cluster containing L 

STEP 2. For the first case, compute for every cluster L 

N(L)D(1, L)2 	N[L(1)1D[1, L(1)]2 

N(L) + 1 	N[L(1)] — 1 ' 
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The increase in error in transferring the first case from cluster L(1), to which it belongs 
at present, to cluster L. If the minimum of this quantity over all L sé L(1) is negative, 
transfer the first case from cluster L(1) to this minimal L, adjust the cluster means of 
L(1) and the minima! L, and add the increase in error (which is negative) to 
e[P(M, K)]. 

STEP 3. Repeat Step 2 for the Ith case (2 s I  S  M). 

STEP 4. lf no movement of a case from one cluster to another occurs for any case, 
stop. Otherwise, return to Step 2. 

Table 4.1 Nutriente in Meat, Fish, and Fowl 
[The Yearbook of Agriculture 1959 (The United States Department of Agriculture, 
Washington, D.C.) p. 244.] The quantity used is always 3 ounces. 

	

Food 	Protein 	Fat 	Calcium Iron 

	

Energy 	(Grama) (Grame) 	tMilli 	(Milli 
(Calories) 	 Grame) 	Grams) 

BB Beef, braised 	340 	20 	28 	 9 	2.6 

HR Hamburger 	 245 	21 	 17 	9 	2.7 

BR Beef, roast 	 420 	15 	39 	7 	2.0 

BS Beef, steak 	 375 	19 	32 	9 	2.6 

BC Beef, canned 	 180 	22 	10 	 17 	3.7 

CB Chicken, broiled 	115 	20 	3 	8 	1.4 

CC Chicken, canned 	170 	25 	 7 	12 	1.5 

BH Beef heart 	 160 	26 	5 	14 	5.9 

LL LaMb leg, roast 	265 	20 	20 	 9 	2.6 

LS Lardb shoulder, roast 	300 	18 	25 	9 	2.3 

HS Smoked ham 	 340 	20 	28 	 9 	2.5 

PR Pork roast 	 340 	19 	29 	9 	2.5 

PS Pork simmered 	 355 	 19 	30 	9 	2.4 

BT Beef tongue 	 205 	18 	14 	7 	2.5 

VC Veal cutlet 	 185 	23 	9 	9 	2.7 

FB Bluefish, baked 	135 	22 	 4 	25 	 .6 

AR Clams, raw 	 70 	11 	1 	82 	6.0 

AC Claus, canned 	 45 	7 	1 	74 	5.4 

TC Crabmeat, canned 	90 	14 	2 	38 	 .8 

I 	Haddock, fried 	135 	16 	5 	15 	.5 

MB Mackerel, broiled 	200 	19 	13 	5 	1.0 

MC Mackerel, canned 	155 	16 	9 	157 	1.8 

PF Perch, fried 	 195 	16 	11 	14 	1.3 

SC Salmon, canned 	120 	17 	 5 	159 	0.7 

DC Sardine, canned 	I80 	22 	 9 	367 	2.5 

UC Tuna, canned 	 170 	25 	7 	7 	1.2 

RC Shrimp, canned 	110 	23 	1 	98 	2.6 
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Table 4.2 Nulrients in Meat, Fish, and Fowl 

As a percentage of recommended daily allowances. 

Food 	Protein 	Fat 	Calcium Iron 
Energy 	 (Grams) 

Beef, braised 	 11 	29 	2e 	 i 	 26 

Hàtburger 	 8 	3o 	17 	1 	27 

Beef, roast 	 13 	21 	 39 	1 	20 

Beef, ateak 	 12 	27 	32 	1 	26 

Beef, canned 	 6 	31 	io 	 2 	 37 

Chicken, broiled 	 4 	29 	3 	1 	14 

Chicken, canned 	 5 	36 	7 	2 	15 

Beef, heart 	 5 	37 	5 	 2 	59 

Laido leg, roast 	 8 	29 	20 	 1 	26 

LaMb shoulder, roast 	9 	26 	25 	1 	25 

any amoked 	 11 	29 	28 	1 	25 

Pork roast 	 11 	27 	29 	1 	25 

Pork simmered 	 11 	27 	30 	1 	25 

Beef tongue 	 6 	26 	14 	 1 	25 

Wel cutlet 	 6 	33 	9 	1 	27 

Bluefish, baked 	 4 	31 	 4 	3 	6 

Clams, raw 	 2 	 i 6 	i 	io 	6o 

Clams, canned 	 i 	io 	i 	9 	54 

Crabmeat, canned 	 3 	20 	 2 	 5 	e 
Hàddock, fried 	 4 	 23 	5 	2 	5 

Mackerel, broiled 	 6 	27 	13 	i 	io 

Mackerel, canned 	 5 	 23 	9 	20 	18 

Perch, fried 	 6 	23 	11 	2 	13 

Salmon, canned 	 4 	 24 	5 	20 	 7 

Sardines, canned 	 6 	31 	9 	46 	25 

Tune, canned 	 5 	36 	7 	1 	12 

Shrimp, canned 	 3 	33 	i 	12 	26 

4.3 K-MEANS APPLIED TO FOOD NUTRIENT DATA 

To keep the computations manageable, only the first eight foods will be considered 
for the nutrients' food energy, protein, and calcium as a percentage of recommended 
daily allowances. The eight foods will be partitioned in three clusters. The calculafions 
appear in Table 4.3. 
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Table 4.3 Application of Ar-Nleatis Algorithm to Food Data 
Ehergy 	Protein 	Calcium 

BB 	 11 	 29 	1 

BR 	 8 	 30 	 1 

BR 	 13 	 21 	1 

Be 	 12 	 27 	 1 

BC 	 6 	 31 	 2 

CB 	 4 	 29 	 1 

CC 	 5 	 36 	 1 

BH 	 5 	 37 	2 

e - 15 14.9 INITIAL CLUSTER NRANS 

Energy 	Proteia 	Calcium 

1, BR, CB 	 8.5 	 25 	 1 

2. HR, HS 	 io 	 28.5 	1 

3.

• 

BB, BC, CC, BR 	 6.75 	33.25 	1.5 

FIRST MESE 

1. BR, CB 	 8.5 	 25 	 1 

2. HR, BS, BB 	 10.33 	28,67 	1 

3. BC, CC, BR 	 5.33 	34.67 	1.67 

e 108.2 

SECOND CRUDE 	 e - 61,4 

1. BR 	 13 	 21 	 1 
2. HR, BS, BB 	 10.33 	28.67 	1 

3. BC, CC, BH, CB 	 5 	 33.25 	1.5 

STEP 1. A quick initial clustering, which often works well, is based on the case 
sums. Suppose these are denoted by SUM(/), having minimum value M1N and maxi-
mum value MAX. To obtain K initial clusters, set case I into the Jth cluster, where 
J is the integrai part of K[SUM(/) — M1N]/(MAX — MIN) + 1. Here the case 
sums are 41, 39, 35, 40, 41, 34, 42, and 44. The corresponding clusters are 3, 2, 1, 2, 
3, 1, 3, and 3. Thus the initial partition is (BR CB) (HR BS) (BB BC CC BH). The 
values of B(L, J) (1 S L 3, 1 S J S  3) are next computed. For example, B(1, 1), 
the mean of cases in the first cluster for the first variable, equals (13 + 4)/2 = 8.5. 
(See Table 4.3 for more.) The error for the initial partition is the sum of squared 
distances of cases from their cluster means, 

e[P(8, 3)] = (11 — 6.75) 2  + (29 — 33.25)2  + (1 — 1.5)2  + (8 — 10)2  
▪ (30 — 28.5)2  + (1 — 1) 2  + (13 — 8.5)2  (21 — 25)2  
+ (1 — 1)2  + (12 — 10)2  + (27 — 28.5)2  + (1 — 1) 2  
+ (6 — 6.75)2  + (31 — 33.25)2  + (2 — 1.5)2  + (8.5 — 4)2  
+ (29 — 25) 2  + (1 — 1)2  + (5 — 6.75)2  + (36 — 33.25)2  
+ (1 — 1.5)2  + (5 — 6.75)2  + (37 — 33.25)2  -I- (2 — 1.5)2 

 = 154.9. 
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The first three squares are the squared distance of BB from its cluster mean (6.75, 
33.25, 1.5), and so on. 

STEP 2. For the first case, the distances to clusters are 

D(1, 1)2 = (11 — 8.5)2 + (29 — 25)2 + (1 — 1)2 = 22.25, 
D(1, 2)2 = 1.25, 
D(1, 3)2 = 36.4. 

The increase in error in transferring the first case to cluster 1 is 2 x 22.5/3 — 4 x 
36.4/3, and that to cluster 2 is 2 x 1.25/3 — 4 x 36.4/3. The cluster that is best for 
the first case is thus the second cluster, and the error reduction is 47.7. The new value 
of e[P(8, 3)] is thus 154.9 — 47.7 = 108.2. 

It is necessary to update the means of clusters 2 and 3, since cluster 2 has gained 
the first case and cluster 3 has lost it. For example, 

B(2, 1) = (11 -I- 2 x 10)/3 = 10.33, 
B(2, 2) = (29 + 2 x 28.5)/3 = 28.67, 

B(2, 3) = (1 + 2 x 1)/3 1.00. 

STEP 3. Repeating Step 1 on all cases, for case 2, cluster 2 is far closer than any other, 
and case 2 remains in cluster 2, with no change taking piace. Continuing, no change 
takes piace until case 6, which moves to cluster 3. No further changes occur in this 
pass. 

sTEP 4. Since some changes occurred in the last pass, another pass is necessary 
through all cases. No changes occur on this pass and the algorithm stops with the 
final cluster (BR) (HR BS BB) (BC CC BH CB). These clusters are characterized by 
the variables as follows: The first cluster is high in energy and low in protein, the 
second is high in energy and protein, and the third is low in energy and high in protein 
Calcium hardly matters. The complete data set is partitioned in Table 4.4. 

4.4 ANALYS1S OF VARIANCE 

Some distributions which appear frequently in the analysis of variance are the 
following: 

(i) the normal distribution N(p, a2), which has mean p and variance a2 and density 
exp [— A-(x — 12)2cr-9/aN127r. The unit normal is N(0, 1), having mean O and 
variance l ; 

(ii) the chi-square distribution x:, which is the distribution of a sum of squares 
of n independent unit normals; and 

(W) the F distribution F,„,„, which is the ratio of independent standardized chi 
squares, (x2m/m)(x„2/n)-i. 

Suppose P(M, K)is a partition of M objects into K clusters, and let e(M, K, J) = 
I M} {A(I, J) — B[L(I),J1}2, where the case / lies in cluster L(1) and 

B(L, J) is the mean of the Jth variable over cases in cluster L. If the clusters are selected 
without regard to the Jth variable and if 	N{,u[L(I)], cr2) independently for 
each I, e(M, 	cr2x2m_K. Furthermore, if the partition P(M, K 1) is obtained 
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Table 4.4 
Clusters and cluster means from K-means algorithm applied to food data on energy, 
protein, and calcium expressed as percentages of daily requirements. The two clusters 
obtained by splitting cluster 3 are denoted by 31 and 32. 

PARTITION 	CLUSTLIS 	 EBBRO! PROTElff CAICIUM 

1 : BB ER BR BS BC CB CC EH LL LL 	6.5 	27.1 	5.5 
1113 PR PS BT VC FB AR AC TC EY 
MB MC PF SC DS UC RC 

	

2 	11 : BB BR BR BR BC CB CC BE LL LL 	6.7 	27.3 	2.6 
118 PR PS BT VC FB AR AC TC He` 
MB PF UC RC 

12 MC SC DS 	 4.7 	26.1 	28.5 

	

3 	12 
111 BB BR BR BS BC CB CC BH LL LL 	7.4 	29.0 	1.8 

BR PR PS BT VC FB HP MB PF UC RC 
112 AR AC TC 	 2.1 	15.2 	8.1 

	

4 	112 
2 : BB BR BR BS BC CB CC BH LL LL 	7.5 	28.8 	1.3 

11S PR PS BT VC FB AZ MB PF UC 
3 : MC SC RC 	 4.0 	26.7 	17.3 
4 : DS 	 5.6 	31.4 	45.9 

	

5 	112, 3, 4 
21 : BR BC CB CC BH VC FB UC 	 5.6 	32.4 	1.5 
22 : BB BR BS LL LL RS PR PS BT W MB PF 	9.1 	25.8 	1.2 

	

6 	112, 21, 22, 4 

31 : MC Se 	 4.3 	23.6 	19.8 
32 : RC 	 3.4 	32.9 	12.3 

	

7 	112, 21, 31, 32, 4 
221 BB BS LL LL 118 PR PS BT HF MB PF 	8.7 	26.5 	1.2 
222 : BR 	 13.1 	21.4 	.9 

	

8 	222, 31, 32, 4 

5 : BC CC BIT VC F33 UC 	 5.2 	34.0 	1.7 
6 AR AC 	 5.6 	31.4 	45.9 
7 : BB BR BR LL LL 11S PR PS MB 	 9.6 	27.8 	1.1 
8 : CB BT TC 117 W 	 4.6 	24.0 	2.1 

	

9 	222, 31, 32, 4, 5, 6, 
9 : BB BR BS LL LL HS PR PS 	 10.0 	27.9 	1.1 

1 : CB BT HF MB PF 	 5.3 	25.4 	1.2 
11 	TC 	 2.8 	20.0 	4.8 

by splitting one of the clusters in P(M, K), then the mean square ratio 

e(M,  K, J)  
1)(M - K 1), Fi. m_dc_i. 

(e(M, K 1, J) 

The ratio is a measure of the reduction of within-cluster variance for the Jth 
variable between the partitions P(M, K) and P(M, K 1). The F distribution is not 
correct for evaluating K-means partitions because each variable influences the 
partition. The partition P(M, K 1) is chosen to minimize 

(1 S JS N) e(M, K 1, J), 

and this will tend to increase all the mean square ratios. Also, the partitionP(M, K 1) 
is not necessarily obtained by splitting one of the clusters in P(M, K), so the mean 
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square ratio is conceivably negative. Nevertheless, as a crude rule of thumb, large 
values of the ratio (say, >10) justify increasing the number of clusters from K to 
K + 1. 

Suppose again that P(M, K) is a given partition into K clusters, that P(M, K + 1) 
is obtained from it by splitting one of the clusters, and that 

A(I, J),--, N{,ts[L(I),J], a2) 

independently over all / and J. 
Then the overall mean square ratio 

R - i e[P(M'  " 	1)(M - K + 1) 1::3 FN.(m_x_1)1V. 
ke[P(M, K + 1)[ 

Again this F distribution is not applicable in the K-means case, because the partition 
P(M, K + 1) is chosen to maximize the overall mean square ratio. Again, as a crude 
rule of thumb, overall mean square ratios greater than 10 justify increasing partition 
size. . 

Some ratio measures are given for the food data in Table 4.5. For the variables, 
notice that calcium is very much reduced at the second, fourth, and sixth partitions, 

Table 4.5 Ratio Due to K-Partition 

Decrease in the sum of squares from the (K - 1)th to the Kth partition, divided by 
the mean sum of squares within the Kth partition. 

MAXIMUM 	PARTITION OVERALL 	ENSRGY 	PROTESE' 	CALCIUM CLUSTER 	SIZE 
SIZE 

	

24 	 2 	 23.6 	 1.0 	0.1 	 64.1 

	

21 	 3 	 13.0 	 9.6 	25.8 	 4.1 

	

20 	 4 	 18.4 	 2.4 	O 	 200.8 

	

12 	 5 	 16.1 	15.4 	20.3 	 o. 3 

	

12 	 6 	 6.7 	 0.1 	 6.6 	 35.o 

	

il 	 7 	 3.2 	 4.8 	3.0 	 0.1 

	

9 	 8 	 12.5 	 18.4 	io.4 	 11.6 

	

8 	 9 	 6.5 	11.9 	3.5 	 31.9 

while energy and protein are reduced for the third and fifth. The larger ratios for 
calcium follow from the large initial variance for calcium [the initial variances are 10 
(energy), 37 (protein), and 95 (calcium)]. 

Plausible stopping points in the clustering are K = 2, K = 5, and K = 8, where 
the ratios are unusually large. 

4.5 VYEIGHTS 

The weights will depend on considerations outside the data. If persons eating the food 
were known to have a diet abundant in calcium, then the calcium component would 
be down-weighted. If protein were scarce in other foods, then it would be given 
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more weight. It is clear that in the initial analysis calcium was much the most im-
portant variable in the first few partitions. This is partly due to the scaling and partly 
due to the good clustering qualities of calcium, which is extremely high in a few sea 
foods and low elsewhere. 

Another weighting scheme scales all variables to equal variance. As previously 
explained, this may be self-defeating in reducing the weight of variables that cluster 
well. Another weighting scheme repeats the partition a number of times, with one of 
the variables given weight O each time. The effect of the omitted variable on the clus-
tering may be evaluated in this way. The 8-partitions corresponding to there weighting 
schemes are given in Table 4.6. Note there that calcium and protein are the best 

Table 4.6 Effect of Changing Weights on 8-Partitions of Food Data by K-Means 
Algorithm 

MEAN SQUARE ERROR WITHIN CLUSTERS 

WEIGHTING 	 Energy2 	Proteip 	Fat 	Calcium 	Iron 

	

(Calories ) 	(Grama ) 	(Grams 2 ) 	(Mgms2 ) 	(Mgms2 ) 

% DAILY ALLOWANCE 	4 665 	4.1 	 60 	 11 	.99 

»QUAL VARIANCE 	 924 	3.0 	10 	1500 	.42 

OMITTING ENERGY 	1392 	3.8 	17 	1199 	.45 

OMITTING PROTEIN 	1151 	19.5 	11 	320 	.20 

OMITTING FAT 	 1632 	 3 . 6 	20 	382 	.41 

OMITTING CALCIUt4 	816 	2.6 	 9 	6787 	.36 

OMITTING IRON 	 791 	4.1 	 9 	167 	1.25 

clustering variables in that their omission from the sum of squares to be minimized 
vastly increases their mean square error within the clusters obtained. Iron is the worst 
in that omitting it does not much increase the iron mean square and does much reduce 
the other mean squares. Since iron is subjectively less important anyway, a good final 
scheme would be to weight so that all variables would have variance 1 except iron, 
which would have variance O. 

4.6 OTHER DISTANCES 

The K-means algorithm searches for partitions P(M, K) with a small error 

e[P(M, K)] = {1 S  I  S  M} D 2 [I, L(I)], 

where D is the euclidean distance from I to the average object in L(I), the cluster to 
which I belongs. The essential characteristics of the K-means method are the search 
method, changing partitions by moving objects from one cluster to another, and the 
measure of distance. Euclidean distance leads naturally to cluster means and an analysis 
of variance for each of the variables. 

To consider more generai measures of distance, denote the Ith case {A(I, J), 
1 S  J S N} by A(I), and let B(L) = {B(L, J), J = 1, . . . , N} denote a set of values 
corresponding to the Lth cluster. 

A distance F[A(I), A(K)] is defined between the /th and Kth cases. The centrai 
case of the Lth cluster is B(L) minimizing {I e L}F[A(I), B(L)]. 
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The error of a particular partition is 

e[P(M, K)] = I {1 I M} F{A(1),B[L(I)]) 

where L(I) is the cluster containing L 
Locally optimal clusters may be obtained by moving cases from one cluster to 

another, if this decreases e, and updating the centrai cases after each movement. 
For example, if the distabce between two caSes is the sum of the absolute deviations 
between the cases over variables, then the central case of a cluster is the median for 
each variable. The contribution of a cluster to the error is the sum of absolute devia-
tions from the median, over all objects in the cluster and over all variables. 

Approaching the error function from a statistical point of view, the cases {A(I,J), 
1 J N} will be denoted by A(I), and the parameters 0(1), 0(2), . . . , 0(K) will be 
associated with each of the clusters. The cases in cluster L are a random sample from 
a probability distribution determined by 0(L); the probability of observing these 
cases is 

HP[A(/) I 0(L)], 

where the product is over the cases in the Lth cluster. The probability of observing all 
cases is il o i M} P{A(1)10[L(1)11. 

The error function associated with the partition P(M, K) is minus the log likelihood: 

e --= —I {1 I M} log P{A(I) i 0[L(I)]}. 

To minimize this error function for a particular partition, the parameters 0(L) are 
chosen by maximum likelihood. Searching over all possible partitions may now take 
place by using the K-means procedure. Choosing the values 0(L) corresponds to 
selecting the cluster "centers" B(L,J) in the K-means procedure. The probability 
distribution P[A(I)10(L)] specifies the joint distribution of all variables, given the 
cluster center 0(L). lf the variables are independent normal with equal variance and 
mean vector 0(L), the K-means error function is minus the log likelihood as indicated 
above. Note that this requires that the variables have equal variance within clusters. 

lndependent Laplace distributions for each variable within clusters implies a 
distance function summing absolute deviations. Uniform distributions within clusters 
implies a distance between cases equal to the maximum deviations between the cases, 
over variables. 

A further refinement is to use Bayes techniques, with some prior distribution of the 
parameters, 0(1), . . . , 0(K), which will be assumed to be independent and identical 
random variables. The random variables A(/) are marginally independent between 
clusters but dependent within, so that the probability of the observed cases is 
il o L K} P(L), where P(L) is the probability of the cases lying in cluster L. 
The value — log P(L)is a reasonable measure of cluster diameter, e = 1[—log P(L)] 
is a measure of partition error, and the same search procedure as before is used to find 
good partitions. 

4.7 THE SHAPE OF K-MEANS CLUSTERS 

Some properties of the K-means algorithm, including the convexity of the clusters, 
are discussed in Fisher and Van Ness (1971). Consider a partition that is locally 
optimal in 

e[P(M, K)] = I {1 I M} Da[I, L(I)] 
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Figure 4.1 Clusters separated by hyperplanes based on food data in Table 4.3. 

using the K-means search pattern. Here L(I) is the cluster containing case I, and 
D(I, L) is the distance between case I and the mean of cases in cluster L. 

Let Ll and L2 be two different clusters. For each I in LI, D(I, L1) < D(I, L2), 
for otherwise I would be removed from LI during step 2 of the algorithm. Therefore, 
each case I in Ll satisfies 

I {1 S J S  N} [B(L1, J) — B(L2, J)]A(I , J)> c, 
where 

c = I {1 S J  S  N} }[B(L1 , J) 2  — B(L2, J) 2], 

and each case I in L2 satisfies 

I {1 S / S N} [B(L1, J) — B(L2,1)1A(I, J) < c. 

Geometrically, the cases in LI and L2 are separated by a hyperplane normal to 
{B(L1, .1) — B(L2, J)} (see Figure 4.1). (This hyperplane is a linear discriminant 
function for separating cases into the clusters LI and L2.) 

Each cluster is convex, which means that a case lies in a cluster if and only if it is a 
weighted average of cases in the cluster. To show this, suppose that case II lies in 
cluster L2, but it is a weighted average of cases in cluster Ll. For all cases in Ll 

I {1 S J 5 N} [B(L1, J) — B(L2, J)]A(I , J)> c, 

and the reverse holds for cases in L2. 
Since A(II, J) = I W (I)A(I , J), where the summation is over cases in cluster Ll 

and W(/) Z  O, 
I {1 s J s N} [B(L1, J) — B(L2, J)]A(II, J)> c. 

Therefore.  case II does not lie in L2. Thus each cluster is convex, as required. 
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The partition that is optimal over all partitions is also, of course, locally optimal 
in the neighborhood of the K-means search procedure. The globally optimal clusters 
are therefore also convex. In searching for a globally optimal partition, it is necessary 
to consider only convex clusters, and in certain special cases this constraint makes it 
feasible to insist on the global optimum. 

In univariate problems, the convexity requirement means that clusters consist of 
all the cases lying in an interval. The clustering proceeds first by ordering all M cases 
and then by applying the Fisher algorithm (Chapter 6) to the ordered points. For 
example, the optimal 2-partition consists of clusters of the form {/ I A(I , 1) < c} and 
{/ A(I , 1) > c}, where there are only M choices of c. For the protein data in Table 
4.3, the case values are BB = 29, HR = 30, BR = 21, BS = 27, BC = 31, CB = 29, 
CC = 36, and BH 37. The clusters must be intervals in the sequence BR BS CB 
BB HR BC CC BH. The 2-partition is settled by trying the eight possible cuts giving 
(BR) (BS CB BB HR BC CC BH). The 3-partition is (BR) (BS CB BB HR BC) 
(CC BH), and so on. 

For 2-partitions with two variables, convexity requires that each partition be 
determined by a line. The first cluster lies on one side of the line and the second 
cluster lies on the other. The number of such partitions is M(M — 1)/2 + 1. It is 
thus feasible for just two variables to find exactly optimal 2-partitions. The number of 

(M — 1 	(M — 1) . 
2-partitions for N variables is 	{O J N} 	j ), where 	is the 

number of ways of choosing J objects from M — 1. For reasonably large N—say, 
N > 4--it quickly becomes impractical to obtain the optimal 2-partition by searching 
over hyperplanes. 

To find the optimal 2-partition, consider a projection V(/) = {1 J N} 
E(J)A(I,J), where the coefficients E(J) sum square to unity. Find the optimal 2- 
partition of the variable V and compute the mean square error between clusters—
say, B(V). The optimal 2-partition of all the data is the optimal 2-partition of V for 
that V maximizing B(V). Searching over all coefficients E(J) corresponds to searching 
over all hyperplanes. The error B(V) is continuous but not differentiable everywhere 
as a function of the E(J); it has many local maxima, and so setting derivatives equal 
to zero is useless. Fix J = J1 and consider coefficients E(J1), {ccE(J),J J1}, where 
E(J1) and a vary but E(J) for J J1 are fixed. The variable V is determined by a 
single parameter, and the optimal E(J1) may be found by using a similar procedure 
to the two-variable problem. In this way, each of the E(J)'s may be optimized one at 
a time. The final partition is not guaranteed globally optimal. 

Now, asymptotic arguments will be used to speculate about cluster shape. For M 
infinite, with one variable, normally distributed, the clusters for 2, 3, 4, . , par-
titions have been computed by Cox (1957) and Dalenius (1951). For example, the 
2-partition contains clusters (— co, O) (O, co), each with 50% of the cases. The 3- 
partition contains clusters (— co, —0.612) (-0.612, 0.612) (0.612, co), containing 
27 %, 46 %, 27 %, and so on (see Table 4.8). Note that the length of intervals increases 
towards the tails and the proportion of cases contained decreases. The cut points must 
be equidistant from the cluster means on either side, and the cluster means are deter-
mined by integration between the cutpoints. Beginning with an initial set of cut-
points, the cluster means are computed, then the cut points are taken anew as 
the averages of the neighboring cluster means, and so on until convergence. 
This is very similar to the K-means algorithm in concept and will not necessarily 
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Table 4.7 Relation between Weights and Mean Square Error within Clusters 

For 27 observations from five-dimensional spherical normal. The weights used are 
1, 2, 3, 4, 5. Table entries are weights multiplied by the mean square error within 
clusters. 

VARIABLE 

PAI2TITION SIZE 	 1 	 2 	 3 	4 	5  

1 	 1.2 	1.9 	2.7 	3.7 	4.5 

2 	 1.1 	1.8 	2.5 	3.3 	1.9 

3 	 1.0 	1.7 	1.9 	2.4 	1.9 

4 	 1.0 	1.7 	1.5 	1.8 	1.7 

5 	 .9 	1.6 	1.3 	1.3 	1.5 

10 	 .7 	.8 	1.1 	1.0 	.8 

15 	 .5 	.6 	.5 	.6 	.6 

converge to the optimum partition for any distribution (one with many modes, for 
example). 

For N variables, M infinite, assume some joint distribution with continuous density 
on the variables such that each variable has finite variance. As K -> co, the mean 
square error within clusters approaches zero. 1f the joint density is positive everywhere, 
for each case there must be a cluster mean arbitrarily dose to the case for K large 
enough. There will be some asymptotic N-dimensional distribution of cluster means 

Table 4.8 Optimal Clusters of Normal Distribution 

PARTITION SIZE 	 PROPORTION IN CLUSTERS 

2 	 0 	 .50 	.5 0  

3 	 + .612 	 .27 	.46 	.27 

4 	 0, + .980 	 .16 	.34 	.34 	.16 

5 	 + 1.230, + .395 	.11 	.24 	.31 	.24 	.11 

6 	 o, + 1.449, + .660 	.07 	.18 	.25 	.25 	.18 	.07 

that will depend on the original N-dimensional distribution of cases. In the neighbor-
hood of a point, the density of cases is nearly constant. A certain large number of 
cluster means will be located in the neighborhood, and an approximately optimal 
location would occur if the density were exactly constant in the neighborhood. 
Therefore, there is no reason for the cluster shapes to be oriented in any one direction 
(the shapes will not be spheres, but polyhedra) and the within-cluster covariance 
matrix will be proportional to the identity matrix. 

This is a heuristic argument. It has an important practical consequence. For large 
M and K, the within-cluster covariance matrix will be proportional to the identity 
matrix. Thus a hoped-for iterative weighting procedure may not work. It is desired 
to obtain weights from the within-cluster variances. The clusters must first be com-
puted by using equal weights. The above argument shows, at least for large K, that 
the final within-cluster variances will be nearly equal and no change in weights will 
be suggested. 
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To test this empirically, 27 observations from a five-dimensional normal with mean 
zero and unit covariance matrix were clustered, using a distance function, 

D(I, L) = {1 S J S  5} W(J)[A(I, J) — A(L, J)] 2 , 

where the weights W(J) take the values 1, 2, 3, 4, 5. In a later step, the inverses of the 
within-cluster variances might be used as weights. In Table 4.7, it will be seen that 
the inverses of the within-cluster variances approach the originai weights as the number 
of clusters increases. 

Thus in specifying the weights you are specifying the within-cluster variances. In 
specifying between-variable weights, you are specifying the within-cluster covariance 
matrix to be the inverse of the weight matrix. These consequences occur only for a 
large number of clusters, so that if the clustering is stopped soon enough there may 
be some value to iteration. For example, if there are very distinct clusters separated 
well by every variable, the partitioning might stop when these clusters are discovered 
and the weights might be based on these within-cluster variances. But, of course, if 
there are such distinct clusters, they will appear under any weighting scheme and 
careful choice of the weights is not important. 

4.8 SIGN1FICANCE TESTS 

Consider the division of M observations from a single variable into two clusters 
minimizing the within-cluster sum of squares. Since this is the maximum likelihood 
division, under the model that observations in the first cluster are 0 2) and 
observations in the second cluster are N(12 2 , a2), it will be plausible to test p, = /2 2 

 versus p, /22  on this norma! mode!. 
Let L(I) = I or 2, according as the observation X(/) lies in the first or second 

cluster. Define 

N(J) 	{L(1) = J}1 	(the number of observations in cluster J), 

Y(J) = {L(1) = J} 
X 
— 

(J

(J) 	
(the average in cluster J), 

N) 

SSW = {L(1) = J}[X(I) — Y (J)] 2, 

SSB — 
[Y(1) — Y(2)] 2  

1/N(1) + 1/N(2) 

The likelihood ratio criterion is monotone in SSB/SSW, rejecting gi  = 122  if this 
quantity is large enough. The empirica) distribution of this quantity for less than 50 
observations is tabulated in Engelman and Hartigan (1969). 

Suppose /Ai  = 1.4.2  = 0. It is sufficient to consider partitions where the first cluster 
consists of observations less than some split point c, and the second cluster consists 
of observations greater than c. Asymptotically, SSB and SSW vary negligibly over 
splits in the neighborhood of /A D  so the split may be assumed to occur at 121  = O and 
the second cluster of observations will be a sample from the half-normal. The half- 
norma] density f(x) = exp (— kx 2).5T7r, (x > O) has meanN5/777., variance 1 — 2//r, 
third moment Virn.(4/77- — 1), and fourth moment 3 — 4/7r — 12/r 2. From this it 
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follows, by using standard asymptotic normal theory on the sums SSB and SSW, 

SSB NeM , 8("  —9"), 

SSW N[M(1 a), 2M(1 -712)] 
72. 

and the covariance between them is M(16/7r2 — 4/70. Note that SSB SSW 
N(M, 2M), which is correct because SSB SSW is just the sum of squared deviations 
from the overall mean. 

More generally, for an arbitrary symmetric parent distribution X, for which the 
optimal split point converges asymptotically to zero, define 

P(1) = E IXI 
and 

	

/2(/) = 	— 14(1)li- 
Then 

SSB Reo MM/A(1)2, 4M/s(1)5(2)] 
and 

SSW sto N{M,u(2), ps(4) — p(2)9M), 

with covariance 2/4(3)141). It follows that SSB/SSW is approximately normal with 
mean /t(1)2/,u(2) and variance 

(4/410 [144) — /4(2)1,u(1)4 4/A(3)12(1? 

k /4(2) + 	/A(2)4 	/42)8 i 

(you should forgive the expression). 
In the normal case, 

ssa N( 2 (tì ( — ( 1 — 9-4M-1) 
SSW 	— 2 Ir 	7r/ 

or 
SSB oci N( 1.75, —6.58). 
SSW 	M 

This asymptotic distribution is not applicable except for very large M because SSB/ 
SSW is extremely skew. Empirical investigation shows that log (SSB/SSW) is nearly 
nonskew for small M (say, M > 8) and that the actual distribution is much closer to 
the asymptotic one, 

log SSB ged N(0.561, -22-‘-15). 

	

k ssw 	M 

A comparison between SSB/SSW and log (SSB/SSW) for small sample sizes is given 
in Table 4.9 (see also Engelman and Hartigan, 1969). There remains a substantial 
bias in log (SS13/SSW) that is incorporated in the formula 

+ _0.5 2.145 \ log SSB sr4s N(0.561 
SSW) 	 M — 1 3 M i. 
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Table 4.9 Empirical Dishibution of SSB/SSW 

Using random samples from a norma] distribution, with 100 repetitions 
for sample size n -= 5 and 10, with 200 repetitions for sample sizes n = 20 
and 50. 

SAMPIE SITE 
	

SSB/SSW 	 LOG (SSB/EISW ) 

MEAN 	VARIANCE 	MEAN 	VARIANCE 

5 OBSERVED 	I 	8.794 	382.007 	1.708 	.582 

ASTIOTOTIC 	1 .7 52 	1.316 	 •56i 	.429 

i o OBSERVED 	3.286 	2.613 	1.093 	.180 

ASYMPBOTIC 	1.752 	. 6 58 	 . 561 	.214 

2 o 	OEtSERVED 	i 	2.316 	. 565 	 .792 	.089 

ASYMPTOTIC 	1.752 	.329 	 .561 	.107 

The quantity p(1)2/14(2) is a measure of the degree of bimodality of the distri-
bution. It will be a maximum when the distribution (assumed symmetric) is con-
centrated at two points and a minimum (zero) for long-tailed distributions with 
infinite variance but finite first moment. Since SSB/SSW estimates this quantity, for 
symmetric distributions it might be better to estimate it directly by 

Ai = I {1 5 i 5 M} 
I X(/) — XBARI  

M 

, [X(/) — XBARJ2 	2 
122 = 2, 	 iii, M 

where XBAR = I {1 / M} X(/)/M. This method of estimation is faster than 
the splitting method, which requires ordering the M observations and then checking 
M possible splits. In a similar vein, a quick prior estimate of within-cluster variance 
for weighting purposes (the estimate works well if the two clusters are of approxi-
mately equal size) is 

I {1 S / m} [X(/) — XBARr 
M 	

— (/ {1 i m} In') — XBARiv 

M 	) • 

In N dimensions, assume that the null distribution is multivariate normal and that 
the covariance matrix has eigenvalues E(1) > E(2) > • • • > E(N). The asymptotic 
argument reduces to the one-dimensional case by orthogonal transformation to the 
independent normal variables with variances E(1), . . . , E(N). The split will be essen-
tially based on the first variable, and the remaining variables will contribute standard 
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chi-square-like terms to the sums of squares: 

,
gw 	

1 2 \ , 
SSB NeME(1) 8or — 

2)A1  E() 
72.2  ) 

E(SSW) = M I {1 < / < ME(I) — 2M 
E(1) 

, 
7r 

2  VAR(SSW) = 2M I {1 < I < N}E(I)a  — 16M E(1)  
7r2  ' 

16 4 COV(SSB, SSW) = ME(1) 2 ( 77.2  — .7r). 

From this, asymptotically, 

El SSB \ 2E(1)( 	 _ 2E(1) \--1 ,  
I {1 I N}E(I) k ssw / — IT 	 7T I 

VA R ( ._
SSW 	ir 

 ) = [( 2 )E(1)2(1{1 < I < N}E(I)2  4- (7r — 2)[1 { 1 < I < N}E(I)] 2) 

-  (6) E(1)3 1 {1 < I < N}E(1)1[M( E(SSW 41 -1  . 
ir M I 

For N large, with E(1) making a relatively small contribution to I {1 < I < N} E(I), 

Ei

ksswi 
sn \ _ 

2E(1) (I {1 < I < N}E(I))-1  
7r 

VAR(—SSB 
 ) = 

( 4)E(1 )2[1 {1 I N}E(0 	
M ]-21r  — 2  • SSW  

This reveals the obvious—that SSB/SSW has larger expectation if E(1) is larger 
relative to the other eigenvalues. 

In the important case where the null distribution is spherical normal (all eigenvalues 
equal), the asymptotic distribution of SSB and SSW is not joint norma] and the 
complicated calculations will not be given here. 

4.9 THINGS TO DO 

4.9.1 Running K-Means 

A good trial data set is expectations of life by country, age, and sex, in Table 4.10. 
Try inning the K-means algorithm on these data. An initial decision is the question 
of rescaling the variables. The variances and covariances of the variables should be 
examined. In a problem like this, where the variables are on the same scale (here, 
years), no change should be made except for a compelling reason. 

The number of clusters K should not be decided in advance, but the algorithm 
should be run with several different values of K. In this problem, try K = 1, 2, . . . , 6. 
Analysis of variante, on each of the variables, for each clustering will help decide 
which number of clusters is best. It is also desirable to compute covariances within 
each cluster, the overall covariance matrix within clusters, and the overall covariance 

and 



Table 4.10 Expectations of Life by Country, Age, and Sex 

Keyfitz, N., and Flieger, W. (1971). Population, Freeman. 

COUNTRY (YEAR) 	 MALE 	 PENALE 

AGE o 	25 	50 75 	AGE o 	25 50 75 

i. ALGERIA 65 	 63 	51 	3o 	13 	67 	54 	34 	15 

2. CANEROON 64 	 34 29 	13 	5 	38 	32 17 	6 

3. EADAGASCAR 66 	 38 3o 17 	7 	38 	34 2o 	7 
4. EAURITIUS 66 	 59 42 	20 	6 	64 46 25 	8 

5. REUNION 63 	 56 	38 18 	7 	62 	46 25 10 
6. SEYCHELIES Go 	 62 44 24 	7 	69 	So 28 	14 

7. SOUTH AFRICA (COL) 61 	 50 	39 	20 	7 	55 	43 23 	8 

8. SOUTH AFRICA NH) 61 	 65 44 22 	7 	72 50 27 	9 

9. TUNISIA 60 	 56 	46 	24 	11 	63 	54 	33 	19 

lo. CANADA 66 	 69 	47 	24 	8 	75 	53 29 	lo 

n. COSTA RICA 66 	 65 48 26 	9 	68 5o 27 	10 
12. DON1NICAN REP. 66 	 64 	50 	28 	il 	 66 	51 	29 	li 

13. EL SALVADOR 61 	 56 	44 	25 	io 	61 	48 27 	12 

14. GREERLAND 60 	 Go 	44 	22 	6 	65 	45 25 	9 

15. GRERADA 61 	 61 	45 	22 	8 	65 	49 	27 	io 

16. GUATEMALA 64 	 49 	4o 	22 	9 	51 	41 	23 	8 

17. HONDURAS 66 	 59 	42 	zz 	6 	61 	43 22 	7 

1S. JAMAICA 63 	 63 44 	23 	8 	67 	48 26 	9 

19. MEXICO 66 	 59 	44 	24 	8 	63 	46 	25 	8 

20.NICARAGGA 65 	 65 	48 	28 	14 	68 	51 	29 	13 

2]. PANANA 66 	 65 48 	26 	9 	67 	49 	27 	10 

22.TRIN1DAD 62 	 64 	43 	21 	7 	68 	47 	25 	9 

23. TRINTDAD 67 	 64 43 	21 	6 	68 47 24 	8 

24.UNITED STATES 66 	 67 45 23 	8 	74 	51 	28 	io 

25. UNITED STATES INONANT) 66 	61 	4o 	21 	IO 	67 	46 25 	11 

26. UNITED STATEE (W) 66 	 68 	46 	23 	8 	75 	52 	29 	lo 

27. UNITED STATES 67 	 67 45 23 	8 	74 51 28 io 

23. ARGENTINA 64 	 65 	46 	24 	9 	71 	51 	28 	lo 

29. CIME 67 	 59 	43 	23 	lo 	66 	49 27 	12 

3o. COMMDIA 65 	 58 44 24 	9 	62 47 25 lo 

31. ECUADOR 65 	 57 	46 	25 	9 	60 	49 	28 	11 

101 
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matrix between clusters. If the overall within covariance matrix differs significantly 
from a multiple of the unit matrix, transformation of the data to make it propor-
tional to a unit matrix is suggested. 

4.9.2 Varieties of the IC-Means Algorithm 
There are a number of versions of the K-means algorithm that need to be compared 
by sampling experiments or asymptotic analysis. The changeable components are 
(i) the starting clusters, (ii) the movement rule, and (iii) the updating rule. The criteria 
for evaluation are (i) the expected time of calculation and (ii) the expected difference 
betWeen the local optimum and the global optimum. It is often required that an 
algorithm produce clusters that are independent of the input order of the cases; this 
requirement is not necessarily satisfied by the K-means algorithm but can always be 
met by some initial reordering of the cases. For example, reorder all cases by the 
first, second, . . , Nth variables, in succession. (Note that this reordering will usually 
reduce the number of iterations in the algorithm.) 

The following are some starting options: 
(i) Choose the initial clusters at random. The algorithm is repeated several times 

from different random starting clusters with the hope that the spread of the local 
optima will give a hint about the likely value of the true global optimum. To justify 
this procedure, it is necessary to have a distribution theory, finite or asymptotic, 
connecting the local and global optima. 

Choose a single variable, divide it into K intervals of equal length, and let 
each cluiter consist of the cases in a single interval. The single variable might be the 
average of all variables or the weighted combination of variables that maximizes 
variance, the first row eigenvector. 

(iii) Let the starting clusters for K be the final clusters for K — 1, with that case 
furthest from its cluster mean split off to form a new cluster. 

The following are some movement options: 
(i) Run through the cases in order, assigning each case according to the cluster 

mean it is closest to. 
Find the case whose reassignment most decreases the within-cluster sum of 

squares and reassign it. 

(iii) For each cluster, begin with zero cases and assign every case to the cluster, 
at each step finding the case whose assignment to the cluster most decreases (or least 
increases) the within-cluster sum of squares. Then take the cluster to consist of those 
cases at the step where the criterion is a minimum. This procedure makes it possible 
to move from a partition which is locally optimal under the movement of single cases. 

The following are some updating options: 
(i) Recompute the cluster means after no further reassignment of cases decreases 

the criterion. 
(ii) Recompute the cluster means after each reassignment. 

4.9.3 Bounds on the Global Optimum 
It would be good to have empirical or analytic results connecting the local optima 
and the global optimum. How far is the local optimum likely to be from the global 
optimum? How different are the two partitions? 
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For some data configurations, the local optimum is more likely global than for 
others. Some bad things happen. Let {A(1, J), 1 S  I S M, 1 S J S  N} be divisible 
into K clusters such that the euclidean distance between any pair of cases inside the 
same clusters is less than p and the euclidean distance between any pair of cases in 
different clusters is greater than p. Then this partition is a local optimum but not 
necessarily global. 

Yet, if the clusters ait widely separated, it should be possible to prove that there is 
only one local optimum. Let there be K clusters and fix the distances inside each of 
the clusters, but let the distances between cluster means ali approach infinity. Then 
eventually there is a single local optimum. 

The interesting problem is to make the relation precise between the within-cluster 
distances and the between-cluster distances, so that there is a unique locàl optimum. 
For example, suppose there are K clusters, M(I) points in the Ith cluster, D(I) is the 
maximum distance within the Ith cluster, and E(I, J) is the minimum distance between 
the Ith and Jth clusters. For what values of M(I), D(I), and E(I, J) is there a unique 
local optimum at this partition? 

Some asymptotic results suggest that for large sample sizes there will be only a few 
local optima, differing only a little from the global optimum. The assumption required 
is that the points are drawn from some parent distribution which itself has a unique 
local optimum. If these results are expected, it means that a crude algorithm arriving 
quickly at some local optimum will be most efficient. It would be useful to check the 
asymptotics in small samples by empirical sampling. 

4.9.4 Other Criterla 
The points in cluster J may come from a population with parameters, possibly vector 
valued, 0(J), q). The log likelihood of the whole data set is then 

(1 S I S M} F{A(I), O EL(1)], q)} , 
where A(I) denotes the Ith case, L(1) denotes the cluster to which it belongs, and fp 
denotes a generai parameter applying across clusters. A generalized K-means al-
gorithm is obtained by first assigning A(/) to minimize the criteria and then changing 
the parameter values 0[L(I)] and to minimize the criteria. 

A first generalization is to allow an arbitrary within-cluster covariance matrix. The 
algorithm will first assign each case according to its distances from cluster means 
relative to the covariance matrix. It will then recompute the covariance matrix according 
to the redefined clusters. Both steps increase the log likelihood. The final clusters are 
invariant under arbitrary linear transformations of the variables, provided the initial 
clusters are invariant. 

4.9.5* Asympototics 
Consider the simplest case of division of real observations into two clusters. (The 
following results generalize to arbitrary numbers of dimensions and clusters and to 
more generai optimization criteria.) The cluster means are O and go, and a typical 
point is x. Define the 2-vector 

(O — x) 
W(x, O, 	= 	 if 	1 0— xJS I49— xl  

O 
( 

if 	19 — xj < IO — xj. 
—x 



[i 
(O — X) dP 

E(W) = 

fX>lia(0-1919
0 — X) dP 

for 	e < 
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For data X(1), . . . , X(M), the criterion 
{X(I) E C(1)}[X(I) — 0] 2  + {X(I) e C(2)} [X(I) 9]2  

has a local minimum if no reallocation of an X(I) between clusters C(1) and C(2) 
reduces it and if no change of O or q) reduces it. The criterion has a local minimum if 
and only if {l S / S M} W[X(I), O, 99] = O. 

Asymptotic distributions for O and p follow from asymptotic distributions for 
W, which for each fixed O, is a sum of identically distributed independent random 

variables. Let X(I) be sampled from a population with three finite moments. Let 

(O — X) 2  dP 	O 
v(w). 	 - E(W)E(W). 

O 	 (go — X) 2  d P 

Suppose E(W) = O for a unique O, p, O < p—say, 00, 90. Suppose the population 
has a densityf > O at x0  = RO0 90), and that V(W) is evaluated at 00, s6„• 

Let O„ and O. denote solutions to the equation 	W[X(/), O, = O. Asymp- 
totically, 

Vrtg[W(X, 0„, 0„)] N[O, V(W)]. 
This means 

and 

where 

and 

- i  raEw aEw-i[ n 	01 v  L  o.  890 
J o. 

 9,0  gt: N[0, V(W)] 

U„-- '0 ,, ] oks N[0, U], 

— 

U = E-1VE-1, 
[P(X x0) + 

E = 
a 	"X > xo) 

= i(Oo — To)f (ai). 
It turns out that difTerent locally optimal solutions 0,, and 0„ differ from one 

another by terms of 0(g-4). 
For symmetric parent distributions, 

(¢3„ — é n) Rd N(Thrrt20 0, V), 

00  = 2f X dP, 
x <o 

and 

V = 8f (X — 00)2  dP. 
x<0 
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For a unit normal variable 

./7:(13„ — 00 Sk3 N[2.1-2?-0, 4(1 — 21.7r)]. 

In general, the cluster centers are asymptotically nortnal with the covariance 
matrix computed in a similar way to the above. Each cluster center is the average of 
a number of observations lying closest to it. Its covariance matrix is just the covariance 
matrix of a mean with at ó term added due to the boundary of the region varying. 

Since usually the quantities aEwiao and V( W) are not known, they must be 
estimated from the data— V(W) from the observed quantities W[X(/), O, 91 at 
O = é„ and go = 0,, and the derivatives from 

I {W[X(/), O, 91 — w[no, G„, onll 
for O, 9 near t9„, 0„. 

It would be useful to check the asymptotics by empirical sampling, at least for the 
normal distribution above. h would be useful to check that the different locally 
optimal solutions vary by 0(n—i). It would be useful to check the formulas of Section 
4.8 empirically. 

4.9.6 Subsampling 

To avoid thought and asymptotic formulas, distributions for the cluster means that 
agree with the asymptotic ones may be obtained empirically as follows. A subset of 
cases is formed by randomIy including each case with probability 0.5. The algorithm 
produces cluster means. A new subset is formed, and the algorithm produces a new 
set of cluster means. Repeating this procedure a few times, a sample of cluster means 
is obtained that agrees asymptotically with a sample from the posterior distribution 
of true cluster means. 

4.9.7 Symmetric Paradox 

In the univariate case, find a set of values, symmetric about zero, for which an optimal 
division into two clusters does not occur at zero. 

4.9.8 Large Data Sets 

For large numbers of cases (say, M = 5000) it is wasteful to do many runs on all 
cases. No matter what the eventual analysis, there will usually be no great loss in 
reducing the data to 100 cases using the leader algorithm. Each data point will be 
within a threshold distance d of one of these 100 cases. Suppose that the leading case 
is replaced by the average case in each cluster. A K-means algorithm is run on these 
100 cases, with each case weighted by the number of original cases in the corre-
sponding cluster. This produces a partition of the average cases with a weighted 
within-cluster sum of squares w. Show that the within-cluster sum of squares of the 
corresponding partition of the original cases lies between w and w + Md2. 
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change. 
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Suppose the population has density p(z) and that the cluster means, after n points 
are sampled, are x 1 , • • • , zie. 

Set 

.f 
K 

w(xl,. .•,x,r). I iz_ ;1 2  P(z) dz, 
£ 4 ,s,  

where 
Si  = (z I lz — xi l = min la — zii). 

I 
Then the principal theorem is that W(x i , . . . , x„) converges to W(ui, . . . , uk), 

where u, = (fs, zp(z)dz)1fsi p(z)dz. In words, the population variance within the 
sample clusters converges to the population variance within a locally optimal 
clustering of the population. 
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SEBESTYEN, GEORGE S. (1962). Decision Making Processes in Pattern Recognition, 
Macmillan, New York. "Pattern detection is the process of learning the charac-
terization of a class of inputs by detecting the common pattern of attributes of inputs 
of the same class. Pattern recognition is a process of decision making in which a 
new input is recognized as a member of a given class by a comparison of its attributes 
with the already known pattern of common attributes of members of that class." A 
principal part of the book is concerned with the second problem, discrimination 
between known classes. A K-means-type of algorithm is considered on p. 47, although 
it is described only in general terms. A number of inputs are introduced in sequence. 
Each input is assigned to one of a number of classes, according to its distance to the 
mean input of each class. The input is left unassigned if it is not close enough to any 
mean input. The mean inputs are updated after each assignment. 

PROGRAMS 

There are a series of routines that construct partitions of various sizes and print 
summary statistics about the clusters obtained. 

BUILD 	calls programs constructing optimal partition of given size and increases 
partition size by splitting one of the clusters. 

KMEANS assigns each case optimally. 
SINGLE computes summary statistics. 
OUTPUT prints information about clusters. 

The following programs perform the basic operations of K means. 

RELOC moves cluster center to cluster means. 
ASSIGN reassigns each case to closest cluster center. 



SUBROUTINE BUILDIA,M,N,K.SUM,XMISS,NCLUS.DCLUS,X,ITER) 
C.•.• 	 23 MAY 1973 
C 	BUILDS K CLUSTERS BY K—MEANS METH3D. A CLUSTER IS ADDED AT EACH STEP. THE 
C 	HORST OBJECT FROM THE PREVIOUS STEP. 
C 	FOR VERY LARGE MATRICES, THIS PRGGRAM MUST BE MODIFIED TO AVOIO STORING 
C 	THE COMPLETE DATA MATRIX A IN CORE. 	THERE WILL BF K PASSES THROUSH THE 
C 	DATA MATRIX FOR K CLUSTERS. THE DIMENSION STATEMENT MUST BE MODIF1ED. AVO 
C 	STATEMENT NUMBERED 12. 
C.... A = M BY N BORDERED ARRAY 
C.... M 	NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... K 	NUMBER OF CLUSTERS 
C.... XMISS = MISSING VALUE 
C.... NCLUS 	M BY 1 ARRAY SPECIFYING A CLUSTER NUMBER FOR EACH CASE 
C.... DCLUS . 1 BY M ARRAY SPECIFYING DISTANCE OF EACH ROW TO CLOSEST CLUSTER. 
C.... X . N BY 1 SCRATCH VECTOR 
C.... ITER . NUMBER OF ITERATIONS AT EACH PARTITION SIZE 
C• • 

D1MENSION SUMI8,NeKleA(MyNhX(N).NCLUS(Mi,DCLUSIM) 
DO 20 1.1.8 
DO 20 J.Z.N 
DO 20 KK=1.K 

20 SUMlIeJeKK).0 
KL.K-1 
DO 10 KK.1.KL 
DO 14 NC.1./TER 
DMAX=0. 
ERR.O. 
DO 13 KKK=1,KK 
DO 13 J=2,N 
IFINC.EQ.1.0R.SUMilgJeKKM.NE.SUMD,JFKKKI) ERR.1. 

13 CONTINUE 
IFIERR.EQ.0) GO TO 15 
DO 16 KKK=1,KK 
DO 16 J.2,N 
SUM(8.J.KKIO.SUMI2.J.KKK) 
IF(NC.E12.1) SUMCB,J,KKKI.1. 
SUM(2,J,KKKJ.0 

16 SUMIl.J.KKK1.SUM(3,J.KKKJ 
DO 11 I.2.M 
DO 12 J=2.N 

12 XIJJ.AlleJi 
NCLUS(I).NC 
CALL KMEANSIN,KK.SUM,X.NCLUS(1).DCLUSII),XMISSi 

11 CONTINUE 
14 CONTINUE 
15 CONTINUE 

CALL OUTPUTIM,NeKKISUM.A.NCLUS.DCLUS) 
C.... CREATE A NEW CLUSTER BY SPLITTING VARIBLE WITH LARGE WITHIN VAR1ANCE 

SM=0 
DO 30 J=2/N 
DO 30 KKK.1.KK 
IF(SUM(40.KKK).LT.SM) GO TO 30 
SM.SUM(40.KKK) 
JM.J 
KM=KKK 

30 CONTINUE 
KN.KKil 
DO 31 JJ=2.N 
SUM(210.1,KN).0 
SUM112.JJ,KM)=0 
SUM(3.JJ,KM).0 

31 SUM(3,JJFKNI.0 
DO 32 1=204 
IFINCLUS(1).NE.KMI GO TO 32 
DO 33 JJ.2.N 
IFIA(IIJA.EQ.XMISS) GO 73 33 
IF(AlI,JJ/.LT.SUM(1,JJ.KMIi GO TO 34 
SUMI2,JJ,KNi=SUM(2,JJ,KN)+1 
SUM(3,JJ,KN)=SUM13.JJ.KN )+A(I.JJJ 
GO TO 33 

34 SUMI2eJJ.KM)=SUM12,JJ.KMPél 
SUMl3.JJ,KM=SUM(30J.KM/44110J2 

33 CONTINUE 
32 CONTINUE 

DO 35 JJ.2.N 
IF(SUM(2.JJ.KN).NE.0) SUH(3.JJ,KNi.SUMI310J,KNi/SUMI2,JJ.KN) 
IFCSUMI20J,KNI.NE.0,1 SUMI3,JJ,KMI.SUM13/JJ,KM)/SJM(2,JJ,KM) 

35 CONTINUE 
10 CONTINUE 

RETURN 
END 
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SUBROUTINE KNEANSIN,K.SUM,X,JMIN.DMIN.XMISS/ 
C..   	 23 MAY 1973 
C 	ASSIGNS THE VECTOR X TO THAT CLUSTER WHOSE CLUSTER CENTRE IT IS :LOSEST TD 

UPDATES FOR THIS CLUSTER, VARIOUS SUMMARY STATISTICS SJCH AS MEAM,SD.MIN, 
C MAX.SSQ. NOTE THAT CLUSTER CENTERS ARE NOT CHANGED BY THE ADDITI]N OF X. 
C.... N = LENGTH OF VECTOR X 
C.... K = TOTAL NUMBER OF CLUSTERS 
C.... SUM 	7 BY N BY K ARRAY. CHANGED DURINO SUBROUTINE 
C 	SUMIl.J.I/ = VALUE OF JTH VARIABLE AT CLUSTER CENTER 
C 	SUM(2,Jg11 = NUMBER OF NON MISSING OASERVATIONS,JTH VARIARLE, 11 . 4 CLJSTE 
C 	SUM1310p1) ■ AVERAGE, JTH VARIABLE, ITH CLUSTER 
C 	SUMI4.JeI1 . STANDARD DEVIATION 
C 	SUMIS,J.I1 = MINIMUM 
C 	SUM(6.J.11. MAXIMUM 
C 	SUMI7,J.11 = SUM OF SOUARED DEVIATIONS FROM CLUSTER MEAN 
C.... X = N dY I VECTOR TO BE ALLOCATEO AMONG THE K CLUSTERS 
C.... JMIN 	NUMBER OF CLUSTER WHOSE CENTRE X IS CLOSEST TO. 
C.... DMIN 	EUCLIDEAN DISTANCE BETWEEN X AND CENTER OF JMIN CLUSTER 
C.... XMISS = MISSING VALUE 
C.. 

DIMENSION SUM1BeNpKI.XINI 
JMIN.1 
DMIN.10.**20 
DO 20 J.1.K 
XP.10.**1...101 
00.0 
DO 21 I.2eN 
IF ocità.Ea.xmiss, GO TO 21 
DO=DD+IXIIP=SUMI1,I,J11**2 
XP.XP+1. 

21 CONTINUE 
DD.(13DiXP/**0.5 
IFI0D.GT.DMINI GO TO 20 
DMIN.D0 
JMIN.J 

20 CCNTINUE 
XM.N 
DO 31 I.2.N 
IFIAtIà.EQ.XMISS/ GO TO 31 

30 LALL SINGLE1X111,SUM(2.1.JMIN).SUM13.1.JMIN/e5UM141,1•JMIN/ 
1,SUM15.1.JMINleSUM16.I.JMIN1.SUM(7.I.JMINI1 

31 CONTINUE 
RETURN 
EN] 

SUBROUTINE SINGLEIX,COUNTIAVE,SD.XMIN,XMAX,SSO/ 
O 	  

C 	INCORPORATES NEW VALUE X INTO SUMMARY STATISTICS 
C 	THE MEANING OF EACH VARIARLE IS GIVEN IN KMEANS. 
C.• 

IFICOUNT.NE.0./G0 TO 10 
AVE*0 
SO=0 
XMIN■ 10.*4.20 
XMAX=-10.**20 
'SSQ=0 

10 COUNT=COUNT41. 
AVE=AVE4.(X-.AVE)/COUNT 
IFICOUNT.NE.11 SSQ=SSQ+COUNT*IX-•AVEP•R2/ICOUNT.-1.1 
SO=ISS4/COUNTI**0.5 
IF(XMIN.GT.X) XMIN=X 
IFIXMAX.LT.X/ ~7~ 
RETURN 
END 

23 MAY 1973 



SUBROUTINE OUTPUT(M.N.KKAUM,A,NCLUS.DCLUS) 
COC 	

20 MAY 1973 

C 	OUTPUT ROUTINE FOR KMEANS ALGORITHM 
C 	PUTS OUT SUMMARY STATISTICS FOR EACH VAR1ABLE FOR EACH CLUSTER 
C 	ALSO PUTS OUT OVERALL ANALYSIS OF VAR1ANCE FOR EACH VARIABLE 
C.... A = M BY N BORDERED DATA MATRIX 
C.... M . NUMBER OF CASES 
C.... N . NUMBER OF VARIABLES 
C.... KK 	NUMBER OF CLUSTERS 
C.... SUM . 7 BY N BY KK.MATRIX OF SUMMARY STATISTICS(SEE KMEANS ROUTINE1 
C.... NCLUS = M BY 1 ARRAY IDENTIFYING CLUSTER TO WHICH EACH ROW BELONGS 
C.... DCLUS = EUCLIDEAN DISTANCE OF EACH ROW TO CLOSEST CLUSTER 
C•• • 

DIMENSION SUM(BeN,KK).NCLUS(M11DCLUS(M),A(MeN) 
DIMENSION AA(10/~(101 
DIMENSION R(501 
DATA NPAGE/O/ 
DATA LC/0/ 

C.... MEAN SQUARE CALCULATION OVER ALL CLUSTERS 
NPAGE=NPAGE+1 
WRITE(6,7) NPAGE 

7 FORMAT(1H1.110X.151 
WRITE(6,9) KK 

9 FORMAT(' OVERALL MEAN SQUARE CALCULATIONS. FOR EACH VARIABLE, 
l' wITH',I5e" CLUSTERS'i 

ASSW=0 
DO 40 J.2,N 

SC=0. 
SSB=0. 
SSW=0. 
DO 41 K.1.KK 
SO.S0+SUM(3,JeK)*SUM(2,J,Ki 
SSEI=SSB+SUM(3.J.K)**2*SUM(2.J.K) 
SSW.SSW+SUM(7.J.K1 

41 SC=5C+SUM(2,J,K/ 
DFB*KK-1 
DFW=SC—DFB-1. 
TH.10.**(-.10/ 
1F(SC.EQ.0) SC.TH 
IFIDFW.EQ.0) OFW*TH 
IF(DFB.EQ.01 DFB.TH 
ASSW.ASSW+SSW 
SSB.SSBSD**2/SC 
SSB.SSB/DFB 
SSW.SSW/DFW 
IFISSW.E(2.01 SSW.TH 
RATIO.0 
IF(LC.NE.0)RATIG.(R(J)/SSW.4)*(1+DFW1+1 
R(.1).SSW 
WRITE(b.81A(1,J),SSW,DFW,S5B.DFBFRAT/0 
FORMAT(' VARIA3LE'.AB.F20.6t'iWITHIN MEAN SQ.111F4.01,11WITHIN DFP 

1.F20.6.1(BETWEEN MSQ/".F4.0e1(BETWEEN OF)',F6.1."(FRATIOi'l 
40 CONTINUE 

WRITE(6.101 ASSW 
10 FORMATI' OVERALL WIThIN SUM OF SGUARES',F20.6i 

LC.LC+1 
DO 20 K=1,KK 
WRITE(6,111 

11 FORMAT(IX1131(1H1/ 
WRITE(6,1) KIKK 

1 FORMAT(15,1 	TH CLUSTER OFI.151 
WRITE(ó.21(1.1.1,10) 

2 FORMATCOCLUSTER MEMBERS WITH THEIR DISTANCES TO THE CLUSTER CENTRE9113X. 
1E1/13X,10I11) 
L.0 
DO 21 1.2,M 
IF(NCLUS(11.NE.K) GO TO 22 
L.L+1 
AAM.A(171/ 
DO(L).UCLUS(1) 

22 IF (L.LT.10.AND.I.LT.M# GO TO 21 
IF(L.EQ.01 GO TO 21 
WRITE(6,3/1AAILL).LL.1.1.1 

3 FORMAT(15X.1047X.A411 
WRITE(6.14i110D(WELL.1,L) 

12 FORMAT(15)(710F11.4/ 
L.0 
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21 CONTINUE 
WRITE(6,41 

4 FORMATPOSUMMARY STATISTICS FOR THE CLUSTER'] 
WRITEI6,5I 

5 FORMATI' LABEL"g5X,ICENTREI,BX, 
'COUNT 1 912XpiAVE'.13X,'SD',11X,'XMIN',11XpIXMAX'pl2X,'SS:I" 

150 1 / 
DO 30 J.2gN 

30 WRITE16,61A(1eJleISUMII,JeXIII.1,71 
6 FORMATI1X,A4,7F15.6/ 
20 CONTINUE 
81 CONTINUE 

RETURN 
END 

SUBROUTINE RELOCIMeNeRipA,X,NCI 
C... 

	
20 MAY 1973 

C.... RELOCAIES EACH CLUSTER CENTRE TO BE A CLUSTER MEAN 
C.... M . NUMBER OF ROWS 
C.... N . NUMBER OF COLUMNS 
C.... K = NUMBER OF CLUSTERS 
C.... A = M BY N BORDERED ARRAY 
C.... X = N BY K BORDERED ARRAY OF CLUSTER CENTRES 
C.... NC = M BY I ARRAY ASSIGNING EACH ROW TO A CLUSTER 
C.. 

DIMENSION AiMeNIIIXIN,10,NCIM1 
DIMENSION CC(10) 
DATA CU4HCLUS,2HC1e2HC2e2HC3,2HC4,2HC5.2HC6,2HC7,2HCBp2HC9/ 
X»99999. 

C.... COMPUTE MEANS 
DO 10 L.20( 
DO 10 J.2pN 
XIJ,L)=0 
IFINCIII.NE.LI  GO TO 20 
IFIAII,A.ECI.XM/ GO TO 20 
P.0 
DO 20 1=2,M 
P.P.1 
X(J,Lì=XIJ.L)hAII,J) 

20 CONTINUE 
IFIP.NE.Oi X(J,L)=X(J,L)/P 
IFIP.E12.0) XIJ.U.XM 

10 CONTINUE 
C.... LABEL CLUSTER MEANS 

DO 40 J.2,N 
40 XIMA.A(1,J) 

DO 50 L.leK 
IF(L.GT.101 RETURN 

50 X11.LI=CCILI 
RETURN 
ENO 



SUBROUTINE ASSIGN(MAIN,K,A,X,NC3 
C..  	 20 Mia 1973 
C.... ASSIGNS EACH RON OF BORDERED ARRAY TO CLOSEST OF CLUSTER CENTRES X 
C.... M = NUMBER OF RONS 
C.... N . NUMBER OF COLUMNS 
C.... K = NUMBER OF CLUSTERS 
C.... A . M BY N BORDERED ARRAY 
C.... X = BORDERED ARRAY OP CLUSTER CENTRES 
C.... X = N BY K BORDERED ARRAY OF CLUSTER CENTRES 
C.... Ne . M BY I ARRAY ASSIGNING EACH RON TO A CLUSTER 
C 	 NC(1J = RON FURTHEST FROM ITS CLUSTER CENTRE 
C••• 	  

DIMENSION 
C.... INITIALISE 

0.0 
NC(1).,0 
XM.99999. 
DO 10 I-2,M 
DC.10.**10 
DO 20 J.20( 
D.1 ■0 
DP-0 

C.... FINO DISTANCE TO CLUSTER CENTRE 
DO 30 L.2,N 
IFIXILIPA.EQ.XM.OR.A11,L).E0.XN1 GO TO 20 
Dj.111.(XIL.j/-AtIeL11**2 

30 CONTINUE 
IFIDP.GT.04 DJ.IDJ/DPI**0.5 

C.... FIND CLOSEST CLUSTER CENTRE 
WRITE16,1/ I.J.NCII)OPeDC.DJ 

1 FORNAT(3I5.3F20.61 
IFI0J.GT.DCI GO TO 20 
DC..DJ 

20 CONTINUE 
C.... FINO RON FURTHEST FROM 1TS CENTRE 

IFIDC.LT.D1 GO TO 10 
D.DC 
NC(II.I 

10 CONTINUE 
RETURN 
END 
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CHAPTER 5* 

Mixtures' 

5.1 INTRODUCTION 

A statistical model for partitions supposes that each of M observations is selected at 
random from one of K populations. If the probability density for an observation x 
given a parameter value O is written f (x I O), the probability density of the mixture 
will be I {1 J K} P(J) f[x I 0(J)]. Here P(J) is the probability that the observa-
tion x belongs to the Jth population, which is determined by parameter 0(J). 

The log likelihood of observations x(1), x(2), . . . , x(M) is 

I {1 / M} log (I (l J K} P(J) f[x(I) l 0(J)]) , 

and this may be maximized to estimate the parameters P(J) and 09). The quantity 

P(I, J) = P(J) f[x(I) I 0(J)] a o J K}P(J) f [x(I) I 0(J)D-1 

is the probability that the /th observations belongs to the Jth population (or Jth 
cluster), given its value, x(/). These conditional probabilities are useful in assigning 
objects to populations after the parameters have been estimated. They also play an 
important role in the iterative process to maximize the likelihood with P(I, J) being 
the weight that the /th observation has in determining the Jth parameter. 

Stationary values of the likelihood occur when the following equations are satisfied: 

I {1 / M} P(I , 
.0 2 log f [x(I) I 0(J)] 

a0(.0 	— O, 	 (1a) 

I (1 I M) -—P j) — PO« 	 (2a) 
M 

f[x(I) i OU)]  
P(I , J) = P(J) 	 (3a) 

(I {1 	J K} P(J)f[x(I) i 0(J)]) " 

Note that eq. la  corresponds to the maximum likelihood estimate of O when the /th 
observation is observed P(I, J) times. In this way, the P(I , J) are the weights of the 
/th observation in the Jth parameter estimate. 

There are no guarantees that the above equations determine the maximum likelihood 
estimate, that a solution exists, or that a solution is unique. These questions are 
answered differently for different densities f (x I 0). A plausible iterative technique 
first guesses P(J) and 0(J) [the 0(J)'s should be unequal], computes P(I, J) from eq. 

and 
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3a, and then estimates 0(J), P(J), and P(I, J) in succession, until the procedure con-
verges. This approach is analogous to the K-means approach, in which cluster means 
are first guessed [corresponding to P(J) and 0(J)] and then objects are assigned to 
the various clusters [corresponding to estimating P(I, J)], after which cluster means 
are recomputed, objects are reassigned, and so on. The same sort of local optimiza-
tion problems are to be expected. A solution to the equations may not be unique, 
and other solutions may have larga likelihoods. 

For the multivariate normal x e...,  N(p., E), the equations will be 

/ M} x(I) P(I, ./) 
1.141) — (lb) 

{1 S I S M} P(I, J) 

1(1 S  I  S  M} [x(I) — p.(J)][x(1) — p.(J)]' P(I, J)  
41) — 	 (1 b') 

1(1 I M} P(I, J) 

P(J) = {1 S 15 M} 13(  3,1").  , 	 (2b) 

and 
P(I, = 	2  P(J)B(I) exp {—i[x(/) — iz(J)1S -1(J)[x(1) — p.(J)]} (3b) 

with B(I) determined by (1 S J S K} P(I, J) = 1. This model is difficult to fit if 
there are many clusters and variables and just a few observations. In any case, there 
are solutions for which the likelihood is infinite, in which some of the E(J)'s are zero, 
and these must be forbidden somehow. 

In order to reduce the many parameters to be estimated in the covariance matrices, 
a number of simplifying assumptions are suggested. First, suppose that the E(J) are 
all equal. The equations remain as above, except that Eq. lb' becomes 

E(J) = {1 S  I S M}{1 5 J 5 K} [x(I) — p.(J)][x(I) — p.(J)]
' P(I, .1) 

. 
M 

Second, suppose that E(J) = A, where A is diagonal. The equations remain the same, 
except that the off-diagonal terms in the estimate of E(J) are always set zero. 

Finally, if all variables are assumed uncorrelated with equal variance a 2 , the 
equations become 

{1 S  i 	x(I)P(I, .1) 
—  

{1 I M} P(I, J) 	
(1c) 

 

0.2 	M}{1 S J S  K} [x(I) — g(J)11x(1) — p.(J)] P(I, J) 
 (1c

,
) 

MN 

P(J) = 	l S  M} 12(
M 
 , 	 (2c) 

and 

P(I, .1) = P(J)B(I) exp 	lix(1) 	[x(I)  1"1), (3c) 

where B(I) is determined by {1 S J  S  K} P(I, J) = 1. 
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The mature model is connected to K-means models as follows. Return to the generai 
model, where M observations are assumed each to come from one of K populations 
and where the probability density for the /th observation from the Lth population is 
f [x(/) I 0(41 Let E(I, L) be a parameter that is unity if / comes from the Lth 
population and zero otherwise. Then the log likelihood of the observations is 

(1 	M}{1 L K} E(I, L) log f[x(J) I 0(L)]. 

For fixed {E(I, L), 1 I M , 1 L K}, the maximum log lilcelihood is 

LL(E) = {1 I M} log f {x(I)I 0[L(1)]}, 

where é(L) is the value of 0(L) ma.ximizing 

(l / M, E(I, L) = 1) logf [x(I) 0(L)], 

and L(I) is the unique value of L for which E(I, L) = 1. 
The vector {E(I, L), 1 I M , 1 L K} determines a partition of the M 

observations into K clusters, which is evaluated by the error function LL(E) given 
above. In the multivariate normal case, with covariance matrix spherical normal 
within all clusters, the quantity LL(E) is just the sum of squared euclidean distances 
from the cluster means. Other assumptions on the covariance matrix will give different 
error functions appropriate for, say, constant covariance matrices within clusters or 
covariance matrices that are diagonal, etc. 

Now suppose that the parameters E(I, L) are random variables. A reasonable 
assumption is that {E(I, L), 1 L K} are independent and identically distributed 
over the M observations, so that E[I, L] = 1 with probability P(L), 

1{1 L K} P(L) = 1. 
Then the log fikelihood is 

(l / M} log o L K} P(L) f[x(I) i 0(L)]) 

and the mixture model is obtained. An important feature of the model is that the 
conditional distribution of {E(I, L), 1 L K}, given the observations x(/), gives 
probabilities that each observation belongs to each of the K clusters. These proba-
bilities are the quantities P(I, K) which played a pivotal role in the iterative maximum 
likelihood solution. Unfortunately, the P(I, involve the unlcnown parameters 
0(L), which must be estimated, and the estimated inclusion probabilities are not quite 
trustworthy as an indication of definition of the various clusters. 

The mixture model follows from the straight partition model by assuming a prior 
probability distribution of partitions. An important outcome of this approach is the 
posterior distribution of partitions given the data. A fully Bayesian approach would 
also require prior distributions on 0(L) and the parameters P(L). Usually 0(1), 
0(2), . , 0(K) and P(1), P(2), . . , P(K) should be exchangeable, since there is no 
reason to distinguish between clusters. [Exchangeability might offer a control on 
wildly different estimates of 0(1), 0(2), . . . , 0(K) obtained when the data are few.] 

There are considerable difficulties in generalizing this approach from partitions 
to trees. 
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5.2 NORMAL MIXTURE ALGORTTHM 

Preliminaries. The data {A(I, J), 1 < I S  M, 1 < J S  N} are assumed to be a 
random sample of size M from a mixture of K multivariate normal distributions in 
N dimensions. The Lth multivariate norma! is determined by its mean 
{U(J , L), 1 < J S  N} and covariance {C(J1 , J2, L), 1 < J1, J2 < N}. The proba-
bility density for the Ith observation from the Lth normal is 

F(I, L) = (27r)-m2D(L)-1/2  
x exp 	{1 S  J1, ./2 S N} [A(I, J1) — U(J1, L)] 

x [A(I, J2) — U(J2, L)]CC(J1, J2, L)), 

where D(L) is the determinant, and {CC(J1, J2, L), 1 < J1, J2 S  N} is the inverse 
of the coyariance {C(J1 , J2, L), 1 < J 1 , J2 < N}. In the mixture model, each observa-
tion is obtained by selecting from the K multivariate normals, drawing the Lth with 
probability W(L) and then sampling the observation from the normal distribution 
selected. The probability density of the Ith observation is thus 

G(I) = {1 < L < K} F(I, L)W(L). 

pu, L) — 
F(I, L) 

G(I) 

is the probability that the Ith observation was drawn from the Lth normal. These 
quantities play an important role in estimating W, U, C, and also in interpreting the 
fit. Essentially the P(I, L) determine to which of the K clusters the Ith observation 
probably belongs. 

The criterion to be maximized is the log likelihood {1 S I < M} log G(I). The 
procedure iterates toward a stationary (locally optimal under small changes in W, 
U, C) likelihood, but there is no guarantee that this local optimum is global. In generai, 
there will be more than one local optimum. 

The technique first guesses at the probabilities {P(I, L), 1 < I < M, 1 < L < K}, 
like guessing an initial partition in the K-means algorithm, then estimates means U 
and covariance C as weighted averages over all observations with the weights 
{P(I, L), 1 < I < M, 1 < L < K}; it then estimates the weights W as averages of 
the P, and finally estimates the probabilities P(I, L) using P(I, L) = F(I, L)IG(I). 
This cycle is repeated until the values of W, U, C converge. It is not known whether 
the log likelihood surely increases after each cycle. A reasonable stopping rule is: 
Stop when the log likelihood increases by less than 0.01. 

The very many parameters present in the covariance matrices {C(J1,J2; L), 
1 < Il,  J2 S  N, 1 < L S  K} require a lot of data for their estimation. A rule of 
thumb is that M should be greater than }(N + 1)(N + 2)K. Even with many observa-
tions, the procedure is vulnerable to nonnormality, or linear dependence among the 
variables. A way to reduce this sensitivity is by assumption on the covariance matrices. 
There are four plausible stages from very generai to very specific: 

(i) Covariance matrices are arbitrary; 
(ii) Covariance matrices in different normals are equal; 
(iii) Covariance matrices are equal and diagonal; 
(iv) All variables have the same variance and are pairwise independent. 

The quantity 
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suP 1. Initialize P(I, L) by setting 

P(1, 1) = P(2, 1) = • • • = P[I(1), 1] = 1, 

P[I(1) + 1, 2] = P[I(1) + 2, 2] = • • = P[I(2), 2] = 1, 

• 

P[I(K — 1) + 1, K] = • • • = P[I(K), K] = 1, 

where I(J) = JM K. The remainder of the P(I, L) are set equal to zero. This initializa-
tion is equivalent to partitioning the observations into equal size groups. A different 
initialization is obtained by reordering the observations. 

STEP 2. Update the weights W by 

W(L) = {1 I M} P(I, L). 

The quantity W(L) is the estimated number of observations from the Lth distribution. 

STEP 3. Update the means U by 

U(J, L) = {1 I M} A(I, J)
P(I, L) 

 . 
W(L) 

sue 4. Update the covariances C by 

C(J1, J2, L) = {1 I M} [A(I, J1) — U(J1, L)][A(I, J2) — U(J2, L)]
P(I, L) 

 . 
W(L) 

Under option (i), go to Step 5. 

	

Under options (ii)—(iv), replace C(11, J2, L) for each L (1 	L K)by 

(1 L K} C(J1, J2 L)W(L) , 	m • 

Under option (iii), replace C(J1, J2, L), for each L and for each J1 J2 by zero. 
Under option (iv), replace C(J,J, L) for each J, L by 

{1 S 	N} C(J 1)  

STEP 5. Compute the determinants and inverses of the covariance matrices 
{C(J1 , J2, L), 1 J I , J2 N} for each L and then the probability densities F(I, L), 
the average densities G(I), and the log likelihood (1 / M} log G(I). Update 
P(I, L) by P(I, L) = F(I, L)IG(I). lf the log likelihood does not exceed its previous 
value by 0.01, stop. Otherwise go to Step 2. 

NOTE. For covariance structure options (iii) and (iv), independence between 
variables is assumed, and considerable simplification in the computations in Steps 4 
and 5 is possible. 
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5.3 NORMAL MIXT'URE ALGORITHM APPLIED 
TO NEW HAVEN SCHOOL SCORES 

Table 5.1 contains the scores in fourth grade reading, fourth grade arithmetic, sixth 
grade reading, and sixth grade arithmetic in 25 New Haven primary schools. A reason-
able standardization would divide the fourth grade scores by the national average, 
four, and the sixth grade scores by the national average, six. Since the general mature 
model is invariant under linear transformation, this scaling is not necessary. 

For two clusters, the number of parameters to be estimated in the most general 
mixture model is + 1)(N + 2)K - 1 = 29, which exoteds the number of observa-
tions. The algorithm produced infinite likelihoods for several starting configurations 

Table 5.1 Achievement Test Scares, New Heves Sehools 

The measurements are in years and months, in terms of national averages. There are 
ten months in a school year. At the beginning of fourth grade, the national average 
score is 4.0. 

glogOoL 	 PCIL1R131 GRAZIE 	 OMR GRADE 

READING 	ARITRICTIC 	READING 	ARIT1NETIC 

Baldwin 	 2.7 	 3.2 	 4.5 	4.8 

Bernard 	 3.9 	 3.8 	 5.9 	 6.2 

Beecher 	 4.8 	 4.1 	 6.8 	 5.5 

Brannen 	 3.1 	 3.5 	 4.3 	4.6 

Clinton 	 3.4 	 3.7 	 5.1 	 5.6 
Conte 	 3.1 	 3.4 	 4.1 	 4.7 

Davi@ 	 4.6 	4.4 	 6.6 	 6.2 

Day 	 3.1 	 3.3 	 4.o 	4.9 

Might 	 3.e 	3.7 	 4.7 	4.9 

Edgesood 	 5.2 	 4.9 	 8.2 	 6.9 

Edward* 	 3.9 	 3.8 	 5.2 	 5.4 

Rale 	 1Ni 	 4.0 	 5.6 	 5.6 

Rodar 	 3.7 	 5.1 	 7.0 	 6.3 

Ivy 	 3.0 	 3.2 	 4.5 	 5.0 

Kimberl,y 	 . 2.9 	 3.3 	 4.5 	 5.1 

Lineoln Bassett 	3.4 	 3.3 	 4.4 	 5.0 

LoveLl 	 4.o 	4.2 	 5.2 	 5.4 

Brine* 	 3.0 	 3.0 	 4.6 	 5.0 

Rosa 	 4.0 	4.1 	 5.9 	 s.e 
Serantein 	 3.0 	 3.2 	 4.4 	 5.1 

Sherman 	 3.6 	 3.6 	 5.3 	 5.4 

Trumsn 	 3.1 	 3.2 	 4.6 	 5.0 

Weat 11111a 	 3.2 	 3.3 	 5.4 	 5.3 

Winchester 	 3.0 	 3.4 	 4.2 	 4.7 

Woodvard 	 3.8 	 4.0 	 6.9 	 6.7 
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by moving toward a cluster containing only four objects. It was decided to reduce the 
number of parameters to be estimated by constraining the covariance matrices within 
each cluster to be equal. 

STEP 1. Initially, 
P(1, 1) P(2, 1) = • • • 	P(12, 1) = 1, 

P(13, 2) = P(14, 2) = • • • = P(25, 2) = 1, 
and all other P(I, J) aie zero. 

sirEp 2. Compute W(1) = 12 and W(2) = 13. These are the number of observa-
tions initially in the two clusters. 

STEP 3. The U(J, 1) are the means of the four variables over the first twelve observa-
tions: U(1, 1) = 3.81, U(2, 1) = 3.82, U(3, 1) = 5.42, and U(4, 1) = 5.43. Similarly, 
the U(J, 2) are the means of the four variables over the last thirteen observations. 

STEP 4. The covariance matrix C(J1, J2, 1) (1 S  J1, J2 S  4) is computed on the 
first twelve points, and the covariance matrix C(J1,J2, 2) is computed on the next 
thirteen points. These covariances are averaged with weights 12 and 13, and the. 
weighted covariance matrix is used in later steps. 

STEP 5. The determinant and inverse of the within-cluster covariance matrix is used 
to compute the probability density of each observation under each of the two multi-
variate normal distributions. Return to Step 2. 

The values of various parameters at the first and l 1th steps are given in Tables 
5.2 and 5.3. The parameters take almost the same values at the 21st step as at the llth, 

Table 5.2 Normal Mature Model with Equal Covariances, Applied to New Haven 
School Data, First Cycle 

INITIAL PROBABILTTIES OF BELONGING TO YIRST NORMAL 

	

Baltrin 1.000 	Conte 	1.000 	Edwarda 1.000 	Lincoln 0.000 	Sherman 	0.000 

	

Bernard 1.000 	Devia 	1.000 	Rale 	1.000 	Lowell 	0.000 	Truman 	0.000 

	

Beecher 1.000 	Day 	1.000 	Rooker 	1.000 	prince 	0.000 	Weat Silla 0.000 

	

Brennan 1.000 	Dwight 	1.000 	Ivy 	0.000 	Roda 	0.000 	Wincheater 0.000 

	

Clinton 1.000 	Edgewood 1.000 	Eimherly 0.000 	Scranton 0.000 	Woodward 	0.000 

WEICREPS EXPECTED !ISMER OP OBSERVATIONS IN RAMI NORMAL 

(12, 13) 

RUM 	 REA4 	 ARI4 	 REA6 	 ARI6 

FIRST NORMAL 	 3.81 	 3.82 	 5.42 	 5.43 

	

SECOND NORMAL 	 3.52 	 3.61 	 5.15 	 5.37 

VARIANCES AND CORREIATIONS  

	

REA4 	 .544 	 .955 	 .875 	 .774 

	

AR/4 	 .955 	 .27o 	 .865 	 .1306 

	

REA6 	 .875 	 .865 	 1.137 	 .931 

	

ARI6 	 .774 	 .806 	 .931 	 .377 

LOG LIKELIRCOD 60.032 
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Table 5.3 Normal Mixture Model with Equal Covariances, Applied to New Haven 
School Data, llth Cycle 

	

Baldwin .942 	Conte 	.924 	gdwardm 	.222 	Lincoln 	.000 	Sherman 	.071 

	

Bernard .000 	Devio 	.988 	Hale 	.763 	Lovell 	1.000 	Truman 	.004 

	

Beecher 1.000 	Day 	.004 	Hooker 	1.000 	Prince 	.000 	Weet Hills .031 

	

Brennan 1.000 	Dwight 	.970 	Ivy 	.006 	Roes 	.971 	Winchester .989 

	

Clinton .040 	Edgewood 1.000 	Ximberly .044 	Scranton .000 	Woodward 	.000 

WEIGHTS EXFECTED NUMBER OF OBSERVATIONS IN EACH NORMAL 

. 	13) 

MEANS 	 REA4 	 ARI4 	 REA6 	 ARI6 

FIRST NORMAL 	 4.01 	 4.00 	 5.59 	 5.44 

	

SECOND NORMAL 	 3.33 	 3.44 	 4.99 	 5.36 

VARIANCES AND CORREIATIONS  

	

REA4 	 .454 	 .948 	 .874 	 .826 

	

ARI4 	 .948 	 .205 	 .878 	 .897 

	

REA6 	 .874 	 .878 	 1.064 	 .950 

	

ARI6 	 .826 	 .897 	 .95o 	 .376 

LOG LIKELIBOOD  62,210 

so these values are a particular set of maximum likelihood solutions. It will be noted 
that the belonging probabilities in Table 5.3 are all nearly unity or zero, so that, 
except for Edwards and klale, membership in the clusters is clear cut. This is not a 
sign of stability or statistica] significance of the clusters. 

The iterative algorithm converges rather slowly and needs to be speeded up. The 
acceleration technique, after five iterations, sets each probability equal to unity or 
zero, whichever the probability was closer to. This recognizes the fact that final 
belonging probabilities tend to be close to unity or zero. 

The two clusters of schools are well distinguished by the difference in arithmetic 
performance between fourth and sixth grades. Schools in the first cluster advance 
1.44 years, whereas schools in the second cluster advance 1.92 years, with a within-
cluster standard deviation of 0.3 years. 

5.4 THINGS TO DO 

5A.1 Rtmning the Mixture Algorithm 

The mixture algorithm is a fancy version of the K-means algorithm, with the extra 
twist that each case is assigned only a probability of belong,ing to the various clusters. 
Therefore, the results of the mixture algorithm should be compared with the results 
of a K-means algorithm. Usually the probabilities that each case belongs to various 
clusters are very dose to unity or zero, but this should not be taken as an indication 
of sharply defined clusters. Setting about half the data missing will disclose different 
clusters with equally well-defined "belonging" probabilities. 



Table 5.4 Civil War Battles in Chronological Order 

[From T. L. Livermore (1957). Numbers and Losses in the Civil War, Indiana Uni-
versity Press, Bloomington.] The variables are union forces, union shot, confederate 
forces, and confederate shot. 

Bull Run ' 	28452 	1452 	33232 	1969 
Wilson's Creek 	5400 	944 	11600 	1157 

Ft. Doneloon 	27000 	2608 	21000 	2000 
Pea Ridge 	 11250 	1183 	14000 	600 
Shiloh 	 62682 	10162 	40335 	9735 
Williamsburg 	40768 	1866 	31823 	1570 

Fair Oaks 	 41797 	4384 	41816 	5729 
Mechanicsville 	15631 	256 	16356 	1494 
Gainest Mill 	34214 	4001 	57018 	8751 
Malvern Bill 	83345 	4969 	86748 	8602 
Seven Days 	91169 	9796 	95481 	19739 

Cedar Mt. 	 8o3o 	1759 	1686B 	1338 
Manassas 	 75696 	10096 	48527 	9108 
Richmond, Ky. 	6500 	1050 	6850 	450 

South Mt. 	 28480 	1728 	18714 	1885 
Antietam 	 75316 	11657 	51844 	11724 
Corinth 	 21147 	2196 	22000 	2470 
Perryville 	36940 	3696 	16000 	3145 
Fredericksburg 	100007 	10884 	72497 	4656 
Chickasaw Bayou 	30720 	1213 	13792 	197 
Stone's River 	41400 	9220 	34732 	9239 
Arkansas Post 	28944 	1032 	4564 	105 

Chancellorsville 	97382 	11116 	57352 	10746 
Champions Bill 	29373 	2254 	20000 	2181 
Ft. Hudson I 	13000 	1838 	4192 	235 

Ft. HUdson II 	6000 	1604 	3487 	47 
Gettysburg 	83289 	17684 	75054 	22638 
Ft. Wagner 	' 	5264 	1126 	1785 	169 
Chicamanga 	58222 	115:1735 	164.66:65 	16986 
Chatanooga 	56359 	 2521 

Mine Run 	 69643 	1272 	44426 	680 

Oluotee 	 5115 	1355 	5200 	934 
Pleasant Hill 	12647 	994 	14300 	1000 
Drewryis Bluff 	15800 	277o 	18025 	2860 
Atlanta I 	110123 	10528 	66089 	9187 
Weldon RR 	 20289 	1303 	14787 	1200 
KeneSaW Mt. 	16225 	1999 	17733 	270 
Tapelo 	 14000 	636 	6600 	1326 
Peach Tree Ck. 	20139 	1600 	18832 	2500 

Atlanta II 	30477 	 7000 

Atlanta III 	13226 	559 	18450 	4100 

	

:::: 	:67:043 
Jonesborough 	14170 	179 	23811 	1725 

Winchester 	37711 	 2103 

Cedar Ck. 	 30829 	4074 	18410 	186o 
Franklin 	 27939 	1222 	26897 	5550 
Bentonville 	16127 	'933 	16895 	150B 

Note: Confederate casualties not knovn in Grantts Richnond campaign.] 

121 
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Table 5.5 Pianeta and Manna 

[From P. Moore (1970) The Atlas of the Universe Rand McNally, New York.] Dis-
tante: in thousands of miles, of satellite from planet; diameter: in miles, of satellite; 
period: in days, of satellite about planet. 

PIANET 	MLST DIAM PERIOD 	 PIANET 	DIST DIAM PERIOD 

BARTH 	239 216o 	655 	 SATURN 	116 	300 	23 

MARS 	5.8 	10 	7.7 	 148 	400 	33 

14.6 	10 	3o 	 183 	600 	45 

JUPITER 	112 	100 	22.0 	 235 	600 	66 

262 	2020 	42 	 327 	810 	108 

417 	1790 	85 	 759 	2980 	383 

665 	3120 	172 	 920 	100 	511 

1171 	2770 	401 	 2213 	500 	1904 

7133 	5o 	6014 	 8053 	100 	13211 

7295 	20 	6232 	 URANUS 	77 	200 	34 

7 369 	10 	6325 	 119 	500 	6o 

13200 	10 	15146 	 166 	300 	loo 

14000 	10 	16620 	 272 	600 	209 

14600 	10 	17734 	 365 	500 	323 

14700 	10 	18792 	 NEPTUNE 	220 2300 	141 

	

3461 	200 	8626 

SUN 	DIST 	DIAM 	PERIOD Mass (relative to earth) 

MERCURY 	35950 	3100 	2112 	.054 

VENUS 	67180 	7700 	5393 	.81 

BARTH 	9290o 	7927 	8766 	1.00 

MARS 	141500 	4190 	16488 	.11 

JUPITER 	483200 88640 	103911 316.94 

SATURN 	886000 74100 	258420 	95.20 

URANUS 	1782000 32000 	735840 14.70 

NEPTUNE 	2793000 	31000 	1445400 	17.20 

IMITO 	3670000 	t 	2172480 

Various degrees of vagueness are possible in specifying the error distribution within 
clusters, with the most generai being arbitrary covariance matrices within the various 
clusters. A suitable trial data set is Table 5.4, the numbers and losses in Civil War 
battles, which should be logged before analysis. Also, follow Kepler in analysis of 
satellite data (Table 5.5). 
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5.4.2 Singularities 

Let the data be a single variable {X(/), 1 / M}. Let the model for a single 
observation be 

f Ex i p(1), p(2), cr(1), 0(2), p] 

exp,{—Ex — is(1)? cr(1)2} 
— P 	 + (1 — p) exP ffs — 

142)15(2)2} 
00)V-277 	 a(2),ATT 

Show that the log likelihood is infinite at p(1) = X(1), cr(1) = O. More generally, 
for N-dimensional data with arbitrary covariances within clusters, show that there 
exists an infinite log likelihood whenever there is a cluster containing less than N + 1 
cases. 

5.4.3* A More Probabilistie Approach 

Consider again the general two-cluster normal model for a single variable. Maximum 
likelihood is not available since the likelihood is infinite at a(1) = O, = x(1). 
Suppose that it is assumed that IA(1) and p(2) are randomly sampled from N(14, cra) 
and that a(1)2 and 012)2 are random sampled from ds2/21. [These assumptions will 
rule out a(1) = O or cr(2) O.] 

The posterior density for p(1), 14(2), a(1), and cr (2) , given the observations X and the 
parameters p, aa, sa, and d, is maximized when 

P(I, J)X(I)Icr2(J) + cr2 
14(1) — 	MI039) + licrt 

P(I, J)[X(I) — p(J)]2 ds2 
akJ) — 

M d 

1 IX(1) — PGM2 P(I, J) = C(I)P(J) exp ( 2 
	«(.41 	[cr9)]-1 

and 
P(I, 1) + P(I, 2) = 1, 

P(J) = {1 I M} 
P(I, J) 

M 

This stili leaves the parameters p, cra, sa, and d, but these may be deterznined, to 
maximize the posterior density, by 

	

Ru(1) 142)], 	 (5) 

	

cr2 = f[p(1) — p(2)?, 	 (6) 

1 	1( 1 _i_ 1 
-s; = 2 k a(1)2 cr(2)2/' 

(1) 

(2) 

(3) 

(4) 



f[x  ion exp {—i[x 47)]2/01} 
• 

cri.,f5r 
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and 

2cs(1)2
) log (—ds2  ). 

2I"(d/2) 
 — log 

ds2  
(8) 

r(d/2) 	 2cr(2)2  

Alternatively, these parameters might be fixed in advance from considerations outside 
the data. For large M, the effects of the parameters will be minor except they prevent 
the infinite likelihood at 0 1  = O or at a2  = O. 

This technique generalizes in an obvious way to larger numbers of clusters and with 
some complications to a larger number of variables. 

5.4.4 Trees 

Consider a single variable (X(/), 1 s I S M}. For K clusters, one model for a single 
case is 

f(x) = P(J)f [x ii(J)], 
where 

The p(J)'s here are cluster means, which must be grouped in a tree approach. 
Therefore treat the js(J) as observations from the mixture 

g(x) = Kle)f [ 0  I 0(K)], 
where 

f i 0(101 - 
exp [—[x — 61("2/41 

($2,.1.5 

Finally let the 0(K) be distributed as N(9, 	where this last "mixture" ofjust one 
distribution corresponds to the root of the tree. This model corresponds to a tree with 
four levels: the cases, the parameters p, the parameters 0, and the parameter 

Theory for fitting the parameters awaits development. 

5.4.5 Initialization 

There may be many different solutions of the maximum likelihood equations. Using 
the iterative technique, the final solution will depend on the initial choice of "belonging 
probabilities" P(I, L). One method of making the initial choice is to run the K-means 
algorithm first; the initial "belonging probabilities" will then be a zero—one array 
determined by the membership of observations in clusters. If the data consist of 
observations on a single variable, the Fisher exact algorithm is suggested. 

5.4.6 Coincidente with K Means 

In one dimension, let X(1), X(2), . . . , X(J) and X(J + 1), . . . , X(AI) denote two 
clusters of observations. Assume that X(1) S X(2) s • • • S X(M). Show that, if 
[X(J) — X(1)]/[X(J + 1) — X(J)] and [X(M) — X(J 1)]/[X(J  + 1) — X(.1)] are 
both sufficiently small, then K means and the mixture model with equal variances 
within clusters coincide in finding the two clusters {X(1), . , X(J)} and 
{X(J 1), . , X(M)}. 
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PROGRAMS 

MIX 	computes maximum likelihood fit to mixture model under various con- 
straints on within-cluster covariances. Needs INVERT, COVOUT, MOM. 

COVOUT prints output from mixture model after every five iterations. 
M1XIND mixture model with variables having constant variances and zero co- 

variances Within clusters. 
MIXOUT prints output for MIXIND. 



SUBROUTINE MIX1P.W.M.N.K.C.U#XeITER,NCOV.Q) 
C..   	 20 MIXT 1973 
C.... ITERATES TO MAXIMUM LIKELIHOOD ESTIMATES IN MIXTURE &WEL' ARBITRAVI. MEANS 
C 	AND COVARIANCES WITHIN CLUSTERS. 
C.... NEEDS INVERT,MONCOVOUT 
C.... M = NUMBER OF ROWS 
C.... N . NUMBER OF CDLUMNS 
C.... K 	NUMBER OF CLUSTERS 
C.... C . N BY N BY K COVARIANCE MATRICES. ONE FOR EACH CLUSTER 
C.... U = N BY K ARRAY OF CLUSTER MEANS 
C.... X . M BY N BORDERED ARRAY, DATA MATRIX 
C.... ITER . NUMBER OF ITERATIONS I TRY 10 
C.... P . M BY K BORDERED ARRAY, 	PROBABILITY THAT ITH CASE BELOUS TO 
C 	 THE JTH CLUSTER. 
C.... Q = M 	K SCRATCH ARRAY 
C.... W 	K BY 1 ARRAY OF MIXTURE PROBABILITIES 
C.... NCOV 	INTEGER DETERMINING STRUCTURE OF COVARIANCE MATRIX 
C 	 NCDV = 1 	GENERAL COVARIANCES 
C 	 NCOV m, 2 	COVARIANCES EQUAL BETWEEN CLUSTERS 
C 	 NCOV . 3 COVARIANCES EQUAL AND DIAGONAL 
C 	 NCOV 4 COVARIANCES SPHER/CAL 
C•• • 

DIMENSION P1M,K),~1IRCININ,KleU(N.KNXIM,N) 
DIMENSION Q1M,K) 

C.... INITIALIZE P 
DO 20 1.2,M 
DJ 19 J.1,K 

19 P(I.J)=0 
J.(11-11*K1/M+1 

20 P11,D.1. 
C.... UPDATE MEANS AND COVARIANCES 

DO 70 IT.1.1TER 
DO 30 J.1.K 

30 CALL MOM1UileJleC(1,1,D.P(1,J1eX,MIN) 
C.... UPDATE WEIGHTS 

WW.0 
DO 42 J■ lipK 
141.11.0. 
DO 41 I.2.M 

41 W1.11.W1Jà+P(IgJi 
42 WW=WW+W(J) 

DO 43 J=1.1( 
43 INWR.NE.01 W(J)=WIJI/WW 

C.... ADJUST FOR COVARIANCE STRUCTURE 
IFINGOV.E0.1) GO TO 39 
DO 32 im2.N 
DO 32 11.2.N 
ClI.11.1).14(1)*C(I,11.11 
DO 31 J=2.K 

31 C(1,11,1P.CII.Ii.là+C(1.1I,J)*W(J) 
IFINCOV.GE.3.AND.I.NE.Ili 
DO 33 J.1,K 

33 ClIglIpJ1.C11,11p1) 
32 CONTINUE 

CC.0 
DO 35 1=2,N 

35 CC.CC+C1I,I,11 
CC.CCAM-1/ 
DO 36 1.2eN 
DO 36 J.1,K 

36 IF1NCOV.EQ.4/ C111pItJ/=CC 
39 CONTINUE 

11=IT-1 
IF(11I/5/*5.EQ.11/ CALL COVOUT(X.M.N.U.C.PIW,K) 

C.... UPDATE BELONGING PROBABILITIES 
DO 50 J.1,K 
DET=1 
IF(NCOV.GT.21 C11,101=1./C11,1,J) 
IF(NCOV.LE.2) CALL INVERT1C11,1 .Ji,DET,N) 
IF1DET.EQ.01 RETURN 
DET.DET**0.5 
C11.1..11.DET 
DO 50 1.2,M 
S.O. 
DO 60 L=2,11 
DO 60 LL=2,N 

60 S.S+C(L.I.L.J)*(XlIaL)—UlLIA1*(X(I.LLI—U(LL,JI) 
IFIS.GT.1001 S=100 

126 



L1(11.1)=P(1,J) 
50 P(1,A=EXP(-.S/2.1 4 1(0/DET 

C.... COMPUTES LOG LIKEL1H00D 
XLL=0 
DO 61 A=201 
S=0. 
DO 63 .1.10( 

63 S=S+P(IIM 
IF(S.EQ.0.) S=10.**(....101 
XLL=XLL+ALOGIS/ 
DO 61 J ■ 1,K 

él P(1,J)=P(I.J1/5 
WRITE(6.1/ IT,XLL 

I FORMAT(13H ITERATION = gI5,11HLOG LIKE = eF10.61 
DO 62 1=2,M 
DO 62 J=lipK 
XIT=ITER 
A=1.+.7*IT/XIT 
P(I..11=A*P(I,J1...-(A-.1.1*Q(IgA 
IP(ITACI.5.ANO.P(1eJ/AT.0.5) P(1.1.1)=1. 
IF(IT.EL1.5.AND.P(IiJ).LE.0.5) P(1..11.0. 
IF(P(Iga.GT.1) P(1..1)=1 
IF(P(IfkI1.LT.0) P(111.)=0 

62 CONTINUE 
70 CONTINUE 

RETURN 
END 

SUBROUTINE COVOUTIA,M.NeXA.C.XMP,XPeKI 
20 MAY 1973 

C.... PRINTS OUT PARAMETERS OF MIXTURE MODEL 
C.... SEE SUBROUTINE MIXIND FOR ARGUMENT LIST 
C.... C . N BY N BY K ARRAY. COVARIANCES WITHIN EACH CLUSTER 
C . 	  

DIMENSION AIM.RI.XALN.KliCIN.NpRI.XMP(M,MeXPIK) 
DIMENSION VD(100! 
WRITE16.91 11(1.11,K 

9 FORMATI1OH1MIXTURE MODEL FOR,A5.5H RITH,I5.9H CLUSTERS I 
WRITEI6.2IIKK,KK.1,KI 

2 FORMAT(8H CLUSTERaX,10I5X,14,3X11 
C.... PRINT CLUSTER PROBABILITIES 

WRITE(6.31(XPIKK)~.100 
3 FORMATI22H MIXTURE PROBABILITIES/I10X110F12.611 

C.... PRINT MEANS 
WRITE(6.61 

6 FORMAT(14H CLUSTER MEANS I 
DO 10 J.2pN 

10 FRITElà,4) 
4 FORMATIA7,3X.10F12.41 

WRITE(6.12)1C(1.1eJ),J.1.K/ 
12 FORMATi13H DETERMINANTS/(10X.10G12.41) 

WRITEIG.lì 
1 FORMATí42H WITHIN CLUSTER VARIANCES AND CORRELATIONS 

DO 50 I.2,N 
DO 50 J.10N 
DO 51 KK.1,K 
Z.C(1,1100(1ACIJ,J,KK) 
DOCKKP.C(1.J.KK1 
IFII.EQ.JI 2.0 

51 IF(Z.NE.0) DD(KK).CII,J,KKI*2**I-.0.51 
WRITE(6,11) 

11 FORMATI1H i 
WRITE(6,81 A(1.1.1.A(1,J/.(00(KK/eKK=1,K1 
FORMATI2A5,10F12.41 

50 CONTINUE 
C.... PRINT PROBABILITIES 

WRITEI6,71 
7 FORMAT124H BELCNGING PROBABILITIES l 

DO 20 1 ■ 204 
20 WRITEI6.51 AI1,11,1XMP(1~/.1a.l.K1 

5 FORMATIA7.3X,10F12.61 
RETURN 
END 
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SUBROUTINE MIXINDIA,M,N,XA,XVOIMPeXPIKI 
C•• • 	 20 mAy 1973 
C.... FITS MIXTURE MUDEL, K MULTIVARIATE NORMALS, EACH VARIADLF HAVIVS VARIANCE 
C.... CONSTANT OVER DIFFERENT CLUSTERS. 
C.... M 	NUMBER OF FOwS 
C.... N = NUMBER OF COLUMNS 
C.... A . M BY N BORDERED ARRAY 
C.... XA 	N BY K ARRAY OF CLUSTER MEANS 
C.... XV 	N BY 1 ARRAY OF VARIANCES WITHIN CLUSTERS 
C.... XMP . M bY K ARRAY, XMP(1,10 = PFOBABILITY THAT CLUSTER K CONTA1NS CASE I. 
C.... XP 	K BY 1 ARRAY, M1XTURE PRObAbILITIES 
C.... K 	NUMBER OF CLUSTERS 
COM 	  

DIMENSION AIMeNIeXAINeK1,XVINJ,XP(10,XMPIH,K1 
C.... INITIAL1ZE PRdbABILITIES 

XM.99999. 
DO 30 KK.1,K 

C.... FINO FURTHEST CASE FROM PRESENT MEANS 
DM.0 
IM=2 
IF(K8.EQ.0) GO TO 35 
DO 31 1.201 
DI.10.**10 
DO 32 KL=1,KB 
D0.0 
XC=0 
DO 33 J.2,N 
IFiAlIp.N.EQ.XMI GO TO 33 
XC=XCA.1 
DD=OUI.IAII,J1—XA(J,KL/1**2 /XVIJI 
IFIDD.GT.DI*(N-1)! GO TO 32 

33 CONTINUE 
IHOM.EQ.0) GO TO 31 
OD=00/XC 

32 IFIDO.LT.D1i DI=DD 
GO TO 31 

DM=01 
IM.1 

31 CONTINUE 
35 CUNTINUE 

C.... bEG1N A NEW CLUSTER WITH THIS CASE 
DO 40 J.2,N 

40 XAIJ,KKi.AIIMpJI 
C.... ITERATb A FEW TIMES 

XPIKKI.EXP(0.5*NI 
1TFR.5 
DO 50 IT=1,1TEF 

C.... UPDATE PROBABILITIES OF BELONGIND 
DO 51 1=2,M 
PP.0 
DO 52 KL.1,KK 
00=0 
DO 53 J=2,N 
IFIAII,Ji.EU.XMI GO TO 53 
IFIKB.EQ.0/ GO TC 53 
00=D0+1AII,JI—XA(J,KL/~2.1lXVIJ/*2./ 

53 CONTINUE 
IF(OD.GT.100I DO.100 
XMPII,KLI.XP(KLI*EXPi—ODI 

52 PP=PP+XMPII,KLI 
IFIPP.EQ.01 GO TO 51 
PN=0 
DO 54 KL.1,KK 
XMPII,KU.XMPII,KLUPP 
TH=.0001 
IFIXMPII,KAA.LT.TH/ XMPII,KL).0 
PN 0PNA.XMPIleKL) 

54 CONTINUE 
DO 91 KL=1,KK 

S1 XMPII.KLI.XMPII,KLIIPN 
51 CONTINUE 

C.... UPDATE MIXTURE PROBABILIT1ES 
GO 60 Ki....11KK 
XPIKL).0 
DO 60 1.2,M 

60 XPIKLI=XPIKLI+XNP(1,KLAMM-1/ 
C.... UPDATE CLUSTER ESTIMATES, EACH ONE A WEIGHTED MEAN 
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DO 70 KL=1,KK 
DO 70 J=2,N 

DO 71 1=M 
71 XAIJOCLI=XA(J,KL)+AII,J1*XMP(1.KL) 
70 IFIXPIKLI.NE.0/ XALNKLI.XA(J.KLI/IXPIKLOIM-III 

DO 81 J=2,N 
XV(J).0 
DO 80 1 ■204 
DO 80 la.leKK 

80 XVIJI ■XV(Ji+IAl1ga-XAIJ,KL)1**2*~II,K11 
81 XVIA.X14 1.11/1M-11 
50 CONTINUE 

CALI. MIXOUTIA,N,NeXA,XV,XNPIOUNKK/ 
30 CONTINUE 

RETURN 
END 

SUBROUTINE MIXOUTIA.M.N,XA.XS,XMP,XP,K) 
C 	 23 MAY 1973 
C.... PRINTS OUT PARAMETERS OF MIXTURE MODEL 
C.... SEE SUBROUTINE MIXIND FOR• ARGUMENT LIST 
C.. 

DIMENSION AIMOD.XAINFKI.XS(W,XMP(M.KI.XP(K1 
WRITE(6,91 A(1,1),K 

9 FORMATI16HIMIXTURE MODEL FDP.A5g5H WITH.15.9H CLUSTERS i 
C.... PRINT VARIANCES 

WRITE16.1/(XSIJNA(1,A,J=2,N1 
1 FORMAT(25H WITHIN CLUSTER VARIANCES/5(F15.6g1H(pA4,1HI11 

C.... PRINT CLUSTER PROBABILITIES 
WRITE(6.21(KK,KK.I.K1 

2 FORMAT(10X.6H CLUSTER.9(I3,1X~ CLUSTER1,131 
WRITE(6,31(XPIKK)~41,K) 

3 FORMAT(22H MIXTURE PROBABILITIES/(10X.10F12.611 
C.... PRINT MEANS 

WRITEI6,6$ 
6 FORMAT1I4H CLUSTER MEANS I 

DU 10 J.2,N 
10 WRITE(6.41 A(1..D.(XA(J.KKNKK.1.1() 
4 FORMATIA7,3X,10F12.41 

C.... PRINT PROdAdILITIES 
WRITE(6,71 

7 FORMAT(2411 BEL•NGING PROBABILITIES 1 
DU 20 I-2.M 

20 WBITE(6.5! A(IsI),IXMPII.KX/IIKK.1.10 
FORMAT(A7,3X.10F12.61 
RETURN 
ENO 
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CHAPTER 6 

Partition by Exact Optimization 

6.1 INIRODUCTION 

A partition of a set of objects is a family of subsets such that each object lies in exactly 
one member of the family. If R(M, K) is the number of partitions of M objects into K 
sets, it can be seen by induction on M that 

R(M, K) = KR(M — 1, K) R(M — 1, K — 1). 

Also R(M , 1) = R(M, M) = 1. As a result, the number of partitions increases ap-
proximately as Km; for example, R(10, 3) = 9330. 

Optimization techniques in clustering associate an error function e[P(M, K)] with 
each partition P(M, K) of M objects into K clusters and seek that partition which 
minimizes e[P(M, K)]. Because of the very large number of possible partitions it is 
usually impractical to do a complete search, so it is necessary to be satisfied with a 
"good" partition rather than a best one. Sometimes prior constraints or mathematical 
consequences of the error function e reduce the number of possible partitions, and a 
complete search to find the exact optimum is possible. 

Such a case occurs when the data points are ordered, for example, by time, as in 
Table 6.1, which reports the winning times in the 100-m run in the Olympics from 
1896 to 1964. The data points are ordered by the year of the Olympics. It is sensible 
to require each cluster to correspond to an interval of years. The partition will reveal 
whether or not there were periods of years when the winning times remained fairly 
constant. The number of possible partitions into K clusters is now 0(Mx)rather than 
0(Km), and even further reduction is possible when an error criterion is used that 
is additive over clusters. 

6.2 FISHER ALGORITHM 

Preliminaries. This algorithm is due to Fisher (1958). Objects are labeled 
l, 2, ... , M, and clusters are constrained to consist of intervals of objects 
(/, / 1, / -l- 2, . . . , J — 1, J). There are only i./1/(M 1) possible clusters. There 
is a diameter D(I, J) associated with the cluster (/, / 1, . . , J) such that the error 
of a partition P(M, K) into K clusters = 1, /i + l, . , 4 - 1), (4, 4 + 1, , 
4 - 1), 	, (.1,„ 	- 1), UK, + i 	M) iS 

e[P(M , K)] = {1 J K} 	j+i — 1). 

The error of a partition is thus the sum of cluster diameters over the clusters it 
contains. 
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Table 6.1 Olympic Track 1896-1964 

From The World Almanac (1966), New York World-Telegram, New York. 

In tenths of seconds (- denotes missing) 

toom 	2oom 	tfoom 	800m 	15o0M 	5000M 	t0000m 

1896 	120 	' - 	542 	1310 	2732 	- 

1900 	108 	222 	494 	1214 	2460 	- 

1904 	no 	216 	492 	1160 	2454 	- 

1906 	112 	 532 	1212 	2520 	 - 

1908 	io8 	224 	500 	1128 	2434 	- 	- 

1912 	108 	217 	482 	1119 	2388 	8766 	18808 

192o 	i o8 	220 	496 	1134 	2418 	8956 	19058 

1924 	106 	216 	476 	1124 	2336 	8712 	18232 

1928 	108 	218 	478 	1118 	2332 	878o 	18188 

1932 	103 	212 	462 	1098 	2312 	8700 	18114 

1936 	103 	207 	465 	1129 	2278 	8622 	18154 

1948 	103 	211 	462 	1092 	2298 	8576 	17998 

1952 	lo4 	2o7 	459 	1092 	2252 	8460 	17570 

1956 	105 	206 	467 	1077 	2212 	8196 	17256 

1960 	102 	205 	449 	1063 	2156 	8234 	17122 

1964 	100 	203 	451 	1051 	2th 	8288 	17044 

The spring of this algorithm is the relation between optimum partitions into K 
clusters and optimum partitions into K — 1 clusters. Let P(I, L) denote the optimum 
partition of objects 1, 2, . . . , / into L clusters for / M, L K. Suppose that 

"M, K) = (4, • • • , — 1), g2, • • • , 4 — i), • • • , (4c, . • . , M). Then necessarily 
Pgje — 1, K — 1) = , — 1)(4, . , 4 — 1) • • • (iK_ , IR- — 1). Since 
error is additive, if this were not true, e[P(M, K)] could be reduced by varying 
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Figure 6.1 Times in the 100-m run, Olympic games. 



X(L) 

J — I + 1 
= {I L J} 
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/2, /3, 	, /K_I. Using this relationship, the algorithm proceeds by successively 
computing optimal partitions into 2, 3, 4, . . . , K clusters, building on the (K — 1)- 
partitions to find the K-partitions. This is a "dynamic programming" procedure 
(Bellman and Dreyfus, 1962). 

	

S'TEP 1. COmpute the diameter D(I, J) for the cluster (/, / 	1, . . . , J), for all J 
such that 1 / < J M. 

STEP 2. Compute the errors of the optimal partitions, 2 / M, by e[P(I, 2)] = 
min [D(1, J — 1) + D(J, l)] over the range 2 J L 

STEP 3. For each L (3 L K) compute the errors of the optimal partitions 
e[P(I, L)] (L I M) by 

e[P(I, L)] = min {e[P(J — 1, L — 1)] -1- D(J, I)} 

over the range L J L 
grEp 4. The optimal partition P(M, K) is discovered from the table of errors 

e[P(I , L)] (1 	L K, 1 I M) by first finding J so that 

e[P(M, K)] e[P(J — 1, K — 1)] + D(J, M). 

The last cluster is then (J, J 	1, . . . , M). Now find J* so that e[P(J — 1, K)] 
e[P(J — 1, K — 1)] -1- D(J* , J — 1). The second-to-last cluster of P(M, K) is 
(J*, J* 	1, . . . , J — 1), and so on. 

Nom. The partition is guaranteed optimal, but it is not necessarily unique. 

6.3 FISHER ALGORITHM APPLIED TO OLYMPIC TIMES 

It is first necessary to define cluster diameter. Let X(I) be the value associated with 
the /th object. A standard measure of diameter of the cluster /, / 1, . . , J is 

where 
	 D(I, J) = {I L J} [X(L) — 

is the mean of the values in the cluster. 
Another measure, more convenient for hand calculation, is 

D(I, J) 	{I L J} IX(L) — 21, 

where the median 2 is both no greater than and no less than half the values 
X(L) (I L J). 

STEP 1. Compute the diameter of all clusters. With 16 objects there are 
16 x = 126 diameters. For example, D(7 , 12) is computed from the times 10.6, 
10.8, 10.3, 10.3, and 10.4, which have median 10.4. The deviations are 0.2, 0.4, 0.1, 
0.1, O which have a sum of 0.8, so D(7 , 12) = 0.8. All diameters are given in Table 6.2. 



6.3 Fisher Algorithm AppUed to Olympic Times 	133 

Table 6.2 Diameters of Clusters of Olympic Times (in Tenths of Seconda) 

Diameter in the interval (I, I) is the sum of absolute deviations from the median of 
observations X(I), . . . , X(J). 

,J. 	1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 	13 14 15 16 

I 	1 	0 12 12 14 	14 14 16 16 	21 26 31 35 	38 44 50 57 

2 	0 	2 	2 	2 	2 	4 	4 	9 14 19 23 	26 30 36 42 

3 	 0 	2 	2 	2 	4 	4 	5 14 19 23 	24 28 33 39 

4 	 0 	0 	0 	2 	2 	7 12 17 19 	20 23 28 33 

5 	 0 	0 	2 	2 	7 12 15 17 	17 20 24 29 

6 	 0 	2 	2 	7  10 13 13 	14 16 20 24 

7 	 0 	2 	5 	8 	8 	9 	10 12 15 16 

8 	 0 	5 	5 	5 	6 	8 	9 12 16 

9 	 0 	0 	0 	1 	3 	4 	7 11 

10 	 0 	0 	1 	3 	4 	7' 11 

11 	 0 	1 	2 	4 	7 11 

12 	 0 	1 	3 	7 11 

13 	 0 	3 	5 	8 

14 	 0 	2 	3 

15 	 o 	1 

16 	 0 

STEP 2. All optimal 2-partitions P(/, 2) are to be computed. It is necessary to 
remember only e [P(/, 2)] for later steps. As an example, e [P(4, 2)] is the minimum of 

D(1, 3) -I- D(4, 4) = 12, 

D(1, 2) + D(3, 4) = 12 + 2 = 14, 
and 

D(1, 1) + D(2, 4) = 2. 

Thus e[P(4, 2)] = 2. All the errors for optimal partitions are given in Table 6.3. 

STEP 3. The optimal 3-partitions are developed from the optimum 2-partitions. 
For example, e[P(6.3)] is the minimum of 

e[P(5, 2)] + D(6, 6) = 2 -I- 0 = 2, 

e[P(4, 2)] -I- D(5, 6) = 2 -I- 0 = 2, 

e[P(3, 2)] -I- D(4, 6) = 2 + 0 = 2, 
and 

e[P(2, 2)] -I- D(3, 6) = O + 2 = 2, 
so e[P(6, 3)] = 2. 

Similarly, the optimal 4-partitions are developed from the optimum 3-partitions. 
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Table 6.3 Errors of Optimal Partitions 

e[P(I, L)] is the error of optimal partition of objects 1, 2, ... , / into L clusters. 

i 	1 	2 	3 	4 	5 	6 	7 	8 	9 io n 12 	13 14 15 16 

	

O 12 12 14 	14 14 16 16 	21 26 31 35 	38 44 5o 57 

O 	2 	2 	2 	2 	4 	4 	9 14 16 17 	19 20 23 27 

o 	2 	2 	2 	2 	4 	4 	4 	4 	5 	7 	8 11 15 

	

o 	o 	o 	2 	2 	4 	4 	4 	4 	5 	7 	8 	9 

O 	O 	O 	2 	2 	2 	2 	3 	4 	5 	7 	8 

O 	O 	O 	2 	2 	2 	2 	3 4 	5 	6 

o 	o 	o 	o 	O 	1 	2 	3 4 	5 

	

O 	O 	0 	o 	o 	i 	2 	3 	4 

O 	O 	O 	O 	O 	1 	2 	3 

O 	O 	O 	O 	O 	1 	2 

O 	O 	O 	O 	O 	I 

	

O 	O 	O 	O 	O 

O O 	O O 

O O O 

0 O 

O 

STEP 4. To find the optimal partition of 16 into, say four clusters, first find J such 
that 

e[P(16, 4)] = e[P(J — 1, 3)] + D(J, 16). 

Such a J is J = 15. The last cluster is (15, 16). Now find J so that 

e[P(14, 3)] = e[P(J — 1, 2)] + D(J, 14). 

Thus J = 9, and the second last cluster is (9, 14). 
Since e[P(8, 2)] = D(1, 1) -F D(2, 8), the first two clusters are (1) and (2, 8). 
Thus, P(16, 4) = (1), (2, . .. , 8), (9, ... , 14), (15, 16). In terms of the observa-

tions, 

P(16, 4) 
=--- (12) (10.8 11 10.8 10.8 10.8 10.6 10.8) (10.3 10.3 10.3 10.4 10.5 10.2) (10.0 9.9). 

This seems a reasonable partition of the data. Some idea of the best number of 
clusters may be obtained by plotting e[P(16, K)] against K, as in Figure 6.2. There are 
sharp decreases in error at K = 2 and K = 3, a noticeable decrease at K = 4, and 
trivial decreases for larger K. The correct number of clusters is 3 or 4. 
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Figure 6.2 Errors of optimal K-partitions of Olympic data, using absolute deviations to 
measure diameter. 

6.4 SIGNIFICANCE TESTING AND STOPPING RULES 

Let X(1), X(2), . . . , X(M) dente the M observations in order, and consider a 
statistica) model for a partition into K clusters: 

(4 = 1,4 + 1,...,r, - 1)(12, + 	, 4), . 	+ 1, 
for which X(1), X(2), . . . , X(12  — 1) are independent observations from the density 
f (X 0 1), X(I2), X(I2 + 1), . . , X(1 3  — 1) are independent observations from the 
density f I 02), and so on, up to X(/K ), , X(M) are independent observations 
from the density f (X i OK). (Note that both X and O may have dimension greater 
than 1.) The likelihood of the joint parameters 0 1 , 02P • • • , OK is 

H {1 s L S K} 	 f [X(✓) I O L]. 
The maximum log likelihood of the observations is 

LL= {1 L K} {I L  J < I 1} logf [X(J) I éL], 
where EIL  is the maximum likelihood estimate of 0L , based on observations in the Lth 
clusters. Note that, if D(I, J), the cluster diameter, is defined by 

D(I, J) = —mr 	L S  J} f [X(L) 10], 

then —LL is the sum of D(I, J)'s corresponding to the clusters. Minimizing —LL 
means that clusters are found, and parameter values within clusters are estimated, to 
make the given observations most probable. 

In this way, the density f, which relates the observations X to the cluster parameter 
0, generates a cluster diameter and an additive error measure for partitions. For 
example, with the double exponentialf (X i O) = 0.5 exp (— IX — 01), the measure of 
cluster diameter is 

J) 	{I L J} I X(L) — 
where i is the cluster median. The more common norma] density, f (X, O) = 
exp (—EX — 0)2)/.5; leads to the familiar sum of squared deviations diameter 
D(I, J) = {I S L S  J} [X(L) — Y]$, where X is the cluster mean. 
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Figure 6.3 Sum of squared errors within optimal partitions of Olympic data. 

The optimal partitions of the Olympic data with this criterion are shown in Table 
6.4 and Figure 6.3. It will be seen that the principal decreases in the sum of squares 
come in the second and third partitions, and later decreases are relatively minor. This 
agrees with the intuition that about three clusters seem right to describe this data. 

When are K 1 rather than K clusters necessary ? A naive approach supposes that 
K clusters are present in the data, and that K 1 clusters are obtained by 
splitting one of these clusters in two arbitrarily. [In reality, one of the clusters would 
be split optimally if the clusters were really distinct, and in general there will be no 
simple relation between the optimal K-partition and the optimal (K 1)-partition.] 
Then the mean square ratio 

(N — K 1)1  e[P(N , K)] 
 — 1

) 

e[P(N , K l)] 

is distributed as 	if the observations are normal. It therefore seems worth- 
while to study this ratio of mean square reduction to mean square within clusters, and 
to take a large value of this quantity to indicate that (K 1)-clusters are necessary. 
For the Olympic data, the 3-cluster stands out in the mean square ratio table. (The 
values for K = 10, 11 are large but should be ignored; in these cases the mean square 
error within clusters is grossly underestimated because the data are rounded to tenths 
of seconds.) 

When is the riiean square error ratio larger than would be expected from random 
normal observations ? One approach to this is through asymptotic theory as the number 
of observations becomes large. It is possible to show (by an argument too long to fit 
in the margin) that the number of objects in the clusters alternates between very large 
and very small ; that is, if n(L) denotes the number of objects in the Lth cluster, 
n(L)In(L + 1) is near zero or unity as M —› co. For example, an optimal partition 
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Table 6.4 Optimal Partitions of Olympic Data Using Sum of Squared Deviations 
From Mean as Cluster Diameter 

	

PARTITION MSQ SUMOF 	 PARTITION 
SIZS 	RATTO SQUARES 	 (OBSERVATION IN TENTHS OF SECONDS) 

1 	 352.0o 	120 108 110 108 108 108 106 108 103 103 103 zo4 los 102 10o 99 

2 	20.7 	142.93 	120/108 110 108 108 108 106 108 103 103 103 104 105 102 10o 99 

3 	49:0 	30.00 	120/108 110 108 108 108 106 108/103 io 103 104 105 102 100 99 

4 	14.0 	13.83 	12o/108 IIo loe 108 ioe 106 2°8/103 io; 103 104 105 102/loo 99 

5 	2.8 	11.03 120/108 	loe 108 108/106 208/103 103 103 104 205 102/100 99 

6 	2.4 	9.03 120/108 lio Ioe ioe 108/106 108/103 lo3 2o3/1o4 2o5/102 m 99 

7 	4.1 	6.20 12o/108 lio 108 108 108/106 108/103 Io 103/1o4 lo5/102/1o0 99 

8 	3. 8 	4.20 	12o/1013 lio 108 lo8 108/106/108/1o3 103 103/1o4 lo5/102/loo 99 

9 	2.8 	3.00 	120/Iod 110/108 108 108/106/108/103 lo3 103/10 :05/102/100 99 

Io 	12.0 	1.00 	12o/108/11o/108 108 108/106/108/103 103 103/104 lo5/102/100 99 

11 	5.0 	0.50 	120/108/110/108 108 108/106/to0/103 lo3 103/104/105/102/100 99 

12 	 o.00 	12o/108/110/108 loe 108/106/108/103 lo3 103/104/105,102/100/99 

of 500 random normals into 10 clusters yielded cluster sizes 183, 3, 63, 1, 100, 2, 10, 
39, 98, 1. Also the mean square error ratio slowly approaches infinity as M ---> 

Empirical sampling for moderate M shows surprising uniformity in the distri: 
butions of the root mean square ratio for various K (Table 6.5). The root mean square 
ratio has an expectation very close to 2 for a wide range of M and K. The variances 
depend on M, the total number of objects, but not much on K. The expected values 
increase slightly with M but are still near 2, even for M = 500. The convergence to 
infinity demanded by asymptotic theory is slow. The various ratios for differènt K are 
approximately independent normal variables with the same mean and variance (Figure 
6.4). Therefore, under the null hypothesis that no clusters exist, the largest ratio has 
approximately the distribution of the largest of a number of independent normals. This 
reference distribution thus provides an approximate significance level for the largest 
ratio. 

6.5 TIME AND SPACE 

The Fisher algorithm requires 0(M2K) additions, where M is the number of objects 
and K is the number of clusters. It is thus feasible for 100-1000 objects. lt may be a 
high price to pay to get exact optimization. During the algorithm it is necessary to 
store M x K errors corresponding to optimal partitions P(I, L) (1 I M, 
1 L K). 

In Table 6.4, the optimal partitions for various K almost have hierarchical structure; 
that is, for any two clusters in any two partitions, one cluster includes the other or 
they are disjoint. The only exception to this rule is the cluster (103 103 103 104 105 102). 
If it is known that the final partitions have hierarchical structure, a shorter algorithm 
proceeds as follows. 

STEP 1. Split the sequence 1, 2, . . . , M optimally into two clusters by choosing 
one of M possible split points. 
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Table 6.5 Empirlesi Distributions of Root Mean Square Ratio, Based on Random 
Normal, 500 Trials. 

	

N . 6 	. 2 K- 3 

Expectation 	2.154 2.271 

Variance 	1.731 	1.755 

N . 11 	K 2 	3 K. 4 K. 5 K- 6 K. 7 
Expectation 	2.030 	2.191 	1.961 	2.010 	2.013 	1.947 

Variance 	.592 	.586 	.476 	.528 	.660 	.658 

N . 16 	K- 2 K. 3 K. 4 K. 5 K. 6 K. 7 K. 8 K. 9 K. 10 

Expectation 	2.020 	2.260 	1.992 	1.968 	1.963 	1.893 	1.932 1.871 	1.898 

Variance 	.529 	.487 	.359 	.287 	.268 	.243 	.361 	.256 	.374 

N - 50 	K- 2 K. 3 K= 4 K ■ 5 K- 6 K- 7 K- 8 K- 9 K. 10 

Expectation 	2.090 	2.433 	2.144 	2.134 	2.115 	2.003 	2.004 1.971 	1.969 
Variance 	.360 	.295 	.193 	.189 	.148 	.113 	.094 	.080 	.080 

(200 TRIALS) 

N 10o 	 2 K ■ 3 K- 4 K. 5 K ■ 6 K- 7 K. 8 K-.9 K. 10 
Expectation 	2.184 	2.528 	2.246 	2.285 	2.211 	2.179 	2.216 2.105 	2.108 
Variance 	.294 	.242 	.192 	.120 	.100 	.094 	.091 	.082 	. 062 
(50 TRIALS) 

N . 500 	K - 2 K . 3 K . 4 K - 5 X- 6 K. 7 K. 8 X. 9 x. Io 

Expectation 	2.3 	2.9 	2.6 	2.4 	2.5 	2.3 	2.5 	2.4 	2.4 
(2 TRIALS) 

(N = Number of observations in sequence; K = Number of clusters in partition) 

STEP 2. Split optimally into three clusters by choosing one of M possible split 
points-some in the first cluster from Step 1, the remainder in the second cluster. 

STEP 3. Split optimally into four clusters by choosing one of M possible split 
points, and so on. This procedure requires only O(MK) additions. This algorithm 
could be used to obtain good (not guaranteed best) partitions of long sequences. 

6.6 THINGS TO DO 

6.6.1 Running the Fisher Algorithm 

This algorithm is appropriate when objects are already ordered by some overriding 
variable such as time. There is no particular requirement that the data be one-
dimensional. Vietnam combat deaths over time (Table 6.6) might be analyzed to 
detect different phases of U.S. involvement. 
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Figure 6.4 Independence of root mean square ratios, computed from 50 normal samples. 
For 11 observations, ratios for 2- and 3-partitions. 

Table 6.6 Combat Deatbs in Indochina 

	

US SVN THIBD ENEMY 	US 	SVN THIRD ENEMY 	US 	8VN TIZI3D ENEMY 

'66 JAN 	282 	903 	714 26148 	'68 1202 2905 111 15217 	'70 343 1768 	69 	91 87 

Fu 1435 1359 	58 4727 	2124 5025 147 39867 	386 141 7 	36 8828 

MAR 507 1145 	59 5685 	15143 2570 	88 1 7371 	449 1674 	75 10335 

APE 	316 	9145 	3o 2818 	1410 1922 	85 12215 	526 2642 	79 1306 3 

mAy 464 	961 	19 4239 	2169 31467 	85 24086 	754 2851 	58 17256 

JUN 507 1185 	41 4815 	114 6 1974 	92 10319 	418 2873 	63 	7861 
JUL 1435 1006 	32 5297 	813 1409 	65 	6653 	332 1711 	71 	7183 

Ma 396 	914 44 58.60 	1080 2393 	73 15478 	319 1720 	63 6446 

SEP 419 	803 	30 4459 	1053 2164 	58 125143 	219 1734 	46 	6138 

OCT 	34o 	13414 	63 5665 	 600 1169 	70 	8168 	170 1491 	57 	5549 

NOV 475 	907 	87 5 1447 	703 1408 	38 	9632 	167 1619 	48 5607 

DEC 	432 	981 	29 38614 	749 1509 	67 	9600 	138 184 6 	39 	6185 

'67 JAN 	520 	914 	77 6064 	'69 	795 1664 	76 10955 	'71 140 1616 	3o 	6155 

PER 	662 	885 	95 7341 	1073 2072 	85 14086 	221 2435 	48 n 704 

MAR 	944 1297 	54 9351 	1316 2186 	90 19805 	272 3676 1o14 19858 

APR 	710 1057 	56 6227 	847 1710 	52 14539 	226 2198 	86 1045 7 

	

MAy 1233 1184 112 9808 	1209 2251 	92 17443 	138 2091 	50 	9094 

JUN 830 	981 	74 7354 	noci 1867 	75 16825 	108 1846 	44 	7648 

JUL 	781 	676 102 7923 	 638 1455 	64 10237 	65 1389 	44 	624 7 

Atta 	535 1068 	90 5810 	795 1625 	74 12373 	67 1488 	32 	6165 

SEI> 	775 1090 149 6354 	1477 1543 	6o 10369 	78 1607 	27 	6300 

OCT 	733 1066 , 96 6272 	377 1597 	80 	eirr 	29 1574 	20 	5744 

NOV 	881 1299 	98 7662 	4146 2105 	62 11639 	19 1161 	14 	14283 

DEC 	774 1199 102 7938 	 3 141 1758 	56 	9936 	17 	988 	26 	4439 

From Unclassified Statistics on Southeast Asia (1972), Department of Defense, 
OASD (Comptroller), Directorate for Information Operations. 
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6.6.2 Real-Valued Data 
For clustering a single real variable to minimize the within-cluster sum of squares, the 
clusters must be convex, which means they must consist of points lying in an interval. 
The Fisher algorithm may be applied to the ordered points to find the exactly optimal 
partition into K clusters. This exact partition may be compared with locally optimal 
partitions obtained by approximate techniques, such as the K-means algorithm. 

6.6.3* Estimating Densities 
Given that a density is unimodal in an interval, there is a well-known maximum likeli-
hood technique for estimating it (each point in the interval is tried for the mode, and 
for each modal point the density is first estimated as the reciprocal of the intervals 
between points and then neighboring intervals are averaged if they violate the mono-
tonicity required by unimodality). Using the Fisher algorithm, maximum likelihood 
densities with K modes may be computed. 

6.6.4 Sequential Splitting 
As justification for the hierarchical algorithm in Section 6.5, suppose the data consist 
of M real values in time and that the time interval is divided into K intervals within 
each of which the values are constant. The error function is within-cluster sum of 
squares. There is a K-partition for which the error is zero, and this will be discovered 
by the hierarchical algorithm. 

6.6.5 Updating Sums of Absolute Deviations 
The median of a set of numbers X(1), . . , X(M) is any number such that 2 X(I) 
occurs at least M/2 times and g X(/)occurs at least M/2 times. Let 2* be the median 
(there may be more than one) closest to X. Then the minimum sum of absolute devia-
tions for X(1), . , X(M), X is the minimum sum of absolute deviations for 
X(1), , X(M) plus IX — g*I. 

REFERENCES 

BELLMAN, R. E., and DREYFUS, S. E. (1962). Applied Dynamic Programming, 
Princeton U. P., Princeton N.J. On p. 15, the principle of optimality is stated. An 
optimal policy has the property that, whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy with regard to the state 
resulting from the first decision. A typical formulation of a dynamic programming 
problem is as follows: Maximize R(x„x„... ,xN)=Egi(xi) over the region 
xi O, Exi= x. DefinefN(x) to be this maximum. Then 

.fiv(x) = max IgNecrà fN—Ax — xx)]. 
o504„0 

As an example on p. 104, consider the problem of meeting a series of demands in 
time when it is expensive to have excess capacity or to change the capacity. Thus, if 
the demands are rk, the capacities are xk, the loss due to excess capacity is sok(xk— rk), 
and the loss due to a change in capacity is ipk(xk — xk_i), the problem is to minimize 

[(pk(xk — rk) yik(xk — xk_,)] subject to 	rk. 
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FISHER, W. D. (1958). On grouping for maximum homogeneity. J. Am. Stat. 
Assoc. 53, 789-798. Given a set of K objects, such that each object has a weight 
and a numerical measure a i , Fisher discusses techniques of assigning the objects to 
G groups so as to minimize wi(a, — 4,)2 , where ai  is the weighted mean of a's in 
the group to which ai  is assigned. He shows that each group must be convex in the 
a's; that is, each group consists of all the a's in an interval, if the optimization takes 
piace without prior constraints. If the objects are ordered a priori, so that clusters 
are sequences of objects in the originai order, he remarks that the additive property 
of the sum of squares criterion makes it possible to reduce the computation by 
relating optimum partitions into G clusters to optimum partitions into fewer clusters. 
Ire also notes a nonlinear programming formulation of the problem: Let xhi  denote 
the fractional part of a i  that is assigned to group h (h = 1, 2, ... , G). Define 4A  = 
(L xhiwiain 	S = L wixhi(al  — 4)2 , and minimize S subject to 

O, L xAi = 1. The solutions will always have just one of xh, = 1,h = 1, 	, G, 
and so will solve the grouping problem. It is not clear whether or not this formulation 
simplifies the solution. 

PROGRAMS 

FISH partitions data, consistently with input order, to maximize between cluster 
sum of squares. 

PFISH prints output from Fisher algorithm. 

SUBROUTINE FISH(X,SGAGeNeK) 
C.... X 0 M BY 1 VECTOR 
C 	PROGRAM GROUPS REAL VALUED OBSERVATIONS X(1). • • X(NI. 
C 	THE OBSERVATIONS NEED NOT BE ORDERED, BUT THE GROUPS WILL ALL CONSIST OF 
C 	SEQUENCES OF OBSERVATIONS XIII. . • M/. 
C 	IF A PARTITION INTO K CLUSTERS IS REQUESTED, PARTITIONS LE K ARE AUTOMATIC 
C 	PRINT OUT INFORMATION ASCUT CLUSTERS BY CALLING PFISH 
C.... X 0 N BY I ARRAY OF OBSERVATIONS TO BE FITTED 
C.... MG • N BY K ARRAY.WHERE MGII,JI IS LOWER BOUNDARY OF JTH GinUP e  IN OPTIMAL 
C 	 SPLIT OF X(lie... XII) INTO J GROUPS. 
C.... SG • N BY K ARRAY, SGIIeJl IS SUM OF SQUARES WITHIN GROUPS FOR 
C 	 X111.... XIII SPLIT DPTIMALLY INTO J GROUPS. 
Ce.. 	 

DIMENSION XININSGIN,KI,MGIN.K1 
C.... INITIALIZE SISeMG 

DO 20 J01,K 
MG(1.J101 
SG/1.J100. 
DO 20 I•2 e N 

20 SGlIeJ3010.**10 
C.... COMPUTE SG.MG ITERATIVELY 

D0 30 1•2 9 N 
SS00. 
S00. 
DO 31 1101,/ 
II1 ■ 1-11+1 
SS0SS+XIIIII**2 
S=S+XIIII/ 
SN0II 
VAR ■SS—S**2/SN 
IK0III-1 
IF (IK.EQ.0) GO TO 31 
DO 32 J01.K 
IF (J.EQ.1) GO TO 32 
IF (SG(I.D.LT.VAR+SGIIK,J-111 GO TO 32 
MGII.J)0III 

32 CONTINUE 
31 CONTINUE 

SG(1.1).VAR 
30 MGII1P1J-1 

RETURN 
END 



SUBROUTINE PFISH(XeSG.MG,NOC) 
C 	 20 MAY 1973 

USES OUTPUT FROM PROGRAM FISH TO PRINT CLUSTER DESCRIPTIONS 
C••• 	 

DIMENSION SGANK),MGIN,BleX(N) 
WRITE46.1) NO( 

1 FORMATP1 PARTITION OF'.15,' OBSERVATIONS UP TO 1.15.. CLUSTERS') 
DO 20 shleK 
J.P.K.—J+1 
WRITE(6p2)JJ,SG(N,JJ) 

2 FORMAMOTHE1,13ge PARTITION WITH SUM OF SOUARES',F20.Al 
WRITE(6.3) 

3 FORMAT1' CLUSTER 	NUMBER OBS 	MEAN 	S.D. 	') 
IL.N+1 
00 21 UslyJJ 

5=0. 
SS.O. 
IU■ IL-1 
IL=MG11U'LL) 
DO 22 IIwIL.IU 
SwS+X(III 

22 SS.SS+X(II)**2 
SNwIU—IL+1 
S.S/SN 
SS.SS/SN--S**2 
SSwiABS(SS114410.5) 
WRITE16.4) LL,SN.S.SS 

4 FORMAT115,5)6,3F10.41 
21 CONTINUE 
20 CONTINUE 

RETURN 
END 
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CHAPTER 7 

The Dittb Algorithm 

7.1 INTRODUCTION 

The data in Table 7.1 record the evaluation of various wines from 1961 to 1970. The 
evaluations are given in terms of five categories—disastrous, poor, average, good, 
excellent. In many statistical analyses, it is customary to quickly shuffie category 
variables out of sight by replacing them with interval scale variables—for example, 
1, 2, 3, 4, 5 would be reasonable here because the categories are ordered. For clustering, 
category variables are more natural than interval variables and should be cherished 
and treated as they lie. A category variable partitions the set of cases. For example, 
the 1961 evaluations divide the wines into classes—excellent, good, and average. An 
overall partition of the data is thus a combination of the individual partitions. There 
is no more reason for a single partition to be adeguate to explain the data than for the 
first principal component to be adeguate for interval scale data. 

In the ditto algorithm, the center for each cluster is equal to the mode of each 
variable over cases in the cluster. A measure of partition error is defined similar to 
that in the K-means algorithm. 

In the K-means algorithm, it is necessary to fix the number of clusters in the par-
tition; otherwise the partition of M clusters is best. In this algorithm, the error func-
tion does not necessarily decrease as the number of clusters increases, and so the 
partition size varies during the course of the algorithm. 

7.2 DITTO ALGORITHM 

Prelinlinaries. There are cases, N variables, and a value A(I, J) of the /th case 
for the Jth variable. Let P(M , K) denote a partition of the cases. The error of the 
partition P(M , K) is 

e[P(M , K)] = M + {1 J N} {1 L K} p[B(0 , J), B(L, J)] 

+ {1 J N} {1 I 	p[A(I, J), B(L(I),J)], 

where L(I) is the cluster containing p(A, B) = 1 if A B, and p(A, B) = O if 
A = B. The vector {B(L , J), 1 J N} for the Lth cluster is the center of the cluster. 
It will be chosen to minimi= the expression e[P(M, K)]; this requirement does not 
uniquely determine B(L,J), but it is always possible to find B(L, J) minimizing e and 
equal to a mode of A(I, J) over cases /in the cluster L. Thevector {B(0 , J), 1 J N} 
is the "grand mode" of the cluster centers. 

143 
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Table 7.1 Evaluation of Wines 1961-1970 

D disastrous 

P poor 

A average 

G good 

E excellent 

1961 62 63 64 65 66 67 68 69 7o 

Red Bordeaux 

MG 	Medoc and Graves 	 E G P G D G G P A G 

EP 	Saint Emilion and Pomerol 	EAPGPOGPAG 

White Bordeaux 

SS 	Sauternes 	 G G D D D A G P G G 

GS 	Graves 	 G G D G D G G P G G 

RB Red Burgundy 	 E G A G P G A D G G 

White Burgundy 

CB 	Cote de Beaune 	 E G A G A G G A G G 

CS 	Chablis 	 E G A G P G G A G G 

BS 	Beaujolais 	 EGPGDGAPGG 

Red Rhone 

RN 	North 	 E G P G A G G A G G 

RS 	South 	 G A P G A A G A G G 

WL White Loire 	 A P P G P A G G G G 

AE 	Alsace 	 G A P E P G G P G G 

RE Rhine 	 GAPOPGGPOG 

ME 	Moselle 	 G A P E P G G P G G 

CA 	California 	 - P G A G G A G 

From Gourmet Magazine (August, 1971), pp. 30-33. 

There are four stages in the ditto algorithm: 
(i) selecting the initial partition; 
(ii) moving cases from one cluster to another, or creating new clusters; 
(iii) updating the modal values B(L, J) within clusters, and updating the grand 

mode B(0, J); 

(iv) printing out the originai data, recording the value 	J) as a dot if it agrees 
with B[L(I), J], and recording B(L, J) as a dot if it agrees with B(0, J). The number 
of nondot values is e[P(M , K)]. 

STEP 1. Initially define a different cluster center {B(L, 	J = 1, . . . , N} for each 
value taken by a variable. The total number of clusters K will be the number of different 
values taken by each variable, summed over variables. For the Lth cluster, suppose a 
variable J(L) takes a value V(L). Then B(L, J) is a mode of values J) for which 
A[I, J(L)] = V(L). 
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Finally, B(0, J) is a mode of B(L, J) over all clusters L (1 	L X). 

STEP 2. For each case / (1 / M) allocate / to the first cluster L (O L K) 
for which I {1 J N} p[A(I,J), B(L, J)] is a minimum. 

STEP 3. Delete clusters containing no objects. Delete clusters containing one object, 
and allocate the object to the O cluster. 

STEP 4. For each cluster L, replace B(1.,J) (1 J /V) by a mode of values 
A(I, J) (I e L) and the value B(0, J). lf B(0 , J) is a possible value of B(L,J), set 
B(L,J) = B(0, J). For the cluster O, replace B(0, J) by the mode of B(L,J) over all 
clusters and over A(I, J) for cases allocated to O. 

STEP 5. If any change occurs in Steps 2-4, return to Step 2. Otherwise, replace 
A(I,J) by a dot, if / e L, A(I,J) = B(L,J) (1 I M, 1 J N). Replace 
B(L, J) by a dot if B(L, J") = B(0, J) (1 L K). 

7.3 APPLICATION OF DITTO ALGORITHM TO VVINES 

STEP i . There are 10 variables, taking 28 different values, so initially there are 28 
clusters. The first cluster center is computed by using variable J(1) = 1 and value 
V(1) = E. The cases / such that A(I, 1) = E are MG EP RB CB CS BS RN. The 
modal values B(1, J) are 

B(1, 1) = E, 	the mode of EEEEEEE 
B(1, 2) = G, 	the mode of GAGGGGG 
B(1, 3) --= P, 	the mode ofPPAAAPP 

and so on. The next cluster center uses J(2) = 1 and V(2) = G, the second value taken 
by the first variable. The matching cases are SS GS RS AE RE ME. The complete 
set of initial cluster values appears in Table 7.2. Some clusters, such as 20, 26, and 28, 
are identical. The redundant ones will be eliminated in later steps. 

STEP 2. Each case is now allocated to a cluster—the cluster whose center it best 
matches. For example, case 1, MG, differs from the center of cluster 4 only in the year 
1969, so MG is allocated to cluster 4. The complete allocation is given in Table 7.3. 
There are many single clusters that will be allocated to the O cluster in the next step. 

STEP 3. Delete the many clusters to which no cases are allocated. For example 
cluster 10, having an identical center to O, will receive no cases and be eliminated. 
Delete clusters such as cluster 7 that contain a single object. 

STEP 4. Recompute cluster centers. For example, cluster 4 contains MG and BS. 
To compute B(4, 1), use the data values E, E and the value B(0, 1) = E. The mode 
of these three values is B(4, 1) = E. To consider a less straightforward case, consider 
B(9, 4). The cluster 9 contains cases SS and GS taking values D and G in variable 4, 
1964. The overall mode is B(0, 4) = G. Thus the mode of D, G, G is B(9, 4) = G. 

Finally, the grand mode is recomputed by using cluster centers and cases allocated 
to the grand mode. 

STEP 5. Steps 2-4 are repeated until there is no change in the clusters, which occurs 
after two allocations. The array is now prepared for display in a dot diagram. Since 
MG is allocated to cluster 4, A(1 , 1) = B(4 , 1) = E and A(1 , 1) is replaced by a dot. 
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Table 7.2 Initial Cluster Centers Applying Ditto Algoritbm to Wines 

CLUSTER VARIARLE VAIDE 	 CIUSTER CENTRE 

1961 62 63 64 65 66 67 68 69 70 

i 	61 	E 	EGPGPGGAGG 

2 	 61 	G 	GAPGPGGPGG 

3 	 61 	A 	APPGPAGGGG 

4 	62 	G 	EGPGDGGPGG 

5 	62 	A 	GAPGPGGPGG 

6 	62 	 P 	GPPGPAGGGG 

7 	63 	P 	EAPGPGGPGG 

6 	 63 	A 	EGAGPGGAGG 

9 	63 	D 	GGDGDGGPGG 

10 	64 	G 	EGPGPGGPGG 

ii 	64 	E 	GAPEPGGPGG 

12 	 64 	D 	GGDDDAGPGG 

13 	64 	P 	- - - P G A G G A G 

14 	65 	P 	E APGPGGPGG 

15 	65 	A 	GAPGAAGAGG 

16 	65 	D 	EGPGDGGPGG 

17 	65 	G 	- - - P G A G G A G 

18 	66 	a 	EGPGPGGPGG 

19 	66 	A 	GGPGPAGGGG 

20 	 67 	G 	GGPGPGGPGG 

21 	 67 	A 	EGPGPGGPGG 

22 	 68 	P 	EGPGPGGPGG 

23 	 68 	A 	EGAGPGGAGG 

24 	 68 	G 	A PPGPAGGGG 

25 	68 	D 	EGAGPGADGG 

26 	69 	G 	GGPGPGGPGG 

27 	69 	A 	EGPGPGGPAG 

28 	 7o 	G 	GGPGPGGPGG 

o 	 EGPGPGGPGG 

Similarly, since B(4, 1) = B(0,1). E, B(4, 1) is replaced by a dot. The final dotted 
array appears in Table 7.4. 

The total number of symbols necessary to represent the data is 41, which should 
be compared to the 150 data values and to the 28 different values taken by all variables. 
The story told by the clustering is as follows. The usual grading of wine is "good." 
Overall there were three poor years, 1963, 1965, and 1968, and one excellent year, 
1961. There is a gallimaufry of four wines, St. Emilion and Pomerol, Red Rhone 
North, White Loire, and California, which vary (differently) from this overall 
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Table 7.3 Successive Passes of Ditto Algorithm on Wines 
CLUSTER MCiDE 

	

CrUSTER ALIDCATION 1 
	

1961 62 63 64 65 66 67 68 69 7o 

4 MG BS 	 E GPGDGGPGG 

7 EP 	 E GPGPGGPGG 

9 SSGS 	 G GDGDGGPGG 

29 RB 	 E 	GPGPGGPGG 

8 CB CS 	 E 	GAGPGGAGG 

1 RN 	 E GPGPGGPGG 

i 5 Rs 	 E 	GPGPGGPGG 

24 WL 	 E GPGPGGPGG 

• AE RE YE 	 G APGPGGPGG 
i 3 CA 	 E 	GPGPGGPGG 

o E GPGPGGPGG 

CLUSTER ALLOCATION 2 

4 MG BS 	 E 	GPGDGGPGG 

9 SS GS 	 G GDGDGGPGG 

8 RB CB CS 	 E 	GAGPGGAGG 

2 RS AE RE ME 	 G APGPGGPGG 

o EP RN WL CA 	 E GPGPGGPGG 

	

CDJSTER ALLOCATION 3 	No change. 

4 10 BS 

9 SS GS 

8 RB CB CS 

2 RS AE RE ME 

o EP RN WL CA 

pattem. California particularly is quite different. There are four clusters of wines: 
the Beaujolais cluster (disastrous in 1965), the Sauternes cluster (disastrous in 1963 
and 1965), the Chablis cluster (average in 1963 and 1968 when others were poor), the 
Moselle cluster (not as good as others in 1961 and 1962). 

7.4 THINGS TO DO 

7.4.1 Running the Ditto Algorithm 
This algorithm is especially appropriate for category data. Continuous variables may 
be converted to this form by division into classes such as low, middle, and high. 
Variables with large numbers of categories will have little effect on the final classifica-
tion but will increase the expense of computation, so such variables should be avoided. 
An unusual feature of the algorithm is the presence of a gallimaufry of objects, each 
forming a singleton cluster. 
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Table 7.4 Ditto Diagram of Wines 
1961 62 63 64 65 66 67 68 69 7o 

CIUSTER o 	 E G P G P G G P G G 

St. Emilion and Pomerol 	 . A 	 A 

Red Rhone North 	 . A . . A • 

White Loire 	 A P • 	• 	• A 	• 	• 

California 	 - 	P G A • G 

CLUSTER 4 	 • D 

Medoc and Graves 
	

A 

Beaujolais 
	 A • 

CLUSTER 9 
	

G 	D 	D 

Sauternes 	 D • A 

Graves 

CLUSTER 8 

Red Burgundy 

Cote de Beaune 

Chablis 

CIESTER 2 	 G A 

A 	• 	
• 	• 	A 

• 	• 	• 	• 	A 	D 

A 

Red Rhone South 	 • A A • A • 

Alsace 	 • 

Rhine 

Moselle 	 • E 

Number of syMbols - 41 

NUmber without partitions I50 

Fili in cluster centers from cluster O. Fill in data values from cluster centers. 

A good data set for this algorithm is the sleeping pattern of seventeen monkeys 
in a vervet troop observed by Struhsaker (Table 7.5). Also see the metamorphosis 
sequences of British butterflies (Table 7.6). 

PROGRAMS 
SCALE converts continuous variables to category variables. 
DITTO computes partition of category data to maximize matching between cases 

in a cluster and the cluster mode. 
DITOUT using output from ditto, this program prints out dot matrix, where each 

dot represents an identity between a value in the matrix and the corre-
sponding cluster mode. 



>
n

 D
I
 >

 	
te

 
t
d

 >
 n

 n
 >

 	
t
d

 c
i 

>
 	

>
 t

d
 t

d
 >

 

ti
 	

>
 >

 n
 W

 c
i 

E
d

 t
d

 w
 >

 t
d

 

ti
 t

a
l 	

t
d

 e
d

 t
d

 n
 t

i 
>

 t
d

 t
d

 	
t
O

 >
 >

 t
il

 >
 	

t
d

 n
 t

d
 >

 

•
t
i 

t
i 

W
 	

>
 	

>
 >

 	
n

 t
i 

W
 c

i 
e
d

 e
d

 	
>

 	
W

 

	

.1/4
73

-
 . 

1
■

•• 	
>

 n
 	

C
I
 t

e
 t

d
 	

O
 >

 O
 O

 t
t
 t

e
 t

e
 

W
 	

1
3
9
 W

 	
>

 e
d

 >
 

1■
• 	

te
 	

>
 n

 M
 t

e
 >

 	
ti

 C
r
 t

d
 	

ti
 	

t
d

 n
 e

d
 1

0
 t

e
 	

>
 

h
à

 •
 

	

!•
.'
) 

e
t 	

te
 	

>
 C

I
 M

 t
i 

0
1
 C

I
 t

e
 	

C
i 

O
C

 
te

 t
e
 

O
d 

n
 t

d
 w

 t
i
 t

l
 >

 

	

12
0 	

>
 	

>
 n

 e
d

 t
e
 b

d
 O

 t
i 

n
 W

 E
d

 t
i 

t
i 

W
 n

 t
d

 t
d

 t
/ 

t
i 

>
 

O
 

	

C
 	

n
 n

 >
 t

d
 >

 	
>

 
>

 
>

 
>

 	
t
o

 e
d

 e
d

 n
 b

i 
t
d

 n
 	

>
 n

 

>
 

>
 

s
i 

n
 >

n
 n

 W
 W

 W
 e

d
 	

>
 

n
 2

1
. 

td
 	

>
 	

>
 e

d
 >

 

n
c
i 	

td
 >

 e
d

 	
>

 
>

 
>

 	
>

 t
d

 t
d

 t
d

 	
>

 >
 

>
 	

N
e
 n

 t
i 

W
 	

>
 t

e
 >

 >
 	

c
a

 t
i 

t
d

 O
 e

d
 t

d
 >

 >
 t

d
 >

 

n
 n

 	
te

 	
1
4
 t

a
l 
>

 	
>

 >
 

W
 n

 	
td

 c
i 

W
 t

d
 	

>
 t

d
 t

d
 

>
>

 	
>

 n
 n

 e
d

 W
 t

d
 t

d
 e

c
e
 >

 O
 >

 	
td

 	
t
!
 >

 

te
 	

>
 

CA
 

N
 t

e
 >

 	
t
e
 o

 0
1
 t

d
 	

t
i 

t
d

 c
a

 
19

9 
tr

1 	
tJ

 

"r
i 

a
 

N
 
M

' 	
ej 

^.97.
 	

g 	
fi

ff
tl

if
il

lì
 1

7
 1.

'"3 
P. 

O
 

>
 

C
i 

e
d

 C
i 

W
 N

I
 	

>
 >

 >
 e

d
 n

 W
 >

 t
d

 >
 t

d
 t

d
 n

 t
i
 >

 n
 

W
 W

 C
i 

>
 n

 >
 t

i 
t
d

 	
>

 >
 W

 W
 t

d
 >

 t
d

 >
 >

 >
 	

b
i 

3 o 7c
" 

ce
 CO1 C
t.

 -03133 12q10 

P
 

go
 4 

4
 

H 
m 

H 
I-

1
 'i 
ilf

9
g
R

ig
 

m 	
.... 

., 
D

 " 
a 

I I 
i t 

t-i
 I. 

e..
. 

<
E 	

t 	
. . ..~ 3 . 

4
 i

 i
 

1 	
e -.-2 zs

t 
H

 
<

 
<

e
 

H 	
<- . 

o
an

O
or

Ir
l"

 
r- 

5 4 	
n 	

2
. 

N 	
11 	

I 	
I 	

II 	
I 	

O 	
11 	

1:1
 go 

° 
e

l 
I 

q
 ''

e
 V

i 
0

 
tii

 a
 c

g. 
c.

 i 
> 

1., 
D c

_ 	
§ 

r4 
ti
t.

g— 	
K

.,
.,
1
 1

 
m

 - 
E.

 .
 z

 E
 - 

R
 I 

D 
)4 	

- 
i 
5

 	
F

 
•

El 
2 

o 
• 

i 
1
 "

 
O

 ;
 

5. 	
D m 

1 . 



Table 7.6 Times of Appearance of British Butterflies 

O (ova); L (larva); P (pupa); I (imago) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Adonia Blue 	 L L 	L L PI LI P PI LI L 	L L 

Bath White 	 P P 	P P LI L P PI LP P P P 

Black Hairstreak 	 0 	0 	0 	O 	L LPI I 	0 	0 	0 	0 	0 

Bleck-veinedWhite 	 L 	L 	L 	L 	LP PI LI L 	L 	L 	L 	L 

Brinatone 	 I I I I LI LI PI FILM 

Brown Argus 	 L L L L L P PI I L L L L 

Brown Hairstreak 	 00001.LP PI I 	I 	0 	0 	0 

Camherwell Beauty 	 1I 	I 	I 	I 	I 	L LP IIII/ 

Chaik Hill Blue 	 L L L L LPI LP PI I L L L L 

Chequered Skipper 	 L L L P P I O O L L L L 

Clouded Yellow 	 - 	- 	- 	I 	LI LP I 	LI IPI I 

Comina 	 I 	I 	I 	I 	LI LP PI LI PI I 	I 	I 

Common Blue 	 LILLP I IL LI I I L L L 

Dark Green Fritillary 	ILLLIIP PI LILLLL 

Dingy Skipper 	 LLLLPIII LPILLLL 

Buie of BurgwadyFritillery 	P P P P PI IOL L L LP P P P 

Essex Skipper 	 0000I IPII00 	0 	0 

Gatekeeper 	 LLLLLIPIILILL 

Glanville Fritillary 	 LILLP LPI LPI L L L L L L 

Grayling 	 LLLLLLPI PI LI WILL 

Green Hairstreak 	 P P P P PI LI LP P P P P P 

Green-veined White 	 P 	P 	P PI II LPI LPI LPI IP P P P 

Grizzled Skipper 	 LLLLPIII IPILLLL 

Heath Fritillary 	 LLI,LLLPI LILLLLL 

High Brown Fritillary 	LLLLLIP PI LI L L L L 

Holly Blue 	 P P 	P P/ I 	LP PI LI LPI LP P P 

Large Blue 	 LLLLLIIILLLLL 

[Ford, T. L. E. (1963). Practical Entomology, Warne, London, p. 181.] (A subset has 
been selected from the full list.) 
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SUBROUTINE SCALE(A,M.N.KL,KKI 
C..   	 20 MAY 1973 
C.... SCALES APRAY TO TAKE INTEGER OR ALPHAMERIC VALUES lì2,3,... KL 
C 	MINIMUk AND MAXIMUM VALUES ARE COMPUTED FOR EACH VARIABLE, AND EA:1 VALUE 
C 	IS THEN CLASSIFIED INTO ONE OF KL INTERVALS GF EQUAL LENGTH BETWEE1 THE 
2 	MINIMUM AND MAXIMUM. 
C.... M = NUMBER OF ROWS 
2.... N = NUMBER OF COLUMNS 
C.... A = M BY N BORDERED ARRAY 
C.... KL = NUMBER OF LEVELS 
C.... KK = LEVELLING OPTION 
C 	 KK = I UNIFORM OVER ALL DATA VALUES 
C 	 KK = 2 UNIFORM WITHIN VARIAWAS 
C 	 KK = 3 SAME AS OPTION 1. CONVERTED TO ALPHAMERIC 
C 	 KK = 4 SAME AS OPTION 2, CONVERTED TO ALPHAMEPIC 
C • • 

DIMENSION MINN/ 
DIMENSION CCP?) 
DATA CC/1H1,1H2.1H3,1H4.1115,1H6p1H7.1H8e1H9/ 

IFIKK.GE.3.AND.KL.GT .9I WRITEI6.11 KL 
I FORMATII5,27H 700 MANY ALPHAMERIC LEVELS 

IFIKK.E0.1.0R.KK.EQ.31 GO TO 20 
C.... COMPUTE MINIMUM AND MAXIMUM 

DO 10 J=2,11 
XMIN=Al2..0 
XMAX=Al2...11 
DO 11 I=2.M 
IFIAII.J).GT.XMAX/ XMAX=AII.J/ 
IFIAlleJ).LT.XMIN/ XMIN=A(I.JI 

11 CONTINUE 
C.... CHANGE A VALUES TO INTEGER OR ALPHAMERIC 

IF(XMIN.E0.XMAX/ XMAX=XMIN+.000001 
ZZ=KLMXMAX—XMIN) 
DO 12 1=2EM 
K=iAII,JI—XMINDUZ+1 
IFIKK.EQ.4) AtIo.0=CCIKI 
IFIKK.EQ.2) AII.JI=K 

12 CONTINUE 
10 CONTINUI 

RETURN 
20 CONTINUE 

C.... MINIMUM AND MAXIMUM 
XMIN=AI2,2/ 
XMAXmAI2.2/ 
DO 21 I=2.M 
DO 21 J=2.N 
IFIAII,JI.LT.XMINI XMIN=AII,J/ 

21 IFIA(19.1).GT.XMAXJ XMAX=A(1..11 
C.... CHANGE A VALUES 

IFIXMIN.EQ.XMAX/ XMAX=XMIN+.000001 
ZZ=KL/IXMAX—XMINI 
DO 22 I=2.M 
DO 22 J=2.14 
K=IA(I,J)—XMIN)*ZZ+1. 
IFIKK.EQ.3) AII,J)=CCIKI 
IFIKK.E0.11 ACI..110K 

22 CONTINUE 
RETURN 
=I) 
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SUBROUTINE DITTO(MghleKLIKC.A.XILC,LK,Y,Z) 
C 	 ..   	20 MhY 1973 
C.... COMPUTES PARTITION OF CATEGORY DATA TO MAXIMIZE MATCHING BETWEEN CASES IN 
C 	 A CLUSTER AND THE CLUSTER MODE. 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... KL = MAXIMUM NUMBER OF DIFFERENT VALUES TAKEN BY A VARIABLE PLUS OVE. 
C.... KC = KL BY N +1 
C.... A = M dY N BORCERED DATA ARRAY 
C.... X = KC BY N ARRAY OF CLUSTER MODES 
C.... LC = I BY M ARRAY ASSIGNING CASES TO CLUSTERS 
C.... LK = 1 BY KC ARRAY COUNTING CASES IN CLUSTERS 
C.... Y = KL BY N ARRAY COUNTING FREQUENCIES IN CLUSTERS 
C.... Z = KL BY N ARRAY SPECIFYING DIFFERENT VALUES OF VAP.IABLES 
C.... 	  .. 	  

DIMENSION A(MeN3,X(Ke.NbLe(M).LK(KC),Y(KL#N),Z(KLeN) 
DIMENSION CC(101 
DATA CC/1H1.1H2.1H3,1H4.1H5.1H6.1H7.1H8,1H9,2H10/ 
DATA RNGEOIMOD/4HRNGE,4HMODE/ 

C.... PUT LABELS IN VARIOUS ARRAYS 
DO 80 K=2,KL 
KK=(K-11—(1K-2)/10)*10 

80 i(K.11=Ce(KKi 
DO 81 J=2,N 

81 2(1..1)=A(1,J) 
2(1,1)=RNGE 
DO 82 K=2,KC 
KK=1)(-1)—((K-21/10)*10 

82 X(K,li=CC(KK) 
LO 83 J=2,N 

83 X(1,J)=A(1..1) 
X(1,1)=XMO3 

C.... FIND DIFFERENT VALUES TAKEN BY VARIABLES 
DO 9 1=204 

9 LC(I)=0 
DO 8 K ■ 1,KC 

8 LK(K)=1 
NC=-1 
DO 10 J=2IN 
DO 10 K=2,KL 

10 2(KeJl=0 
DO 11 J=2,N 
DO 12 1=2,M 
DO 13 K=2,KL 
IF(Z(K,J1.EQ.01 Z(KAI=AlI,JJ 

GO TO 12 
13 CONTINUE 
12 CONTINUE 
11 CONTINUE 

C.... COMPUTE MODES 
70 NC=NC+1 

DO 20 J=2,N 
DO 20 K=2•KL 
DO 21 JJ=2,N 
DO 21 KK=2,KL 

21 Y(KK,JJ)=0 
KT=K+1*(J-21*(KL-1i 
IFILK(KTI.EQ.01 GO TO 20 
00 23 I=2.M 
IFINC.EQ.O.AND.A(I,JI.NE.ZIK,J)1 GO TO 25 
IFINC.NE.O.AND.LC (I).NE.KTI GO TO 23 
DO 25 .1.1=2.N 
DO 25 KK=2,KL 

25 IF(A(IgJJ).EQ.Z(KK,JJ1) Y(KK,M=Y(KK•JJ)+1 
23 CONTINUE 

DO 26 JJ=2,1,3 
YM=Y(211JJ) 
KM=2 
DO 27 KK=2,KL 
IF(Y(KK.M.LE.YM) GO TO 27 
YM=Y(KK.JJ) 
KM=KK 

27 CONTINUE 
26 X(KTpJJ)=Z(KM,JJ) 
20 CONTINUE 

C.... COMPUTE GRAND MODE 
DO 55 J=2,N 
DO 50 K=2,KL 
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50 YIK.J1.0 
DO 51 10.3.RT 
IF1LKIKI.E(2.0/ GO TO 51 
DO 52 KK.2,KL 

52 IFIX0(01.ECI.L(KK,D) Y(KK.J1=YIKK,J1+1 
51 CONTINUE 

DO 53 810.2,KL 
YM.Y12,J/ 
X12,..1)=Z12,J) 
IFIYIKKIIA.LE.VN/ GO TO 53 
YM.Y1KR.JJ 
X(2,..A1=a1KNJ/ 

!3 CONTINUE 
55 CONTINUE 

C.... REASSIGN CASES 
DO 30 1.201 
DM■ 10.**10 
KM*1 
DO 32 K=2,KT 
IF(LKOU.EQ.01 GO TO 32 
IF1NC.NE.O.AND.LK (K).LE.11 GO TO 32 
DO=0 
DO 31 .1.2,N 

31 IFLA11,..1).NE.X1KeJ1) DD.CID+1 
IF(OD.GE.DM ) GO TO 32 
KM=R 
DM.DD 

32 CONTINUE 
30 LC(Ià=KM 

C.... COUNT CASES IN CLUSTERS 
GO 35 R.3.KC 

35 LR(K).0 
DO 36 1.204 
K=LCII/ 

36 LR(RI.LKIK)+1 
DO 37 K=3,KC 
IF1LK(K).NE.01 GO TO 37 
DO 38 .1.201 

38 XIK,Ji=0. 
37 CONTINUE 

IFINC.LT.5) GO TO 70 
RETURN. 
END 
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SUBROUTINE DITOUT(AgtigN,X,KC,LC) 
C,  • • • 
C.... PRINTS OUT DATA MATRIX WITH CLUSTER VALUES DOTTED OUT 
C.... DATA MATRIX A AND CLUSTER MATRIX X ARE ALPHABETIC 
C.... USE AFTER PROGRAM DITTO 
C.... M . NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... KC = NUMBER OF CLUSTERS 
C.... A = M BY N BOROERED ARRAY,DATA VALUES 
C.... X'. KC BY N BORDERED ARRAY, CLUSTER VALUES 
C.... SECOND ROW OF X CONTAINS GRAND CLUSTER 
C.... LC = 1 BY M ARRAY ASSIGNING CASES TO CLUSTERS 
C • • • 

20 MAY 1973 

DIMENSION AIMeNNXIKCIoNbILCIMi 
DIMENSION AA(1201 
DATA DOT/1H./ 
WRITE(6,11 A(1,11 

I FORMAT(14H1DOT MATRIX OF,A5) 
WRITE(6,51 

5 FORMATI 
*63H FIRST CLUSTER IS GRAND MODE. ALL OTHER CLUSTER VALUES ARE 
*63HREPLACED BY i.' IF THEY AGREE WITH VALUE OF GRAND MODE 
*63H 	WITHIN A CLUSTER VALUES ARE REPLACED BY ..* IF THEY AGREE 
*63H WITH CLUSTER VALUE. 
*) 
DO 20 K.2,6 

20 WRITE(6,21(A(1,J1,J=KeNg51 
2 FORMATII0X,24A51 

C.... DATA 
DO 30 K=2,KC 
NC=0 
DO 40 I.2,M 
IFILCM.NE.K/ GO TO 40 
NC=NC+1 
DO 60 ./.2,N 

60 IFIK.GE.3.AND.X(K,J1.EQ.X(2,J)) X(Kgblà.DOT 
IFINC.E0.11 WRITEI6,3) Kg(XIK,A,J=2,N) 

3 FORMAT(SHOCLUS,13,3X,120A1) 
DO 50 .1.2,N 
AA(.11 ■AII,J1 
IFIX(K,JI.EO.DOT1 XIKea=XI2etli 

50 IF(A(1,..11.EQ.XIK,J)) AA(J)=DDT 
WRITE(6,4) AlIe11gIAAIJ1.J=2,N1 

4 FORMATI3X,A5,3X,120A11 
40 CONTINUE 
30 CONTINUE 

RETURN 
END 
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CHAPTER 8 

Drawing Trees 

8.1 DEFINITION OF A TREE 

A tree is a family of clusters such that any two clusters are disjoint or one includes the 
other. Thus, in the clusters of animals in Table 8.1, cluster 4 and cluster 9 are disjoint 
and cluster 6 contains cluster 8. It is often convenient to require the set of all objects 
to be a cluster and to define a single-object cluster for each object. 

Table 8.1 Clusters of Animala Foradag a Tree 

CLUSTL1 1. 	HUMAN (HN) 	MONKEY (MY) 	HORSE (NE) 
	

PIG (PG) 

WHALE (WE) 	DOG (DG) 	RABBIT (RT) 
	

KANGAROO (KO) 

CHICKEN (CN) 	PENGUIN (PN) 	DUCK (DK) 
	

TURTLE (TE) 

BULLFROG (BG) 

CLUSTER 2. 	HN MY HE PG WE DG RT KO CN PN DK TE 

CLUSTLR 3. 	CN PN DK TE 

CLUSTM 4. 	CN FS DK 

CLUSTER 5. 	CN PN 

CLUSTER 6. 	RE MY HE PG WE DG RT KO 

CLUSTER 7. 	HE PG WE DG 

CLUSTER 8. 	HE PG 

CLUSTER 9. 	HES MY 
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L2 REORDERING TO CONTIGUOUS CLUSTERS 

It is always possible to order the objects so that every cluster consists of a set of objects 
contiguous in the order. Let 0(/) (1 / M) denote the name of the /th object in 
the order. 

STEP i . Select the first object, 0(1), arbitrarily. 

STEP 2. Select the second object, 0(2), from the smallest cluster containing 0(1) 
but not included in the set {0(1)}. If no such cluster exists, select the second object 
to be any object other than 0(1). 

STEP 3. Select the Kth object, K = 3, 4, . . . , M, from the smallest cluster con-
taining 0(K — 1), but not contained in the set {0(1), 0(2), . . , 0(K — 1)}. If no 
such cluster exists, select the Kth object to be any object not 0(1), , 0(K — 1). 

L3 APPLICATION OF REORDERING TO ANIMAL CLUSTERS 

The order of objects in cluster l , Table 8.1, is such that all clusters are contiguous in 
the order. For example, cluster 7 = {HE, PG, WE, DG} which are the third through 
sixth objects, respectively, in cluster 1. To illustrate the algoritlun, an object other 
than human will be selected to be the first object. 

STEP 1. Let 0(1) = RT, rabbit. 

STEP 2. The smallest cluster containing the rabbit is cluster 6, from which the ob-
ject 0(2) = KO, kangaroo, is selected. 

sTEP 3. The smallest cluster containing KO is again cluster 6, from which 0(3) 
DG. The smallest cluster containing DG is cluster 7, from which 0(4) = WE. The 
smallest containing WE is again 7, from which 0(5) = PG. The smallest containing 
PG is cluster 8, 0(6) = HE. The smallest containing HE but not included in 0(1), 
0(2), 0(3), 0(4), 0(5), 0(6) is cluster 6, 0(7) = MY, and so on. Finally, the order 
of objects is RT KO DG WE PG HE MY HN PN CN DK TE BG. Every cluster is a 
contiguous set of objects in this order. For example, cluster 3 is the ninth through 
twelfth objects. 

8.4 NAMING CLUST'ERS 

Since every cluster consists of a sequence of contiguois objects in some ordering of 
the objects, a natura! way to name the clusters is by the first and last object in the 
sequence. Thus the human-turtle cluster contains all animals but the bullfrog. This 
naming procedure is not unique since the ordering of the objects is not unique. The 
two objects in the name of the cluster have the property that the smallest cluster which 
includes them both is the cluster named. 

Given the ordering of the objects and the two names for each cluster, the complete 
tree may be recovered. Thus the animai clusters are determined by the order 
HN MY HE PG WE DG RT KO CN PN DK TE BG and by the named clusters 
HN-MY, HN-KO, HE-DG, CN-PN, CN-DK, CN-TE, HN-TE, HE-PG. 
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8.5 l-REPRESENTATION OF CLUSTERS WITH DIAMETERS 

Preliminaries. Each cluster has a diameter D(C), a positive integer, such that 
D(CI) < D(C2) if CI is properly included in C2. For example, let the smallest clusters 
have diameter 1, and let every other cluster have a diameter that is one greater than 
the maximum diameter of the clusters properly contained in it. 

This algorithm represents the clusters graphically, using the symbols —, I, and /, 
although other symbols are plausible. For example, ', •, might replace I, /. There is 
one line for each object, with the name of the object left of the O position in the line 
and with various symbols in the positive positions on the line. 

sTEP 1. Arrange the objects in order, so that each cluster is a sequence of contiguous 
objects. 

s-rEP 2. Write the name of the first object to the left of the O position of the first 
line. 

STEP 3. Let C be the largest cluster such that the first object is the first or last object 
in C. Write the symbol — in all positions not greater than D(C). 

STEP 4. For every cluster C containing the first object, write the symbol /in position 
D(C) (if necessary, replace a previously written —). 

STEP 5. For all clusters C such that the present object is the last object in C, write 
the symbol / in position D(C). 

STEP 6. Repeat Steps 2-5 for all objects (1 5 I S M) with the names of the objects 
listed vertically on the left and with the symbols denoting cluster membership listed 
on the right. 

8.6 /-REPRESENTATION OF ANIMAL CLUSTERS 

It is necessary to define a diameter for each cluster to determine its horizontal position 
on the page. The diameter given in Section 8.5 produces a representation occupying 
a minimum width of page. [A more spread-out representation appropriate for small 
sets of objects has D(C) equal to the number of objects in C.] For the animals, the 
diameters are D(HN-MY) = 1, D(HE-PG) = 1, D(HE-DG) = 2, D(HN-KO) = 3, 
D(CN-PN) = 1, D(CN-DK) = 2, D(CN-TE) = 3, D(HN-TE) = 4, D(HN-BG) = 
5. For example, D(HN-KO) = max [D(HE-PG), D(HE-DG), D(HN-MY)] + 1 = 
3. 

STEP 1. The order used is the order given in Table 8.1. 

STEP 2. The first object is named human. 

STEP 3. The largest cluster C such that human is first or last is HN-BG. Write the 
symbol — in positions 1, 2, 3, 4, 5 = D(HN-BG). 

STEP 4. The clusters C that contain human are HN-MY, HN-KO, HN-TE, and 
HN-BG. Thus the symbol I appears in positions 1, 3, 4, 5 (replacing the symbol —). 

STEP 5. Human is the last member of no cluster and so / does not appear. 

sup 6. Steps 2-5 are repeated for monkey. The largest cluster containing monkey 
as the last object is HN-MY. So the symbol — is written in position 1. The clusters 
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HN-MY, HN-KO, HN-TE, and HN-BG contain monkey, so the symbol / appears 
in 1, 3, 4, 5 (replacing — in position 1). The cluster HN-MY has monkey as its last 
object so the symbol / appears in position 1. In this way, all objects are represented 
in Table 8.2. Note that during the algorithm, more than one symbol may be assigned 
to a given position, but the latest symbol is always the one used. 

To read the table, look for the symbols /. The vertical tower of rs over every / 
defines a cluster of objects. Each cluster corresponds to just one / in the table. 

Table 8.2 / Representation of Animal Clusters 

5 	DIAMTER 

HUMAN • I-III 

holm • / i I I 

HORSE•IIIII 

PIG•/IIII 

WEALE • IIII 

DOG • - /III 

RABBIT • 	I I I 

!CAMARO° • - - / I I 

CHICKEN •IIIII 

PENGUIN • /IIII 

DUCK • - / I I I 

TURTLE • - - / / I 

BULLFROG • ••• - - - / 

Each cluster is a vertical tower of i's over a /. 

8.7 TREES AND DIRECTED GRAPHS 

Suppose that all objects and clusters are nodes of a graph and that each node is linked 
to the node corresponding to the smallest cluster which includes it, with the link 
directed from the lesser node to the greater. Then the set of nodes and links form a 
directed graph, such that each node has at most one link leaving it, and there are no 
cycles. Any directed graph satisfying these conditions may conversely be represented 
as a family of clusters. The animai clusters are represented by such a graph in Table 
8.3 (see also Figure 8.1). 

8.8 LINF,AR REPRFSENTATION OF TREES 

Let D(C) be a diameter, as defined in Section 8.5, such that D(C) is a positive integer 
and D(C1) < D(C2) whenever CI c C2, CI O C2. Arrange the objects in order on 
the line, such that each cluster is a contiguous sequence of objects, and separate two 
contiguous objects by the diameter of the smallest cluster that contains them both. 
Clusters are recovered from such a linear representation by associating a cluster with 
each interval between objects, the cluster consisting of the maximal sequence of objects 
including the interval and containing no interval of greater size. 



Figure 8.1 Trees and directed graphs. 

Table 8.3 Animai Clusters Represented by Directed Graph 

NODE 	 ANCESTOR 	 NODE 	 ANCESTOR 

HN 	 HN - MY 	 HN - MY 	 HN - KO 

MY 	 HN - MY 	 HE - PG 	 HE - DG 

HE 	 HE - PG 	 HE - DG 	 HN - KO 

PG 	 HE - PG 	 HN - KO 	 HN - TE 

WE 	 'HE - DG 	 CN - PN 	 CN - DK 

DC 	 HE - DG 	 CN - DK 	 CN - TE 

RT 	 FIN - KO 	 CN - TE 	 HN - TE 

KO 	 HN - KO 	 HN - TE 	 HN - BG 

CN 	 CN - PN 	 HN - BG 

PN 	 CN - PN 

DK 	 CN - DK 

TE 	 CN - TE 

BG 	 HN - BG 

159 
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Table 8.4 Lhaear Representation of Aninial Clusters 

•MY - --HE -PG - 	DG - -RT - KO - • --CN -PN - -DK- • - TE - - -BG 

BN 	HE PG WE DG RT KO CN PN DK TE BG 

I 	III 	I 	I 	II 	II 	II 

II 	I 	II 	I 	I 

	

I 	I 	I 	 I 	I 

The animal clusters are represented in this way in Table 8.4. Also in Table 8.4 is a 
representation where the spaces between objects are represented by a vertical column 
of /'s. This diagram is intermediate between the linear representation and the repre-
sentation in Table 8.2. The linear representation is useful when a data vector is 
associated with each object, and it is desired to incorporate this vector in the repre-
sentation, as in Table 8.5. Blanks between lines of data indicate the clusters; as a 

Table 8.5 Cost and Nutrient Contributions for Selected Foods 
% OF DAILY ALIDWANCE 

FOOD 	 CM OF BERVING 	flIZA 	PRO= IRON TRIAMIXII RIBOFLAYIN MAUR 
Monte) 

ira 	 28 	 3 oz 	 ì9 	21 	38 	11 	29 
POIUC C193PEI 	 25 	 3 oz 	 29 	22 	59 	12 	 36 

BER RID ROA8T 	 25 	 3 oo 	 29 	22 	4 	9 	30 
BEZIP OHM% DOMI! 	le 	s oz 	 32 	22 	3 	10 	 29 

MIMI 	 18 	 3 oz 	 33 	6 	4 	4 	74 

13DEF rana 	 15 	 3 oz 	 30 	55 	18 	19 8 	1o5. 

8008 	 Io 	 R *W 	19 	22 	7 	16 	 1 
DR! BEAN8 	 2. 	3" CUP 	 16 	30 	8 	6 	12 

BACON 	 5 	 2 stripz 	6 	4 	7 	3 	 7 

PEANDT sorra 	 4 	2 tablazpoona 	12 	5 	3 	2 	4 3 

From Yearbook of Agriculture (1959). 

rule of thumb, the total number of blank lines is about equal to the original number 
of objects. 

8.9 TREES AND DISTANCES 

Given a tree with cluster diameters, there are two ways of defining distances between 
objects. In the first, the distance between two objects is the diameter of the smallest 
cluster which includes them both: 

D(I, J) = min {C I / e C, J E C} D(C). 

Such a distance is an ultrametric; that is, it satisfies the inequality 	max 
[D(I, K), D(J, K)]. Equivalently, the two largest distances in D(I,J), D(I, K), 
D(J, K) are equal. Conversely, any ultrametric generates a tree and cluster diameters 
from which it is recovered using the above definition (see Hartigan, 1967; Johnson, 
1967; Jardine, Jardine, and Sibson, 1967). For example, see Table 8.6; the smallest 
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Table 8.6 Distances Computed from Trees 

	

5 	 1 o 	 DUMMER t 
HUMAN • /I -I - -I -I 

	

MONKEY • / / I 	I I 

	

BORSE / I I T 	I I 

	

PIG / / I I 	I 

	

WHALE • / I I 	I I 

	

DOG • / / I 	I I 

	

RAM= • - / I 	I I 

	

KANGAROO • - / - / 	I I 

CHICKEN • /I-I -II I 

PENGUTN • / / I II I 

DUCK • - / - / II I 

TURTLE • . - - / - - / / I 

BULLFROG • - - - - / - - - / 

ULTRAMETRIC 

HUMAN • i 2 4 4 4 4 4 4 7 7 7 

NONKEY • I 4 4 4 4   4 4  7 7 7 7 9 

HORSE • o L.L. 	2 2 4 4 	7 7 7 7 9 

	

PIG • o 2 2 4 4 	7 7 7 7 9 

WHALE 7.112 4 4 7 7 7 7 9 
DOC, • i 	4 4 	7 7 	7 7 9 

RABBIT 721. 7 7 7 7 9 

KANGAROO • 2  7 7 7 7 9 
clacKEN ..1124 6 9 

ED/mi:N • i 4 6 9 

DUCK 2 6 9 

TURTLE • 3 9 

BULLFROG 5 

Arbitrary diameters have been assigned to the clusters. 

cluster including human and monkey is HN-MY, which has a diameter of 2. Thus 
D(HN, MY) = 2. The smallest cluster including human and chicken is the HN-TE 
cluster with a diameter of 7. Also, this cluster is the smallest including monkey and 
chicken. Thus D(HN, CN) = 7 and D(MY, CN) = 7. The two largest distances of 
D(HN, MY), D(HN, CN), D(MY, CN) are equal, as behooves an ultrametric. 

Another plausible definition has the distante between two objects equal to the sum 
of links connecting the two objects in the directed graph described in Section 8.6. 
This definition will be stated in terms of cluster diameters, rather than in terms of 
links. It will be assumed that all simple object clusters are included in the tree and 
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also the full-set cluster. The link distance is defined to be 

D(I, = 2D(C) — D(I) — D(J), 

where D(I) and D(J) are diameters of objects I and J and where C is the smallest 
cluster containing I and J. If all single-object clusters have the same diameter, then 
D(I, J) is an ultrametric. 

The link distance is not much different from an ultrametric. A distance D(I, J) is 
a link distance if and only if, for every K, D(I, J) — D(I, K) — D(J, K) is an ultra-
metric. It has been suggested by J. S. Farris that a set of empirica] distances, thought 
to fit the link distance model approximately, should be transformed to 

M D(I, J) — {1 K M} D(I, K) — {1 K M) D(J, K), 

which will then fit the ultrametric model approximately. 
In Table 8.6 is given a method of representing clusters directly on a distance matrix. 

This is very useful in the routine examination of distance or correlation matrices. 
The objects are first contiguously ordered relative to the tree. For a square distance 
matrix, each cluster corresponds to a square contiguous submatrix. This submatrix 
is outlined. Whenever the distance matrix is symmetrical (the usual case), one half of 
the matrix and the corresponding outlines are ignored. Each position in the matrix 
is indexed by a pair of objects. The lines partition the pairs of objects, so that within 
each member of the partition the pairs all have the same cluster as the minimum cluster 
including them both. In particular, in the ultrametric model all values within a member 
of the partition should be equa]. 

8.10 BLOCK REPRESENTATION OF TREES 

There are many ways of representing trees, from the evolutionary trees seen in biology 
books where the width of the branches has meaning (cluster diameter is the time back 
to the common ancestor of objects in the cluster) to the stark trees in combinatorics 
(see Sokal and Sneath, 1963; Bertin, 1967; Lockwood, 1969). A slightly different 
representation from the I representation is used in biology and is superior in allowing 
more space in the diagram for text describing the clusters. 

sTEP 1. Order the objects so that each cluster is a contiguous sequence of objects. 

STEP 2. On the 2 X Jth line (1 5 J s M), piace the name of object J, then put the 
symbol I in each position D(C), where C includes J. 

STEP 3. On the (2 x i + 1)th line (1 S J  S  M), put the symbol — in every posi-
tion K (1 5  K < D(C)), where C is the smallest cluster containing the objects J and 
J+ 1. 

STEP 4. On the first and (2M + 1)th lines, put the symbol — in every position 
K [1 S K < D(C)], where C is the cluster of ali objects. 

An example of a block representation appears in Table 8.7. Note that each cluster 
is represented by a maximal tower of /'s above a —. There is also a block surrounded 
by /'s and —'s for each cluster; within this block, descriptive materia] about the cluster 
may be written. 
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Table 8.7 Block Representation of Animai Clusters 

	

HUMAN • I I I 	I I 

	

}K)NKEY • I I _ I 	I I 

	

HORSE III I 	I I 

	

PIG III I 	I I 

	

WHALE • I I I 	I I 

	

DOG • I I _ I 	I I 

	

BABBI/ • _I_I 	I I 

	

KANGAROO •  I I 	I I 

	

CBICKEN • I I / 	I I 

	

PIINGUTH • I I _ I 	I I 

	

DUCK • _I_I 	I I 

TURTLE • 	I I 	I  I 

BULLPROG • 

8.11 TH1NGS TO DO 
8.11.1 Graphs 

The term tree is used in a slightly different sense in graph theory—to denote an un-
directed graph with the property that there is a unique path connecting any two nodes. 
Selccting a particular node to be the root and directing all links toward the root pro-
duces a rooted tree, as in Section 8.6. The undirected definition goes naturally with 
the second distance model in Section 8.8, where the distance between the two nodes is 
the sum of the distances of the links connecting the two nodes. Fitting this distance 
model gives no hint about the root, so that a number of different clusterings may con-
form exactly to the same set of pairwise distances. 

Trees have been investigated extensively in graph theory and combinatorics, 
principally by counting the number of trees of various types but also by considering 
characteristics of randomly generated trees. 

8.11.2 Traversing Trees 

A tree is a standard data structure in computing. A tree of K nodes may be represented 
by an ancestor array N(1), . , N(K), where for each / there is a single link from / 
to N(I). The root may be identified as the nodeJ for which N(J) = J. A very convenient 
array for traversing the nodes of a tree is the two-dimensional array (M(1, /), M(2, /), 
1 / K}, where M(1, /) is the next node with the same ancestor as / and where 
M(2, /) is the first node whose ancestor is L Set M(1, /) = O and M(2, /) = O if no 
node satisfies the definitions. 

The array {N g), 1 I K} may be used for certain operations, such as averaging, 
moving from the end objects toward the root. The array {M(1, J), M(2, I), 
1 I K} may be used for other operations, such as allocation of objects to the 
tree or moving from the root toward the end nodes. Show how to traverse all the nodes 
of the tree by using the arrays {N(I), M(1, I), M(2, I), 1 I M}. Show how to 
compute the array {N(I), 1 I < M} from (M(1, /), M(2, /), 1 / < M} and vice 
versa. 
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8.11.3. Natemi trees 
Leafy trees are rooted trees, except if their root system is included, when they become 
unrooted or undirected trees. Veins and arteries are trees directed to the heart. The 
nervous system is a tree directed to the brain. A river system is a tree directed to a 
sea, with a few multiple paths in swamps and deltas ignored. Company organization 
charts are frequently trees, sometimes only slightly related to real channels of power. 
Genealogies are trees, forward from a person to all his descendants and back to his 
ancestors. Since there are only two sexes, the backward tree is binary; it is also not a 
tree once the ancestry is traced far enough back to include relatives by birth. 

Trees may be used to describe sentence structure. Trees may be used to organize a 
book into volumes, chapters, sections, and paragraphs. Schemes such as the Dewey 
decimai system are trees for naming, storing, and accessing books. lt is less important 
that these be optimal, correct, or rational than that they be unambiguous, widely 
accepted, and easy to use. 
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PROGRAMS 

TREE1 	prints tree given tree information in boundary form (smallest and largest 
index of cases in each cluster). 

NBTOMT converts tree information in boundary form to tree information in pointer 
form, specifying for each cluster the ancestor or smallest cluster properly 
including, it. 

CNVERT converts tree information in downward pointer form (next cluster at 
same level and first included cluster are specified for each cluster) to tree 
information in boundary form. 

BLOCK draws outlines of clusters over distance matrix. 

SUBROUTINE TREE1IRL,M,NB,K1 
C..   	 20 MAY 1973 
C.... PRINTS TREE ON OBJECTS NAMED IN RL, USING BOUNDARY INFORMATION I4 48. 
C.... M = NUMBER OF OBJECTS 
C.... K ■ NUMBER OF CLUSTERS 
C.... RL = 1 BY M ARRAY, RL(Il= LABEL OF ITH OBJECT. 
C.... NB . 3 BY K ARRAY 
C 	 N8(1,10 = FIRST OBJECT IN CLUSTER, INDEX BETWEEN 1 AND 149 
C 	 NB(2,K) = SECOND OBJECT IN CLUSTER, INDEX BETWEEN 1 AND M 
C 	 NUM) = DIAMETER OF CLUSTER, BETWEEN O AND 100 
C...D • ... 	  

DIMENSION RL(MliNB(3,K),AA(1011 
DATA ApB,C,DgE/1H,g1H—p1H 1 ,1H/e1H / 

C.... CHECK N8 ARRAY FOR ILLEGAL VALUES 
DO 10 KK=Igit 
1=N5(10(K) 
J=N8(2,KKI 
L=NB(3,KK) 

IFII91.1. 9190R9I9GT.J.OR.J.GTAI WRITE(6.11 KK,I,J,L 
IF(L.LT.O.OR.L.GT.1001 WRITE(6,11 KK,I,J,L 

10 CONTINUE 
1 FORMAT(17H ERROR IN CLUSTER,14,12HFIRST OBJ = g13,11HLAST OBJ = 
**IMMO'« = 113) 

C.... PRINT TREE, LINE BY LINE. 
DO 20 I=1,M 
DO 21 t=1,101 

21 AA(L)=E 
DO 22 KK=191( 
IF(NB(IFKKI.GT.I) GO TO 22 
IF(N8(2,KKI.L7.1) GO TO 22 
J=N8(30(Ki+1 
AA(.0=C 
IFINB(1,KKi.NE.I.AND.NB(2pKK 1.NE.I) GO TO 22 
DO 23 L=1,J 

23 IF(AAM.EQ.Ei AA(L)=B 
/F03(2,KKI.EQ.Ii AACJI=C 
IFIN8(191(K)AQ.II AA(J)=A 

22 CONTINUE 
WRITE(6,21 IIIRL(I19(11A(J),J=1,101) 

2 FORMAT(15 9 4X9A4912(91011111 
20 CONTINUE 

RETURN 
END 



SUBROUTINE NBTOMTINBOC,M,KT.MTI 
C••• 	 .. 	 20 Mia 1973 
C.... CONVERTS NB DESCRIPTION OF CLUSTERS INTO MT DESCRIPTIDN 
C.... K = NUMBER OF CLUSTERS0 K.GE.1 
C.... Na = 3 BY K ARRAY DEFINING K CLUSTERS 
C 	 NalleKl=FIRST OBJECT IN CLUSTERgGE 2 
C 	 NUMI . LAST OBJECT IN CLUSTER.LE M. 
C 	 Na(3,10 = CLUSTER DIAMETER, IGNORED IN THIS PROGRAM 
C.... M = NUMBER OF OBJECTS 
C.... KT = Mg.K = NUMBER OF MODES IN TREE 
C.... MT = KT aY 1 TREE ARRAY, COMPUTED IN PROGRAM. MTIII.GT .Ig EXCEPT AT I=KT 

DIMENSION N15113,K/gMT(KT/ 
CHECK NB ARRAY 
DO 20 I=191( 
IFINBilen.LT.2) WRITEi6g1/ I 

WRITE(6,2II 
20 IF(NB(2,II.GT.M/ WRITE(6g3i I 

1 FORMATIBH CLUSTERgI5025H HAS BOUNDARY LESS THAN 21 
FORMATIBH CLUSTER,15,45H HAS FIRST BOUNDARY EXCEEDING SECOND BOUNDARY/ 

*ARTI 
3 FORMATO3H CLUSTERgI5,26H HAS BOUNDARY GREATER THANII5i 

C.... CHECK NB ARRAY FOR OVERLAPS 
DO 21 I=1,K 
DO 21 J=1,1 
I1=NBIlgIi 
12=NB(2,I) 
JI=NEOlgJi 
J2011111(2,J) 

21 IFILI1—J1à*(Il—J2)*II2-.J11*(12—J2).LT.01 WRITE(6,41 IgJ 
4 FORMATI9H CLUSTERS1,15g4H ANDRI5,BH OVERLAP/ 

C.... CONSTRUCT MT 
DO 30 I=leKT 

30 MT(I)=0 
DO 22 I=MgKT 
IF(I.EQ.M/ GO T° 22 

C.... FINO CLUSTER UNASSIGNED, WITH MINIMUM NUMBER OF ELEMENTS 
IM=I 
MIN=M 
DO 23 J=1,1( 
IFINBIl.A.LT.01 GO TO 23 
MM=N13(2,JI—NallgJI+1 
IFIMM.GT.MIN/ GO TO 23 
IM=J 
MIN=MM 

23 CONTINUE 
IFIMIN.E0.M) GO TO 22 

C.... FIND SMALLEST CLUSTER INCLUDED IN Ig NOT YET ASSIGNED 
JL=NBI1g1M) 
JU=N15112,1Mi 
NBIlgIMJ=—JL 
DO 24 J=J1.11JU 
L=J 

25 IHMT(LI.EQ.0/1 GO TO 24 
L=MT(LI 
IFIMTILI.EQ.L) GO TO 24 
GO TO 25 

24 MT(L)=I 
22 CONTINUE 

MTIKT)=KT 
DO 40 1.1,g 

40 IFINBIlgII.LT.011 
RETURN 
END 

166 



SUBROUTINE CNVERTILL,NC,NBAL,M) 
C... 	 20 MAY 1973 
C.... USE AFTER LETREE 
C.... TRANSFORMS TREE ARRAY LL INTO CLUSTERS NB SUITABLE FOR TREE CONSTRUCTION 
C.... LL = 3 BY NC INPUT ARRAY 
C 	LL IS REAL NOT INTEGER 
C 	LLII,Ii = NANE OF ITH CLUSTER 
C 	 LL12,1) = NEXT CLUSTER WITH SAME ANCESTOR 
C 	 LL(3,I) = FIRST CLUSTER WITH ANCESTOR I 
C.... NC = NUMBER OF CLUSTERS 
C.... N5 = 3 BY NC OUTPUT ARRAY DEFINING CLUSTER BOUNDARIES, SUITABLE FDì TREE1 
C 	NB11,K). INDEX OF FIRST OBJECT IN CLUSTER 
C 	N81200,. INDEX OF LAST OBJECT IN CLUSTER 
C 	NE113,10 = LEVEL OF CLUSTER K 
C.... M NUMBER OF OBJECTS, COMPUTED DURING PROGRAM 
C.... RL = 1 BY NC ARRAY, RL(1).. NAME OF ITH OBJECT 

DIMENSION LL13,NCI,N1113,NChRLINCI 
REAL LL 

C.... RL111 INITIALLY IS POSITION OF CLUSTER I IN REORDERING 
M.0 

DO 10 K.1,NC 
RL(K/.0 
IFILL(3,M.EQ.0) M.M.1 

10 IFiLL1311K).E0.01 RL(K) ■ 1 
DO 11 K-1,NC 
KK.NC—K4.1 
L2■LL42,KKI 
IF(L2.NE.01 RL(KKI.RLIKK)+RL(L21 
L3.LL(3,KK) 
IFIL3.NE.0) RL(KM.RL(KK3+RL(L3) 

11 CONTINUE 
DO 12 K.1,NC 
KK.LL13eK) 
IF(KK.E11.0) GO TO 12 
IK.RL(KJ—RLIKK) 

13 RLIKKI.RLIKK/+IK 
KK=LL12eKK) 
IFIKK.NE.0) GO TO 13 

12 CONTINUE 
C.... BOUNDARIES OF CLUSTERS 

DO 50 K.1,NC 
KK.NC—K+1 
1111(2.KK1 ■10**6 
N513,KKI ■0 
L3-11(3,KK) 
IFIL3.E41.0) N512,KK1.RLIKK1 
IF(L3.EQ.0) NB(3pKi0=RLIIKK) 
1F(L3.E42.0) GO TO 50 

51 NB(2,KK) ■MINOINB(2,KK),NB(2,L3)) 
N5(3,KK)=MAXOINB(3,KKJ,N813.L311 
L3sLL(2eL3) 
IF(L3.NE.0) GO TO 51 

50 CONTINUE 
C.... LABELS BY POSITIONS 

DO 60 K■ leNC 
60 NB11,10.RL(K) 

DO 70 K.I.NC 
I ■NB11,K1 

70 RL(Ii.LL11,K) 
C.... LEVELS OF CLUSTER 

DO 20 K■ IgNC 
20 NB11,K)=1 

DO 21 K.1,NC 
KK■NC∎ K4.1 
L2.LL(2,KK) 
L3.LL(3,KK) 
IFIL2.NE.01 NB11,KK1.MAX0(NB11,L2),N5(1,KK1) 
IF11.3.NE.0) N511.KKi.MAX0(N811,L3)+1,N8(1.KK)) 

21 CONTINUE 
DO 22 K■leNC 
L3.LL(3,K) 
IF1L3.NE.01 NB(1,L3) ■N5(1,K)-1 

22 IF(L2.NE.01 NB111,L2)~(1,K) 
DO 80 K■1gNC 
I04811,K1 
N81100.NB(2,K) 
NB12,10.N8(3,K) 

80 NB13,10.54.1 
RETURN 
ENO 
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SUBROUTINE BLOCK(ArMINNB,KCI 
C... 	  
C.... PRINTS OUT MATRIX A WITH BLOCKS SPECIFIED IN NB 
C.... M . NUMBER OF ROWS 
C.... N . NUMBER OF COLUMNS 
C.... A = M BY N BORDERED ARRAY, A .LT 9999 
C.... KC 	NUMBER OF CLUSTERS 
C.... NB 	4 BY KC 
C 	 NB(1,K) 	FIRST ROW IN BLOCK 
C 	 N8(2.K.1 . LAST ROW IN 8LOCK 
C 	 NB(3.KI 	FIRST COLIJMN IN BLOCK 
C 	 145(4.K) . LAST COLUMN IN BLOCK 
C••• 	  

20 M&Y 1973 

DIMENSION A(M,N),NB(4.KU 
DATA DO/4H----/ 
DIMENSION AA(26).AE(261.IA(26) 
DATA DASH,DITTOpCOMMAp8LANK,STAR,DOT/I1HiplHey1H g1H4g1H./ 

C.... CHECK BOUNDARY ARRAY NB 
DO 10 K.1.1(C 
IFINB(1.10.LT.2.0R.NB(1•Kl.GT.NB(2,K).0R.NB(2,K).GT.MI WRITE(6,11( 
IF(NB(3.K).L7.2.0R.NB(3.Kl.GT.NB(4.K1.0R.N8(4,K).GT.N) WRITE16,1)K 

10 CONTINUE 
1 FORMAT(25H BAD BOUNDARY IN CLUSTER 913) 

JPP.(N-2à/254.1 
DO 70 JP.1.JPP 
JLP.25*(0-1)+2 
JUP.254JP+1 
IFIJUP.GT.N) JUP=N 
JR.JUFTJLP41 

C.... WRITE TITLES 
MRITEI6,2) A(1,1I 

2 FORMAT(15H1BLOCKED ARRAY A4) 
C.... MR/TE OUT ARRAY ONE LINE AT A 7IME 

WRITE(6.3)(All.JJ.J.M.P.jUPI 
3 FORMAT(6X,25(1X.A411 

DO 20 1.1.M 
DO 27 L.1,26 
AE(L).BLANK 

27 AA(L)=BLANK 
IF(I.E0.1) GO TO 28 

C.... FILL IN DATA VALUES 
DO 21 J.JLP.JUP 

21 1A(.1—JLP+1).A(1,J) 
C.... FILI IN VERTICAL BOUNDARIES 

DO 23 K.1.KC 
IF(NB(200.LT.I.OR.NB(100.GT.II GO TO 23 
JL=NB(3.K) 
JU.NB(4,K)+1 
IF(JL.GE.JLP.AND.JL.LE.JUP) AA(JL—JLP+1)=DITTO 
IF(JU.GE.JLP.AND.JU.LE.JUP) AA(JU—JLP+1)=DITTO 
IF(JU.E0.JLP+JR) AA(JR+1).DITTO 

23 CONTINUE 
WRITE(6,6) AllelbIAA(J),IA(J).J.19JRNAAIJR+1) 

6 FORMAT(IX,A4,1X.25(AlgI4iipAli 
C.... FILL IN HORIZONTAL BOUNCARIES 

28 CONTINUE 
DO 24 K.1.KC 
IF(NBileKl.NE.I+1.AND.NB(2,K).NE.I) GO TO 24 
JL.N(113,K) 
JU=N8(4.14J+1 
JI=JL—JLP+1 
J2=JU—.111.P+1 
IF(J1.LE.0) J1=1 
IF(J2.GT.26) J2.26 
IF(J1.GT.26) GO TO 24 
IF(J2.LE.0) GO TO 24 
DO 25 J=J1,J2 
IF(J.EQ.J2J GO 70 25 
AE(J).DD 

25 IFIAA(Ji.EQ.BLANKI AA(J)=DASH 
IF(NB(1,K).NE.I+11 GO TO 24 
AA(J1j.COMMA 
AA(J2)=COMMA 

24 CONTINUE 
WRITE16.7)(AAIJ),AEIJigJI,JRI.AAIJR+1) 

7 FORMATI6X.25(AlgA4),A11 
20 CONTINUE 
70 CONTINUE 

RETURN 
END 
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CHAPTER 9 

Quick Tree Calculation 

9.1 INTRODUCTION 

The data of Table 9.1 consist of the dentition of 67 mammals. Mammals' teeth are 
divided into four groups with specialized functions, incisors, canines, premolars, and 
molars. The number of various types on upper and lower jaw provides a simple 
numerical basis for classifying mammals. Because teeth are likely to appear in fossil 
remnants, they are also very important in tracing evolutionary changes. (The pattem 
of cusps on each tooth is used in these evolutionary studies.) 

There are a number of tree construction algorithms that are quick in computation 
and cheap in storage. The first of these is a generalization of the leader algorithm for 
partitions. 

9.2 LEADER ALGORITHM FOR TREES 

Preliminari es. A distance D(I,J)is given between any pair of objects (1 I,J M). 
A decreasing sequence of thresholds T(1), T(2), . . . , T(KT) is assumed given. There 
will be Kr levels to the tree (with the root at level O) and a cluster at level J will be 
within the threshold T(J) of the cluster leader. 

The /th cluster is characterized by 

LO, I), 	the leading object 
L(2, /), 	the next cluster with the same ancestor as /, and 
L(3, /), 	the first cluster included in L 

Set L(2, /), L(3, /) equal to zero if no cluster satisfies their definition. 
The tree is constructed in a single pass through the set of all objects. The clusters 

are computed along the way. For each new cluster L(2, /) is initially zero, and this 
value is possibly updated once later. The complete clustering for all objects is contained 
in the array L, and in the array LC, where LC(/) is the leader of object / at level KT. 
Each object is treated by looking for the first cluster at level 1, within the threshold of 
whose leader it is. If there is no such cluster, the object defines a new cluster at level 
1; otherwise the object is compared with the leaders of clusters at level 2 contained in 
the cluster at level l and is treated analogously at every level. 

STEP 1. Begin with object number / = O and total number of clusters NC = O. 

sTEP 2. Increase / to / + 'l. Set the level number J = 1. Set the cluster number 
K = 1. If / = 1, go to Step 6. If / = M + l , go to Step 8. 
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170 	Qui& Tree Calculation 

Table 9.1 Dentition of Mammals 
Mammal's teeth are divided into four groups, incisors, canines, premolars, and 
molars. In the list below, the dentition of each mammal is described by the number of 
top incisors, bottom incisors, top canines, bottom canines, top premolars, bottom 
premolars, top molars, and bottom molars. From Palmer, E. L. [1957] Fieldbook of 
Mammals, Dutton, New York. 

opossum 	54113344 	pocket gopher 	11001133 	skunk 	 331 1 3312 

hairy tali mole 33114433 	kangaroo rat 	11001133 	river otter 	33114312 
common mole 	32103333 	pack rat 	11000033 	sea otter 	32113312 

star noce mole 33114433 	field mouse 	11000033 	iaguar 	33113211 

brown bat 	23113333 	muskrat 	11000033 	ocelot 	 33113211 

silver hair bat 23112333 	black rat 	11000033 	cougar 	 33113211 

pigmy bat 	23112233 	house mouse 	11000033 	lynx 	 33113211 

house bat 	23111233 	porcupine 	11001133 	fur seal 	32114411 

red bat 	13112233 	guinea pig 	11001133 	sea lion 	32114411 

hoary bat 	13112233 	coyote 	 13114433 	walruw 	 10113300 

lump noce bat 	23112333 	wolf 	 33114423 	grey seal 	32113322 

armadillo 	00000088 	fox 	 33114423 	elephant seal 	21114411 

pika 	 21002233 	bear 	 33114423 	peccary 	23113333 

snowshoe rabbit 21003233 	civet cat 	33114422 	elk 	 04103333 

beaver 	 11002133 	raccoon 	33114432 	deer 	 04003333 

marmot 	 11002133 	marten 	 33114412 	moose 	 04003333 

groundhog 	11002133 	fisher 	 33114412 	reindeer 	04103333 

prairie dog 	11002133 	weasel 	 3311 33 12 	antelope 	04003333 

ground squirrel 11002133 	mink 	 33113312 	bison 	 04003333 

chipmunk 	11002133 	ferrer 	 33113312 	mountain Boat 	04003333 

gray squirrel 	11001133 	wolverine 	33114412 	muskox 	 04003333 

fox squirrel 	11001133 	badger 	 33113312 	mountain sheep 04003333 

STEP 3. Compute the distance between I and L(1, K). If this distance does not 
exceed T(J), go to Step 4. If this distance does exceed T(J), go to Step 5. 

STEP 4. Set KK = L(3, K), J = J 1. If KK = O, set LC(/) = K and return to 
Step 2. If KK O, set K = KK and return to Step 3. 

STEP 5. Set KK = L(2, K). If KK O, set K = KK and return to Step 3. Set 
L(2, K) = NC 1. 

STEP 6. Set NC = NC 1. Set L(1, NC) = I, L(2, NC) = O, and L(3, NC) 
NC 1. 

STEP 7. Set J = J + 1. IfJ S  KT 1, go to Step 6. Otherwise, set L(3, NC) = O, 
LC(I) = I, and return to Step 2. 

STEP 8. The tree has been computed, but it is necessary to find an ordering of the 
objects which occur as leaders so that clusters will be contiguous in the ordering. An 
ordering 9ector 0(1), 0(2), . , O(NC) is defined, where O(I) is the position of the 
Ith leader in the ordering. 
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STEP 9. Set 0(/) = 1 for each cluster / with L(3, /) = O; set 0(/) = O, otherwise. 

STEP 10. For each cluster K (NC K 1) in inverse order, set 0(K) = 0(K) + 
0[L(2, K)] + 0[L(3, K)], where 0(0) = 0. 

STEP 11. For each cluster K (1 K NC) in usual order, for each K with 
L(3, K) O O, set KK =.; 0(K) — 0[L(3, K)]. Set J = L(3, K), and increase 0(J) by 
KK. Set J = L(2, J) and increase 09) by KK, continuing until J = 0. 

STEP 12. For each K (1 K NC), place the leader of cluster K in position 0(K). 

9.3 TREE-LEADER ALGORITHM APPLIED TO MAMMALS' TEETH 

The measure of distance between two mammals is the sum of absolute deviations 
between the counts for various teeth types. The seven thresholds are set at 32, 16, 8, 
4, 2, 1, O. 

srEP 1. Initialize object number / = O and cluster number NC = O. 

STEP 2. Increase / to l, and set level number J =- 1 and cluster number K = 1. 
Since / = I , go to step 6. 

srEP 6. Set NC = 1, L(1, 1) = object 1, opossum. Set L(2, 1) = O, L(3, 1) = 2. 
Increase J to 2 and set L(1, 2) = opossum, L(2, 2) = O, L(3, 2) = 3. Continue 
until J = 7 , L(1, 7) = opossum, L(2, 7) = O, and L(3, 7) = O. Return to Step 2 and 
set LC(/) = 1. 

STEP 2. Increase / to 2, set level number J = 1, and set cluster number K = 1. 

STEP 3. The distance between object 2, hairy tail mole, and opossum is 7, which does 
not exceed T(1) = 32. Go to Step 4. 

S'fEP 4. Set KK = L(3, 1) = 2, J = 2. Since KK O O and K -= 2, return to Step 3. 

srEP 3. The distance between object 2, hairy tail mole, and object L(1, 2) = 1, 
opossum, is 7, which does not exceed T(2) = 16. Go to Step 4. Continuing, the dis-
tance will first exceed threshold at level J -= 4; go to Step 5. 

STEP 5. Set KK = L(2, 4) = O. Set L(2, 4) = NC + 1 = 8. Go to Step 6. 

STEP 6. Set NC = 8, L(I, 8) = object 2, hairy tail mole, L(2, 8) = O, L(3, 8) = 9. 
This assignment will continue analogously for NC = 9, 10, 11. Then set L(3, 11) = O, 
LC(2) = 2, and return to Step 2. 

The complete array L is given in Table 9.2, and the corresponding tree is given in 
Table 9.3. 

A defect of the algorithm is apparent in the classification of hairy tail mole, which 
is in the opossum group but should be classified with house bat. At the time hairy tail 
mole was classified, house bat had not been classified, and so this choice did not 
exist. This shows that the tree-leader algorithm, like the partition leader algorithm, is 
decidedly sensitive to the order of presentation of objects. Some dependence seems 
inevitable if the objects are to be dassified in a single pass. 
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Table 9.2 Tree-Leader Algoritbm Applied to Mammola' Teetb 
The cluster, the name of the cluster leader, the next cluster with the same ancestor, 
and the first descendant cluster are given. 

CLUSTER 	NAME 	NEXT FIRST CIIISTER 	NAME 	NEXT FIRST 

	

i 	OPOSSUM 	 o 	2 	47 	COYOTE 	 59 	48 

	

2 	OPOSSUN1 	 28 	3 	48 	C 0Y0113 	 51 	49 

	

3 	OPOSSUM 	 21 	4 	49 	COYOTE 	 o 	50 

	

4 	OPOSSUM 	 8 	5 	50 	COY013 	 O 	o 

	

5 	OPOSSUM 	 o 	6 	51 	WOLF 	 54 	52 

	

6 	OFOSSUM 	 o 	7 	52 	WOLF 	 O 	53 

	

7 	OPOSSUM 	 o 	o 	53 	WOLF 	 o 	o 

	

8 	HAIRY TAIL MOIE 	o 	9 	54 	CIVET CAT 	 o 	55 

	

2 	HAIRY TAIL MOLE 12 	i 	o 	55 	C IVET CAT 	 o 	56 

	

I o 	HAIRY TAII, MOLE 	o 	i i 	56 	CIVET CAT 	 57 	o 

	

i i 	HA IRY TAIL MOIE 	o 	o 	57 	FtACC 00N 	 58 	o 

	

12 	COMMON MOIE 	15 	13 	58 	MARTEN 	 o 	o 

	

13 	COME MOTE 	o 	14 	59 WEASE L 	 84 	6o 

	

14 	COWON MOIE 	o 	o 	6o 	WEASE L 	 69 	61 

	

15 	BRCWN BAT 	 o 	16 	61 	WEASEL 	 63 	62 

	

16 	BRG1N SAT 	19 	17 	62 	WEASEL 	 65 	o 

	

17 	BRGIN HAT 	18 	o 	63 	WOLVERINE 	 67 	64 

	

18 	SILVER HAIR HAT O 	o 	64 wommen 	o 	o 

	

19 	PIGMT BAT 	 o 	20 	"65 RIVER OMR 	66 	o 

	

z o 	PIGMY BAT 	 O 	o 	66 	SEA OMR 	 O 	o 

	

21 	HCUSE BAT 	72 	22 	67 	JAGUAR 	 77 	6 8 

	

22 	HOUSE DAT 	34 	23 	68 	JAGUAR 	 o 	o 

	

23 	HCUSE HAT 	81 	24 	69 	FUR SEAL 	 o 	7 o 

	

24 	HCUSE BAT 	26 	25 	70 	FUR SUL 	 79 	71 

	

25 	HCUSE BAT 	 o 	o 	71 	FUR SEAL 	 o 	o 

	

26 	RED HAT 	 0 	27 	72 	WAIRUS 	 o 	73 

	

27 	RED BAT 	 o 	28 	73 	WALRUS 	 o 	74 

	

28 	ARNIADILLO 	 o 	29 	74 	WALRUS 	 o 	75 

	

29 	ARMADILID 	42 	30 	75 	WALRUS 	 o 	76 

	

30 	ARMADILLO 	 o 	31 	76 	WAIRUS 	 o 	o 

	

31 	ARMAD/LLO 	 o 	3z 	77 	GREY SEAL 	 O 	78 

	

32 	ARMADILLO 	 o 	33 	78 	GREY SEAL 	 O 	O 

	

33 	ARMADILLO 	 o 	o 	79 	EIEPHANT SEAL 	o 	8o 

	

34 	PIKA 	 47 	35 	80 	ELEPHANT SEAL 	O 	o 

	

35 	PIKA 	 o 	36 	81 	PECCARY 	 o 	82 

	

36 	PI1CA 	 39 	37 	82 	FECCARY 	 o 	83 

	

37 	PIKA 	 38 	o 	83 	PECCARY 	 o 	o 

	

38 	SNOWSHOE RABBIT 	o 	39 	84 	ELIC 	 O 	85 

	

39 	BEAVER 	 o 	4o 	85 	ELK 	 o 	86 

	

4 o 	BEMIER 	 41 	o 	86 	EIE 	 O 	87 

	

41 	GRAY SQUIRREL 	o 	o 	87 	ELIC 	 o 	o 

	

42 	PACK RAT 	 o 	43 	88 	ANTEIDPE 	 o 	o 

	

43 	PACK BAT 	 o 	44 

	

44 	PACK RAT 	 o 	45 

	

45 	PACK RAT 	 o 	46 

	

46 	PAC1C RAT 	 o 	o 

9.4 TH1NGS TO DO 

9.4.1 Running the Tree-Leader Algorithm 
It will usually be sufficient to use three or four well-chosen thresholds, but in order to 
choose these a first run should be made with a large number of thresholds from which 
the final thresholds will be selected. It is plausible to have thresholds decrease geo-
metrically for metric distances—for example, 32, 16, 8, 4, 2, 1. The final tree will 
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Table 93 Tree for Mammals, Based on Dentition 
Omitting mam mais which have identical dentition to one in tree. 

SENTITIMI 	  

54113344 OPOSSUM 	OPOSSUM 	OPOSSUM 	OPOSSUM 	OPOSSUM OPOSSUM 

33114433 HALKYTAIL mora HAIRY TAIL MOIE HAIRY TAIL MOLE HAIRY TAIL MOLE 

32103333 CCMMON MOLE 	COMMON mora 	COMMON MOLE  

23113333 BRUiN BAT 	BRGO BAT 	aaads BAT 
23112333 SILVER HAIR BAT  

23112233 PIGRI BAT 	FIGMY BAT  
23111233 HOUSE BAT 	HOUSE BAT 	 HOUSE BAT 	HOUSEBAT 	HOUSE BAT 

13112233 RED BAT 	RED BAT  

23113333 PECCARY 	FECCARY 	FECCARY 

21002233 PIKA 	PIKA 	 PIRA 

21003233 SNCKSHOE EABBIT  

11002133 BEAVER 	MAVER 

11001133 GREYSQUIRREL  

13114433 COYOTE 	COYOTE 	COYOTE 	COYOTE 

73114423 ROLF 	 WOLF 	 WOLP  

33114422 CIVET CAT 	CIVET CAT 	CIVET CAT 

33114432 RACCOON  

33114412 MARTEN  

33113312 WEASEL 	WEASEL 	WEASEL 	WEASEL 

33114312 RIVER OTTER  

33113312 SEA CMTER  

33114412 WOIMERIKE 	WOLVERIKE  

33113211 ama 	JAGUAR  

32113322 (7REY SEAL 	GREY SEAL  

32114411 FUR MAL 	FUR SEAL 	FUR MAL 
21114411 EIEPHANT MAL  

04103333 ELI( 	ELK 	 ELE 	 ELK 

0400333 - ANIELOPE 

10113;10 WAIRUS 	WAIRUS 	WAIRUS 	WAIRUS 	WAIRUS  

0000c388 ARMADILLO 	ARMADILLO 	ARMADILLO 	ARMADILLO 	ARMADILLO ARMADILLC 

11090033 PACK RAT 	PACK RAT 	PACK RAI 	PACK RAI 	PACK RAI 

generate a corresponding "contiguous" ordering of the data, and it is suggested that 
the algorithm be executed on the objects in this new ordering. This operation should 
be repeated until there are no further changes in the ordering, in order to reduce the 
effect of the initial order of presentation. The frequency of car repairs (Table 9.4) is 
suggested as a trial data set. 

9.4.2 Sorting 

Suppose that variables are given, each of which takes a small number of different 
values over the various cases. The first variable partitions the complete set of cases 
into a number of clusters, the second variable partitions each of these clusters into a 
number of smaller clusters, and so on, constructing a tree of clusters. Of course, the 
difficulty here is selecting the variables to be used at various levels of the tree. 



Table 9.4 Frequency of Car Repairs 

BR . bre.ke system, 31:1 fuel system, EL electrical, 3DC exhaust, ST 
eteering, EM angine, mechanical, RS rettimi and squeaks, RA rear 
axle, RU rust, SA . shock absorbers, TC transmission, clutch, WA 
wteel alignment, OT other. 

BR 3V EL EDC ST EM RS RA RU SA TC WA OT 
AMO Ambaese.dor 8 	+ - - - 	- - - + 	- - - - 	- 
Buick Special 6 	- - - 	- - + - 	+ - - - 	+ 

Buick Special 8 	- .. - - 	- - + - 	- + - + 	+ 

Buick 8 Pull 	- - - + 	. + + - 	+ + - + 	- 
Buick Riviera 	- - + + 	- - - - 	- + - - 	- 

Cadillac 

Chervy II 	 - + - - 	+ - + * 	+ .. - + 

Chevelle 6 	 - - - - 	- + + - 	+ - - - 	- 
Chevelle 8 	 - + - + 	+ - + - 	+ + - + 	- 

Chevrolet Pu.U. 	- + + + 	+ - + + 	+ + + + 

Corvair 6 	 - + - - 	+ + - + 	- + + + 	+ 

Corvette 	 - - - + 	- - + + 	- - + - 	- 
Chrysler Newport 	+--- 	---- 	---- 	- 

mew Torker 	 + - - .. 	- - - + 	 + 
Dodge Full Size 	+ - - - 	 - + - - 
Falcon 6 	 - 	- - 	- 	- - + - 	- - + + 

Fairlane 6 	 - - - - 	- - + - 	 - 

Fairlane 8 	 - - - + 	- - + + 	- - - + 

Ford, Fall Size 	- - - + 	+ - - - 	- + - + 	+ 

Thunderbird 	 - - + - 	+ + - - 	- - - + 	+ 

MMrcury Full 	- - - - 	- - - - 	- - - + 	- 

Olds Full 	 + + - - 	- - + - 	- + - + 

plymouth Full 	+ - - _ 	 - - - - 

Pontiac Tempest 	- + - - 	- - + - 	+ + - + 	- 

Pontiac Full 	+ + + - 	- - + - 	+ + - + 

Rambler Rebel 6 	- - + - 	- - - + 	- - + - 	+ 

Mercedes 	 - - - - 	- - - - 	- + - - 	- 

MI lloo 	 - - + + 	 - - - - 	... 

Peugeot 	 - - - - 	- - 	- - + - 	- 
Porsene 	 da, M M Mi 	 M M ad M 	 - 

Rene,ult 	 - - - - 	 - - + - 	- 
Volvo 	 - - - + 	- - - + 	 - 

W bug 	 + - + + 	+ + - - 	- - + - 	- 

W bus 	 - - + - 	- + - - 	+ - + - 	- 

[From Consumer Reports Buying Guide (1969).] A + means greater than average 
frequency of repair in 1962-1967. 
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If the data consist of many category variables (for example, the dentition data 
where each variable takes values 0, l, . . . , 8), then one solution to the problem is to 
select the splitting variable at each level from these. The first variable is that one 
which best predicts the remaining variables. Let V(1), V(2), . . . , V(N) denote the 
variables, and let P[V(I) = K, V(J) = L] denote the proportion of times V(I) = K 
and V(J) = L. A measure of predictive power of variable V(I) for variable V(J) is the 
information 

{K, L} P[V(1) = K, V(J) = L] log P[V(I) = K, V(J) = L] 
— {IQ P[V(I) = K] log P[V(I) = K] 
— {L}.P[V(J) = L] log P[V(J) = L]. 

The overall measure of predictive power of V(I) is the sum of this quantity over J # I, 
and I is chosen to minimize this sum. At the second level, a variable is chosen that 
best predicts the remaining variables, given the value of the first variable. And so on. 

With this careful selection of variables, more than one pass through the data is 
required. Actually, one pass will be required for each level of the tree. A version of 
the above technique for continuous variables selects the first variable to be that 
variable most correlated with all others, selects the second variable to be most cor-
related with others given the first, and so on. It is also plausible for continuous vari-
ables to select that linear combination of the variables most correlated with all variables 
to be the first splitting variable. This means that the first splitting variable is the first 
eigenvector, the second splitting variable is the second eigenvector, and so on. Both 
the continuous techniques require one pass through the data for variable selection 
and one pass for classification. 

9.4.3 Differential Sorting 

There is no particular reason, except perhaps descriptive convenience, to use the 
same variable for splitting all the clusters at the second level. Thus, for category data, 
the first variable is selected to best predict all others. This step is then repeated on 
each of the clusters obtained, giving in generai a different splitting variable for each 
cluster. 

In the continuous case, the first eigenvector is used for the first sp.it, and the re-
sidual variables, after prediction by the first eigenvector, are retained. Within each 
cluster, a new first eigenvector is obtained that best predicts these residual variables 
within the cluster. This procedure is repeated at every level. 

9.4.4 Filtering Algorithm 

A version of the K-means algorithm appropriate for trees begins with a set of cluster 
centers, one for each cluster. Suppose that the initial tree of clusters is binary. Each 
object is successively added to the tree by filiering; it is first assigned to the cluster of 
ali objects. This cluster splits into two clusters, and the object is assigned to whichever 
of these cluster centers it is closest to. This cluster splits in two, and the object is then 
assigned to whichever of these two cluster centers it is closest to. And so on. 

After a complete assignment of all objects, each cluster center is updated to be the 
mean of all objects in the cluster. The objects are then reassigned. It will be seen that a 
K-means-type algorithm operates at each division of a cluster into two clusters. 

A typical initialization of cluster centers might go as follows. The first cluster center 
is the mean of all objects. The second cluster center is the mean of all objects that 



176 	Quick Tree Calculatlon 

exceed the first cluster center on at least half of the variables, and the third cluster 
center is the mean of all objects which exceed the first cluster center on at most half 
of the variables. Each of these two clusters generates two new cluster centers in a 
similar way, and the process continues until all cluster centers are initialized. 

PROGRAMS 

LETREE 	constructs clusters using the tree-leader algorithm. 

SUBROUT1NE LETREEIX,NeLL,KC,TH,NT,Y,CN,NCI 
'•••  	 20 'UV 1973 
C.... CONSTRUCTS LEALER TREE WITH DISTANCE BETWEEN PAIRS OF OBJECTS SPE:IF1ED 
C 	 FUNCTION DIST. 	THE VARIOUS LEVELS IN THE TREE ARE DETERMINED BY 
C 	 THE THRESHOLDS IN ARRAY TH. THRESHOLDS MUST DECREASE. 
C.... N = NUMBER OF ELEMENTS IN DATA VE:TOR 
C.... X = N—VECTOR, FIRST ELEMENT IS CASE NAME 
C 	 THE PROGRAM ACCOMMODATES VECTORS IN SEQUENCE, UPDATING THE 40)E 
C 	 ARRAY WHICH DEFINES THE TREE, AND STATING WH1CH 40DE EACH VE:TOR 1S 
C 	 ASSIGNED TO. 
C.... LL = 3 BY KC NODE ARRAY, COMPUTED bY PROGRAM 
C 	 LL IS REAL NOT INTEGER 
C 	 LL11,K). NAME OF NODE 
C 	 LL(2,10=NEXT NODE WITH SAME ANCESTOR AS K 
C 	 LLI3tKI= FIRST NODE WITH ANCESTOR K 
C.... KC = NUMbER OF NODES 
C.... TH = THRESHOLD ARRAY 
C.... Y = N BY KC LIST OF DATA VALUES OF NODES 
C.... NC = ACTUAL NUMBER OF CLUSTERS AFTER PASSING THROJGH PROGRAM 
C.... CN = NAME OF CLUSTER WHICH OBJECT IS ASSIGNED. 
C.. 	 

DIMENSION XINieLLI3,KCIIYINpKCI 
DIMENSION THINTI 
REAL LL 

C.... LABELS 
DATA YN,XL/4HLEAD,4HNODE/ 
YIlp1/=YN 
LLI1p1/=XL 
DATA IC/0/ 
IFIIC.E0.0) NC=0 
IC=IC+1 
KK=1 
LEV=1 
IFINC.EQ.0) GO TO 25 

C.... ASSIGN ObJECT TO TREE 
20 CONTINUE 
22 K=KK 

NN=b1..•1 
D=UISTIXI2/eYI2,KI,NNple2./ 
IFID.GT.THILEViI GO TO.21 
LEV=LEV+1 
KK=L1.13,K) 
IFIKK.EQ.0/ CN=Y(1,KI 
IFIKK.E0.0) RETURN 

TO 22 
21 KK=LIA2,K) 

C.... MAKE A NEW LEADER 
IFIKK.NE.00 GO TO 22 

25 CONTINUE 
IFINC.GT.0) LL(21K)=NC+1 
DD 27 KK=LEV,NT 
NC=NC+1 
IFINC.GT.K0 WRITE(6.1/ KC 

1 FORMA-1(15,17H NOT ENOUGH MODES) 
LLC1pNC/=X(1) 
LLI2eNCI=0 
LLI3eNC)=NC+1 
DO 23 J=1,N 
23 YIJOICI=XIJI 
27 CONTINUE 

LLI3eNC)=0 
CN=YlleNC/ 
RETURN 
END 



CHAPTER 

Triads 

10.1 INTRODUCTION 

In clustering the hardware in Figure 10.1, you could seize the nettle and declare the 
tree to be 

((NF)T)((PS)B). 

This tree consists of certain similarity judgments (obviously subjective) about the 
hardware. Following the data matrix approach, you might list properties of the 
various objects, define a measure of distance between the vectors of properties, 
making weighting decisions for each of the properties, and then use a tree construc-
tion algorithm to obtain a tree. This procedure is no less subjective than the originai 
one, with the subjective choice of properties to measure and the subjective weighting 
of properties in the distance function. The properties selected will be based on informai 
similarity judgements and informai clusterings. For example, the ratio of diameter 
to length might be used because it is noticed that this measure discriminates well 
between nails and screws, or whether or not the head is indented might be used because 
it discriminates well also. 

The data matrix approach differs from the direct similarity judgement approach in 
being more explicit about the factors subjectively selected as important in the clustering. 
An intermediate form of data, between the data matrix and the tree, are the triads in 
Table 10.1. For each triple of objects, a judgement is made about which pair are most 
similar. The algorithm in this section constructs a tree from such triadic data. Direct 
triadic judgements are not common, partly because M(M — 1)(M — 2)/6 judge-
ments are necessary for M objects. However, triads can be constructed from other 
forms of data, such as distances or data matrices. 

10.2 TRIADS ALGORITHM 

Preliminaries. It is necessary to measure the error between a given set of triads and 
a tree. The given set of triads will be a series of judgements (IJ)K; I and J are more 
similar to each other than either is to K. 

A tree may be interpreted as the set of triads: (IJ)K whenever the smallest cluster in-
cluding / and J is properly included in the smallest cluster containing / and K. This 
set of triads will include every tr;ple just once only if there are M — 1 distinct clusters 
on M objects--that is, if the tree of clusters is binary. 

177 
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Figure 10.1 Hardware. 

Bolt (D) 

O Tack (T) 

Finishing nail (F) 

Screw (S) 

Table 10.1 Triads Based on Hardware 

(AMO denotee that A, B are 'met eimilar in the triple A, B, C. 

NAIL (N) 

PRILLIPS SCREW (P) 
BOLT (B) 

TACI( (T) 

FINISATMNAIL (F) 

sam (s) 

(PB)N (NT)P (NF)P (YS)N (NT)B (NF)B (55)N (NF)T (NT)S INF18 

(PB)T (PB)F (PS)B (TF)P (PS)T (PS)F (TF)B (BS)T (BS)F (TFIS 
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Table 10.2 Trees Obtained During Triads Algorithm (Application to Hardware) 

INITIAL TREE 	(PN) 

ADD B 	(PN)B 	 (PB1N 

ERROR 	 -1 

ADD T 	I(IPB/N/T) 	 I(PB/(NTH 

ERROR 	o, 	 -4 

ADD F 	( ((PB)(NT) )F 	 I(PB)((11T1F)) 	(CPBMINF1TH 

ERROR 	o 	 -8 	 -10 

ADD S 	(UP13)(INFIT)1S1 	(UPBISIIINF/T1) 	(UPSIBMNF/TD 

ERROR 	-6 	 -18 

The tree triads will—some of them—agree with the given triads, and others will 
disagree. The ones that agree will be called true triads and the ones that disagree false 
triads. Let T be the number of true triads and F the number of false triads. If T is 
maximized, a tree with M — 1 clusters will be produced. If F is minimized, a tree with 
just a few clusters will be produced. An error function intermediate between these is 
F — T, and this will be minimized (locally) in the algorithm. 

STEP 1. Begin with an initial tree containing three clusters on the first two objects, 
the clusters {1}, {2}, {1, 2}. Let /, the object to be assigned, be set initially at / 2. 

STEP 2. Increase / by 1. If / > M, stop. 
Let be the cluster of all objects so far in the tree, 1, 2, . . . , / — l. Add the clusters 

/} and {/} to the tree. 

STEP 3. Compute the number of false minus true triads for each of the following 
changes to the tree: 

(i) no change; 
(ii) delete Ci; 

(iii) replace 	by {C*, /}, where C* is a maximal cluster properly included in Ci. 
Such a cluster will be called a maximal subcluster of 

If (i) or (ii) have the least error (the least value of F — T), return to Step 2. 

STEP 4. Let C* be the maximal subcluster of Ci for which the error with Ci 
changed to {C*, /} is a minimum. If C* consists of a single object, return to Step 2. 
Otherwise, set = C*, add /} to the tree, and return to Step 3. 

10.3 TRIADS ALGORITHM APPLIED TO HARDWARE 

The given triads are in Table 10.1. 

STEP 1. The tree consists of the clusters (N, P), (N), (P). 

wrEP 2. First add the object B to the tree. Initially = (N, P), and {N, P, B) and 
{B) are added to the tree. 

.STEP 3. (i) The tree with no change is (B), (P), (N), (N, P), (N, P, B). This implies 
the triad (NP)B, which is false. The error is 1. 
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Deleting Cl  produces a tree (B), (P), (N), (N, P, B), which generates no triads 
and has error O. 

(iii) There are two subclusters of C, = (N, P)—namely, (N) and (P). If Cl  is 
changed to (N, B), the triad implied is (N B)P , which is false. If C, is changed to 
(P, B), the triad implied is (PB)N, which is true, and so this tree has error —1. 

STEP 4. Change C, to (P, B), move on to the next object, and return to Step 2. 
For object T, Step 2 begins with C, = (P, B, N). 

STEP 3. (i) The tree with no change is (((PB)N)T) which implies the triads (PB)N, 
(PN)T, (BN)T, and (PB)T, two false and two true, so the error is O. 

(ii) The tree with C, deleted is ((PB)NT) which implies (PB)N, (PB)T for an error 
of —2. 

If C, is replaced by (P BT), the tree is (((PB)T)N), which has error O. If Cl  
is replaced by (NT), the tree is ((PB)(NT)), which has error — 4. 

STEP 4. Since C* = N is such that replacing Cl  by (C*, T) gives minimum error, 
this replacement is carried out, and the next object is brought in and added to the 
tree, beginning again at Step 2. 

P 

N —I 	

P 	i  

N 	

P i 	BJ 	 P  i  
a —I 

a N 

T T 	 

F F T 

S 	  T 	T 

Figure 10.2 Trees obtained by successive adding of objects in triads algorithm. 
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The complete sequence of trees obtained during the addition process is given in 
Table 10.2 and also in Figure 10.2. By chance the tree ((PS)B((FN)T))fits exactly. 

10.4 PROPERTIES OF TRIADS ALGORITHM 

The triads algorithm is a locai optimization algorithm in defining a measure for error 
for each tree and in then searching, not exhaustively, through the set of all trees for a 
satisfactory tree, guided by the error measure. Other measures of error, other search 
procedures, will be discussed later. 

The triads algorithm is very expensive computationally since there are 
M(M — 1)(M — 2)/6 triads, and each triad is examined at least once. The final tree 
depends on the initial ordering of the data, which is another unsatisfactory feature. 
If there exists a tree that will generate the observed triads, then this tree will be con-
structed by the algorithm, so that at least the algorithm works well for "perfect data." 

Triads are rather rare as real data. They can be derived from distances in an 
obvious way. (1.1)K is D(I, J) S  D(I, K), D(J, K). They can also be derived directly 
from data matrices, with one triad possible for I, J, K for each variable in the data. The 
total number of observed triads will then be M(M — 1)(M — 2)/6 by N, where N is 
the number of variables. 

The principal difficulty of the triads algorithm is the very large number of triads 
that must be checked. What is needcd is a leader-type algorithm that would allow a 
single object to represent all the objects in a cluster and so make it unnecessary to look 
at all objects in the cluster when a new object is assigned to the tree. 

10.5 TRIADS-LEADER ALGORITHM 

Preliminaries. A binary tree is constructed, with 2M — 1 clusters on M objects. 
Each of the objects 2, 3, . . , M is a leader object for just one of the M — I clusters 
containing more than one object. It is convenient to specify the tree by listing for 
each leader object I the leader objects J, K of the maximal clusters properly included 
in the cluster for which I is the leader. Write P(I) = {J, K}; the objects J, K are the 
progeny of I. If a maximal subcluster of I consists of a single cluster—say, J—the 
progeny of I will be written {—J, K}, where K is the leader of the other maximal 
subcluster of L This notation distinguishes the object J when it appears as a singleton 
cluster from the object J when it appears as the leader of a multiple cluster. The 
algorithm assigns each object in turn to the tree, beginning at the largest cluster and 
moving towards the smaller clusters, branching according to the leading object the 
object is closest to. 

STEP 1. Begin with a tree consisting of the first and second objects, with P(2) = 
(-1, —2). 

STEP 2. lf (12)3, define P(3) = (2, —3). 
If (13)2, define P(3) = (-1, —3), P(2) = (-2, 3). 
If (23)1, define P(3) = (-2, —3), P(2) = (-1, 3). 
Let I, the number of objects in the tree, be set to I = 3. 

STEP 3. Increase I to I + 1. If I > M, stop. Find that object J (1 < I < I) such 
that J e P(K) for no K (1 S  K < 1). (This object is the leading object of the largest 
cluster.) 
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sTEP 4. Suppose P(J) = (K, L). If (KL)I and there exists an object JJ such that 
P(JJ) = (J, KK) for some KK, redefine P(JJ) = ( —I, KK). If (KL)I, set P(I) = 
(J, —I) and return to Step 3. 

sTEP 5. If (KI)L set J = K, and if (LI)K set J = L. If J < O, set P(I) = ( —I, J) 
and return to Step 3. Otherwise, retum to Step 4. 

NOTE. This algorithm requires only 0(M log M) triads, so if they are being com-
puted from data or distances do not compute them in advance. 

10.6 APPLICATION OF TRIADS-LEADER ALGORITHM TO 
EXPECTATION OF LIFE 

In Table 10.3, find the expectations of life for a number of cities, males and females, 
at ages O, 25, 50, 75. Triads for three cities might plausibly be computed from the 
euclidean distances between them with (IJ)K if D(I, J) < D(I, K), D(K, J). lt is 
quicker to compute triads directly from the data. The triad (IJ)K holds if K is most 
frequently the furthest from / and J, counting over the eight variables. Consider the 
cities 1, 2, 3, or Montreal, Toronto, and Vancouver. For the first variable, the ex-
pectation of males at age O, the values are respectively 67, 68, 68, so Montreal is 
furthest for this variable. For the second variable, the values are 44, 45, 46, so Mon-
treal and Vancouver are both "furthest." This appears in the Montreal count as 0.5. 

Table 10.3 Expectations of Life in Various Cities (by Age and Sex) 

RALE 	 PENALE 

CITY & YEAR 	Az O 25 5o 75 	 o 25 5o 75 

l. lONTREAL 	66 	 67 44 22 	7 	73 51 28 	9 

2 . ToNoNT0 	66 	 68 45 	23 	8 	75 	53 29 10 

3. VANDOUVER 66 	 68 46 23 	8 	75 53 3o ii 

4. KAORSIUNG 66 	 66 43 22 	8 	71 49 26 	9 

5. TAIPEI 	66 	 69 46 24 	8 	72 5o 27 	9 

6. DJAKARTA 	61 	 44 36 18 	6 	46 37 19 	6 

7. COPENHAGEN 66 	 68 46 23 	8 	75 56 28 	9 

8. BEESINKI 	66 	 66 42 21 	7 	73 50 27 	8 

9. EAST BERLIN 61 	 66 45 22 	7 	71 49 27 	8 

A. WEST BERLI« 61 	 66 45 22 	7 	72 50 27 	9 

B. WEST BERLE' 67 	 67 45 22 	7 	73 50 27 	9 

C. DUSSELDORY 66 	 67 45 22 	8 	74 51 28 	9 

D. HAMBURG 	66 	 68 46 23 	7 	74 51 27 	9 

E. STOCKHOLM 60 	 69 46 23 	7 	75 52 28 	9 

P. LOWDON 	67 	 69 47 23 	8 	77 54 3o 12 

G. SYDNEY 	66 	 67 44 22 	7 	73 50 27 	9 

From N. Keyfitz and W. Flieger (1971). Population, Freeman, San Francisco. 



Figure 10.3 Trees obtained during application of triads-leader algorithm. 

Overall, Montreal is furthest in (1 + 0.5 + 1 + 1 + 1 + 1 + 0.5 + 0.5) = 6.5 
cases, so the triad (23)1 holds. (See Figure 10.3 for the sequence of trees obtained.) 

srEP 1. Define P(2) {-1, —2). 

STEP 2. Since Montreal is most dissimilar among Montreal, Toronto, and Van-
couver, (23)1 is the triad. Thus P(3) { —2, —3} and P(2) is changed to {-1, 3). 

STEP 3. To add object 4, first find the object J such that J e P(K) for no K. This 
object is J = 2. 

STEP 4. P(J) = {1, 3}. The triad (13)4 holds. Therefore define P(4) = {2, —4} 
and retum to Step 3. (The city Kaohsiung is dissimilar to both leading objects 
Montreal and Vancouver, and so a new branch for Kaohsiung is defined at the highest 
level.) There is no object JJ such that P(JJ) = {2, KK}. 

Adding object 5 at Step 3, set J = 4. At Step 4, P(4) = {2, —4}. The triad {25}4 
holds; go to Step 5. (Surprisingly, Taipei is more similar to Vancouver than it is to 
Kaohsiung.) Set J = 2. 
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Return to Step 4. Here P(J) = P(2) = (-1, 3}. The triad {13)5 holds. The object 
JJ = 4 has P(4) = {2, —4). Therefore P(4) = {5, —4} and P(5) = {2, —5}. Return 
to Step 3, adding object 6. A full history of the tree construction is given by the record 
of P as each object is added. At each stage, the most recently defined value of P is the 
correct one (see Figure 10.3). 

10.7 REMARKS ON TRIADS-LEADER ALGORITHM 

This algorithm is fast but sloppy. The final clusters are not invariant under the 
change of order of objects. A binary tree is produced by the algorithm (M — 1 non-
trivial clusters for M objects), so there is some difficulty in interpreting the large 
number of final clusters. 

The leader of a cluster is selected arbitrarily, which is harmless when the clusters 
are very distinct but may be important in the common case where clusters are quietly 
present. 

Triads are not frequently used in collecting similarity perception data because of 
the very large number of triads required for even a few objects Esce Levelt, 1967 for 
an example of triads data (Table 10.4)]. Yet triads are an attractive way to extract 

Table 10.4 Relatedness Values in "The Boy Has Lost a Donar" 
Frequencies with which a pair is judged more highly related than other pairs, over 
many triads and subjects from Levelt (1967). 

	

the boy has lost 	a 	donar 
the 	 .99 	.43 	.29 	.19 	.16 
boy 	 .63 	.65 	.16 	.31 
has 	 .86 	.31 	.4o 
lost 	 .42 	.70 

a 	 .94 
dollar 

similarity information because three objects are the minimum number on which to 
base comparisons between pairwise similarities. How similar is a duck to a pig? 
Some similarity scale is necessary before a sensible transportable answer can be made. 
Which does not fit in: a duck, a pig, and a bee? The scale is carried in the question, 
and the triad (duck, pig) bee can be declared. A child might say (duck, bee) pig 
since a duck and a bee have wings. This opinion is valid also. Infants' textbooks are 
full of triads—pick from a hat, a shoe, and a bird the dissimilar object. 

The triads-leader algorithm could be used to extract similarity perceptions from 
subjects without forcing the subjects to respond to all possible triads. The experi-
menter, in person or through carefully written instructions, must guide the subject 
into placing objects on the tree. Probably the easiest technique will be to ask the 
subject to actually construct a tree as in Section 10.3. For just a few objects, all 
possible trees could be laid out and the subject could be directed to choose among 
them. 

For example, for a four-object questionnaire (which admittedly has only four 
triads), the instructions might be as follows: 

Look at ABC. 
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If (AB)C, look at BCD. 
If (BD)C, look at BA D and then stop. 
If (BC)D or (CD)B, stop. 

If (AC)B, look at BCD. 
If (CD)B, look at CAD and then stop. 
If (BC)D or (BD)C, stop. 

If (BC)A, look at CAD. 
If (CD)A, look at BCD and then stop. 
If (CA)D or (DA)C, stop. 

There is not much of a reduction with four objects, but there would be substantial 
reductions with, say, seven. 

10.8 THINGS TO DO 

10.8.1 Running the Triads Algorithm 

The triads algorithm should be used on sets containing a few objects—say, M < 10. 
On the first 10 typewriters in Table 10.5, construct triads as outlined in Section 10.4. 
A good experiment requires a trusting friend who will be requested to make triadic 
similarity judgements directly on six candy bars or six politicians. There will be thirty-
five triads from which a tree may be constructed. 

Now ask him to piace the objects successively in a tree using the technique in Section 
10.7. How different are the two trees? 

10.8.2 Complete Searches 

Since the triads are so numerous and complete searches are also very time consuming, 
except for small numbers of objects, it is practicable to think of evaluating the true 
and false triads for every tree and choosing the best ones. This technique will only be 
used for small numbers of objects. 

Let the array {A(I), 1 < I < K} define a tree with K nodes, where A(I) > I for 
I < K and A(I) is the ancestor of the node I. For a tree on M objects, the first M 
nodes will be the objects, and so A(1) > M for / < M. The number of arrays such that 
A(I) > /for / < K, A(1) > M for / M, and A(K) = Kis (K — M)31  (K — M — 1)!. 
Each tree corresponds to at least one array (although the correspondence is not one 
to one). Thus all trees on M objects may be generated simply by generating the arrays 
A. 

The array A is also useful in searching through trees. For example, the best ancestor 
for the node I may be found by looking at ali trees with M, I < A(I) < K. The best 
ancestor for each node is found in succession, until no improvement occurs by change 
of ancestor of any single node. (This is analogous to the K-means algorithm, with 
more clusters available for objects or clusters to be attached to.) 

10.8.3* Axioms 

For any tree, for any four objects I, J, K, L, 

(IJ)K (J1)K 
and 

(IJ)K, (JL)I (JL)K. 
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If a set of triads satisfies these conditions, is there necessarily a tree that implies all 
the triads ? 

10.8.4* Ranks 

Show that a tree generates for each I an ordering S of all objects by their similarity 
to I. (Different objects J, K may have J S  K, K 5 J). Suppose that you are given 
such an ordering for each object I; when is the ordering such that a tree might have 
generated it ? 

These orderings, by similarities to various objects, are more efficient than triads 
and so might be a better way to extract similarity judgements in psychological experi-
ments. A good algorithm is needed for constructing a tree from a set of orderings. 

10.8.5 Probability Modula 

Suppose a diameter D(C) is associated with each cluster C in a tree. The probability 
of observing the triad (IJ)K is 1 — D(I, J)/D(I, K), where D(I, J) denotes the di-
ameter of the smallest cluster containing D(I, J) and D(I, J) S  D(I, K) = D(J, K). 
For any given tree, the diameters may be estimated by maximum likelihood. Over 
many different trees, the maximum likelihood for each tree may be used as a criterion. 

REFERENCES 

LEVELT, W. J. M. (1967). "Psychological representations of syntactic structure," in 
The Structure and Psychology of Language, T. G. Bever and W. Weksel, eds., Holt, 
Rinehart and Winston, New York. The sentence "The boy has lost a dollar" was 
presented to 24 students. They were instructed to judge the degrees of relationship 
between the words in the sentence by selecting the pair out of each triplet of words 
that were most strongly related and also by selecting the least strongly related pair. 
For each word pair, the frequency is computed with which the pair is judged more 
highly related than some other pair over all triads and students. These frequencies 
appear in Table 10.4. The frequencies conform to the intuitive grammatical tree 
structure 

((the boy)((has lost)(a dollar))). 

PROGRAMS 

SEARCH searches through trees, changing ancestor of each node in succession, to 
most reduce aT — (1 — a)F, where T is the number of given triads pre-
dicted by the tree and F is the number of given triads incorrectly predicted. 

TRIAD used by SEARCH to compute the number of true and false triads pre-
dicted by a tree. 

MTREE quick tree printing routine. 
TRDIST produces triads from a distance matrix. 
ULTRA computes ultrametric from tree. 



SUBROUTINE SEARCH(MT.M.K.T.A.TR) 
C... 	 20 MetY 1973 
C.... SEARCHES THROUGH TREES MOVING ONE NODE AT A TIME. TO MAXIMIZE 
C 	A*TRUE-11—Al*FALSE, WHERE TRUE IS THE NUMBER OF TR/ADS IN T CORKEZTLY 
C 	PREDICTED BY THE TREE. USES MTREE AND TRIAD. 
C.... MT . I BY K ARRAY, MT(I).GT.I IS ANCESTOR OF I EXCEPT MT(K).K. 
C.... M 	NUMBER OF OBJECTS 
C.... K NUMBER OF NODESt GREATER THAN 
C.... T * M BY M EY M BORDERED TRIAD ARRAY 
C.... A . VALUE BETWEEN O AND 1 	SAY A =0.5 
G.... TR = M BY M BORDERED ARRAY. ULTRAMETRIC CONFORMING TO MT. 
C 

DIMENSION MTIKitT4M.M.MieTRIM,M) 
C.... INITIALIZE TREE 

DO 10 I.1.K 
10 MT(Ià.K 

DO 11 I=2.M 
TRtIpI)=I 

DO 11 J.2,M 
11 IFII.NE.Ji TRII,J)=K 

C.... FIND BEST ANCESTOR FOR EACH OBJECT 
DO 20 I.2,K 
MM=M*1 
EE=.10.**10 
JJ.MT(11 
DO 21 J=I,K 
IFIJ.LE.M1 GO TU 21 
IFIJ.LE.I) GO TO 21 
MT(Ii.J 
CALL TRIADIIAT.M.KtTR.T.TT.FT1 
EJ=A*TT—(1..Al*FT 
IF(EJ.LE.EE ) GO TO 21 
EE=EJ 
JJ=J 

21 CONTINUE 
MTII).JJ 
CALL TRIADIKAT,M,K.TReTeTT,FT) 
TT.77/3 
FT=FT/3 
WRITE(6,11 IeJJ,FTeTT 

1 FORMATIII5 	t 13H HAS ANCESTOR.1517H FALSE.IF5.0,6H TRUE.,F5.0i 
CALL MTREE(MTtM,K) 

20 CONTINUE 
RETURN 
END 
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SUBROUTINE TRIAD(II,MT.M.K.TR,T,TT,FTI 
C.. 	 20 M4Y 1973 
C.... COMPUTES FALSE TRIADS AND CORRECT TRIADS IN ARRAY T, ACCORDING TO ARRAY TR 
C 	COMPUTES ERRORS INVOLVING II TH OBJECT. 
C 	COMPUTES EFRORS FOR ALL OBJECTS IF II.GT.M. 
C.... Il = OBJECT 
C.... M = NUMBER OF OBJECTS 
C.... TR . M BY M bORDRRX0 ARRAY, ULTRAMETRIC FROM MT 
C.... T = M BY M BY M BOKDERED ARRAY 
C 	 T(I.J.KI=NUMBER OF TIMES IJ ARE MOST SIMILAR OF 
C.... FT = NUMBER OF FALSE TRIADS 
C.... TT = NUMBER OF TRUE TRIADS 
C.. 	 

DIMENSION MT(K).TR(M,M),T(MFM,M) 
IL=II 

IF(II.GE.2.AND.11.LE.M). GO TO 60 
IL.2 	• 
IU.M 

60 CONTINUE 
FT=0 
TD.0 

C.... UPDATES ULTRAMETRIC TR 
DO 20 1=IL,IU 
CALL ULTRA(I,TReMTIM,K) 

20 CONTINUE 
DO 10 1.IL.IU 
DO 10 J.204 
DO 10 Ls2gM 
IF(I.EQ.J.OR.J.EQ.L.OR.L.EQ.I) GO TO 10 
IF(TR((,J).LT.TR(I t LI) TT.TT+T(I,J.L) 
IF(TR(110).LT.TR(I.L)) FT=FT+T(I,L,J1+T(L.J.11 
IF(TR(J,L).LT.TR(I,J)) TT=TT+T(L.J.11*0.5 
IF(TR(L,J).LT.TR(I.J)) FT.FT4.(7(1.L.J1+TlIeJ.L)l*0.5 

11) CONTINUE 
RETURN 
END 

SUBROUTINE MTREE(MT,M,Ki 
C e• • O 
	 20 MAY 1973 

C.... QUICK TREE PRINT—OUT 
C.... M ■ NUMBER OF OBJECTS 
C.... K = NUMBER OF NODES OF TREE, COUNTING OBJECTS 
C.... MT = K BY I ARRAY DEFINING TREE, MT(I).GT.I EXCEPT FOR 1.5. 
C • • • 

DIMENSION MT(KI 
DIMENSION MS(50) 
NC.1 
DO 20 I.2,M 

20 MS(IJ.I 
30 NRITE(6,11(MSII1t1=leNi 
1 FORMAT(50121 

IF(NC.EQ.0) RETURN 
NC=0 
DO 21 1.2eN 
J=NS(là 
N511)=MT(J) 
IFIMS(1).LE.J.AND.J.NE.10 RETURN 

21 IF(MSIIJ.NE.K) NC ■ l 
GO TO 30 
END 
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SUBROUTINE TRDIST(D.M.T/ 
C 	  
C.... PRODUCES TRIADS FROM A DISTANCE MATRIX 
C.... M NUMBER OF ROWS 
C.... D = M BY M BORDERED DISTANCE MATRIX 
C.... T = M BY N BY M BORDERED TR1ADS 

20 MeiY 1973 

C... O 	  
DIMENSION D(MrMleT(M,M,M1 
DO 20 1.204 
DO 20 J=2,11 
DO 20 K=2.M 
T(I.J.K)=0 
IFIDII,JbeLT.D(J.1(1.AND.D(1,J).LT.D(K,111 T(I,J,K1.1 

20 CONTINUE 
RETURN 
END 

SUBROUTINE ULTRA(I.D.MTeMeK) 
C... 	  
C.... COMPUTES ULTRAMETRIC FROM MTp ITH ROW AND COLUMN 
C.... D = M BY M BORDERED ARRAY. ULTRAMETRIC 
C.... MT 	K BY 1 TREE ARRAY 

DIMENSION 0(MeMeMT(K) 
17=1 
DO 20 J.20( 
II=IT 
JJ=J 

21 1F(II.LT.JJ1 II=MT(II/ 
IF(II.GT.JJ1 JJ.MT(JJ1 
IF(11.NE.J0 GO TO 21 
D(Jp11.1.1I 

20 D(IT.J1=11 
RETURN 
END 

20 WhY 1973 



CHAPTER 

Single-tinkage Trees 

11.1 INTRODUCTION 

It causes eye strain to look at a distance matrix like Table 11.1, the airline distances 
between principal cities of the world. A correct approach to representing these data 
would associate each city with a position on the globe, thus reducing the present 
30 x 29/2 distances to the 30 x 2 coordinate values. The usual data for clustering 
form a data matrix with many objects and some variables measured on them. The 
first step in clustering defines distances between each pair of objects. Thus the first 
step in understanding the data is backward, in that many more numbers are required 
for the distances than for the originai data matrix! 

Correlation matrices may be converted to distances by setting 1 — correlation = 
distance. This distance is the square of the euclidean distance between standardized 
variables. More generally, if COV(/, J) denotes the covariance between variables / 
and J, COV (I, I) + COV(J, J) — 2COV(/, J) is the square of euclidean distance 
between variables with means removed. Correlation and covariance matrices are the 
most frequent sources of distance matrices for clustering variables. 

A standard approach to clustering separates the question of defining distances from 
the question of constructing clusters based on the distances (see, for example, Sokal 
and Sneath, 1963; Johnson, 1967; H artigan, 1967, Jardine et al., 1967; Gower and 
Ross, 1969; Estabrooke, 1966; Sneath, 1957). The algorithms assume a distance 
matrix to be given. Of these algorithms, the oldest, the most famous, and the most 
fruitful mathematically is the single-linkage algorithm. The algorithm joins together 
the two closest objects to form a cluster, then the next two closest objects to form a 
cluster, then the next two closest objects, and so on. If the two objects to be joined 
lie in different clusters obtained in previous steps, the two clusters are joined instead. 
The term single linkage is used because two clusters are joined if any of the distances 
between the objects in the different clusters is sufficiently small—that is, if there is a 
single link between the clusters. The algorithm is explicitly described in Sneath (1957). 

11.2 SINGLE-LINICAGE ALGORITHM 

Preliminaries. The M objects will be arranged in order so that each cluster is a 
contiguous sequence of objects. The /th object in this new order will be denoted by 
0(/). A gap G(I) is associated with the /th object in the order. These gaps determine 
the boundaries of the clusters. 
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Table 11.1 Airline Distances Between Principal Cities of the World 

AZORES . AZ 

BAGHDAD • 39 BD 	 PY 54 33 59 33 31 37 93 88 84 

BERLIN • 22 20 BN 	 PS 57 7 56 72 50 57105 61 

BOMBAY • 59 20 39 BY 	 RO 57 66 18 69113 84115 

BUENOS AIRES • 54 81 74 93 BS 	 RE 63 74 57 57101 61 

CAIRO • 33 8 18 27 73 CO 	 SF  59 7 61 74 52  

CAPETOWN • 57 49 6o 51 43 45 CN 	 SO 64117 71107 

CHICAGO • 32 64 44 81 56 61 85 CH 	 SE 57 77 48  

GUAM • 89 63 71 481 04 71 88 74 GM 	 SI 49 11 

HONOI1JIJJ •  73 84 73 80 76 8811 5 43 38 HU 	 SY 48 

ISTANBUL • 29 10 11 30 76 8 52 55 69 81 IL 	 TO 

JUlrcAU • 46 61 46 69 77 63103 23 51 28 55 JU 

IANDON • 16 25 6 45 69 22 60 4o 75  72 16 44 LN 

MANILA • 83 49 61 32111 57 75 81 16 53 57 59 67 MA 

mELEouNNE .120 81 99 61 72 87 64 97 35 55 91 81105 39 ME 

MEXICO CITY • 45 81 61 97 46 77 85 17 75 38 71 32 56 88 84 Mr 

MONTREAL • 24 58 37 75 56 54 79 8 77 49 48 26 33 821 o4 23 ML 

MOSCOW • 32 16 lo 31 84 18 63 5o 61 7o 11 46 16 51 9c 67 44 MW 

1EW ORMANS • 36 7z 51 89 49 68 83 8 77 42 62 z9 46 87 93 9 14 58 M 

NEW YORK • 25 6o 40 78 53 56 78 7 8o 50 5o 29 35 85104 21 3 47 12 ry 

PAITADIA CITY • 38 78 59 97 33 71 70 23 90 53 68 45 53103 90 

PARIS • 16 24 5 44 69 20 58 41 76 75 14 47 2 67104 

RIO DE JANEIRO • 43 69 62 83 12 61 38 53116 83 64 76 57113 82 

ROMS • 21 18 7 38 69 13 52 48 76 80 9 53 9 65 99 

SAN FRANCISCO • 50 75 57 84 64 7 51 03 19 58 24 67 15 54 7o 79
I 
 

=MAGO • 57 88 78100 7 80 49 53 98 69 81 73 72109 7 

SEATTLE • 46 68 51 77 69 68102 17 57 27 61 9 48 67 82
II 
 

SHANGHAI • 72 44 51 31122 52 81 70 19 49 49 49 57 12 5 

SYDNEY •221 83100 63 73 90 69 92 33 51 93 7710G 39 4 

TOKYO • 73 52 56 42114 60 92 63 16 39 56 4o 60 19 51 

15 25 67 16 22 

57 34 16 48 36 

48 51 72 48 48 

64 41 15 55 43 

19 25 59 19 26 

41 54 88 45 51 

23 23 52 21 24 

80 70 42 77 73 

81100 90 89100 

70 65 47 69 68 

From The World Almanac (1966), p. 510 (in hundreds of miles). 

STEP 1. Let 0(1) be any object. Let G(1) = co. 

sup 2. Let 0(2) be the object closest to 0(1). Let G(2) be the distance between 
0(2) and 0(1). 

STEP 3. For each 1 (3 S  15 M) let 0(1) be the object, not among 0(1), 
0(2), . . , 0(1 — 1), that is closest to one of 0(1), 0(2), . . . , 0(1 — 1). That is, 
for some K (1 K I — 1) 

D[0(1), 0(10] S  D(J, L), 



SO 

64 og 
117 	57 

71 	77 

107 YO 

SI 

49 SY 

48 210 

SY 

4 8 	jtit 
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where J ranges over 0(1), 	, 0(/ — 1) and L ranges over the remaining objects. 
The gap G(I) is set equal to this minimum distance D[0(1), 0(K)]. 

STEP 4. The cluster 0(L1) — 0(L2), containing objects 0(L1), 0(L1 	1), 	, 
0(L2 — 1), 0(L2) is associated with gap G(I), where (L1, L2) is the maximal interval 
including /, such that G(J) G(I) for all J with Ll < J L2. If all gaps are different, 
there will be M — 1 svch clusters; if some gaps are equal, there may be less. 

11.3 APPLICATION OF SINGLE-LINKAGE ALGORITHN1 
TO AIRLINE DISTANCFS 

Initially, only the last five cities from Table 11.1 will be considered. The searching 
of the distance matrix is shown in Table 11.2. The ordering of the objects and con-
struction of the tree is shown in Table 11.3. The reordered distance matrix appears 
in Table 11.4. 

Table 11.2 Application of Single-Linkage Algorithm, to Airline Distances--Searching 
the Matrix 

SANTIAGO 	SO 	 SO 

SEATTLE 	64 SE 	 64 Sy  

SHANGHAI 117 57 SI 	 117 57 SI 

SYDNEY 	71 77 49 SY 	 71 77 49 sy 

TOKYO 	107 48 	48 TO 	 107 48 	48 TO 

BEGIN WITH SE 
	

FIND OBJECT CLOSEST TO SE, WHICH 

IS TO, WITH GAP 46 

ELIMINATE DISTANCES BETWEEN SELECTED 

OBJECTS. FIND OBJECT CLOSEST TO SE, TO, 

WHICH IS SI. GAP . 11. 

SO 

64 gg 
117 yi gl  

71 11 Y1 al  
107 	Yffl 	Yr 	Wg  

ONLY SO IS LEFT. GAP 64. 

ELIMINATE DISTANCES BETWEEN. 

FIND CLOSEST OBJECT, SY. GAP . 48. 
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Table 11.3 Application of Single-Linkage Algorithms to Airline Distances--Con- 
structing Tree 

co 

«l) 	SE - - - I - - I 

G(2) 48 	I 	I 

0(2) 	TO - T T 	/ 

G(3) 11 	I 	I 	I 

0(3) 	SI - / I 	I 

G(4) 48 	I 	I 

o(4) 	Sy - - - / 	I 

G(5) 64 

0(5) 	SO 	  

STEP 1. The first object is selected arbitrarily to be SE. Set 0(1) = SE, G(1) = co. 

STEP 2. The distances of SE to the other objects are 64, 57, 77, 48. The smallest of 
these is 48, D(SE, TO). Thus, 0(2) = TO, G(2) = 48. 

STEP 3. First find that object which is closest to SE or TO. Eliminate the distance 
D(SE, TO), but check all other distances to SE and TO (underlined in Table 11.2), 
64, 57, 77, 107, 11, 48. The smallest of these is 11, D(TO, SI). Thus 0(3) = SI, 
G(3) = 11. Now eliminate the distances D(SE, SI) and D(TO, SI) and check all 
other distances to SE, TO, SI (underlined in Table 11.2), 64, 117, 107, 77, 49, 48. The 
smallest of these is 48, D(TO, SY). Thus 0(4) = SY, G(4) = 48. Finally, 0(5) = SO, 
G(5). 64. 

STEP 4. The ordered objects and gaps are listed in Table 11.3. There is a cluster 
corresponding to each gap. For the gap G(3) = 11, the cluster is the largest sequence 
0(L1) — 0(L2) such that Ll 3 L2 and G(J) G(I) for all J (L1 < J L2). 
For Ll = 2 and L3 = 3, these conditions are satisfied, but for no larger interval. 
The cluster corresponding to G(3) = 11 is TO-SI. The cluster corresponding to 
G(2) --= 48 is SE — SY, and this is also the cluster corresponding to G(4) = 48. This 
is a case when clusters coincide for two equal gaps, although gaps may be equal 
without the coincidence of corresponding clusters. Finally, the cluster SE — SO 
corresponds to the gap G(5) = 64. 

The single-linkage algorithm is applied to the airline data for 30 cities in Table 11.5. 
The overall clustering conforms to known geography. There are five principal clusters 
of cities in Europe, North America, Asia, South America, South Africa, and 

Table 11.4 Reordered Distance Matrix—Single Linkage Applied to Airline 
Distances 

SEATTLE 

TOKYO 

SHANGHAI 

SYDNEY 

SANTIAGO 

SE 

48 TO 

57 n SI 

77 48 49 SY 

64 io7 117 	71 	SO 
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Table 11.5 Single-Linkage Algoridnn Applied to Milze Distances between 30 Cities 
DIAI1ETF-R 

5 
	

10 	15 	20 
	

25 	30 	35 	40 

AZ ORES   I 	I 	I 	  I 	  II 
PARIS • -I--I-I--II 	I 	I 	I 	 I 	 II 

LONDON • - / 	I I 	I I 	I 	I 	I 	I 	 I I 
BRUN • - - - - / I 	II 	I 	I 	I 	 I 	 I I 

	

ROME • 	  / 	I I 	I 	I 	I 	 I 	 I I 
MOSCOW • - - - - ,. - - - - / I 	I 	I 	I 	 I 	II 

	

ISTANBUL • 	  I 	I 	I 	I 	I 	 I 	I I 

	

CAIRO • 	 I 	I 	I 	I 	I 	 I 	/ I 

	

RHAGDAD • 	  / 	/ 	/ 	I 	I 	 I 	 II 

	

BONBAY • 	  / 	I 	 I 	 I I 

	

~MAL • - - I - - - I I I 	 I I 	 I 	I 	 I I 
NEW YORK • - - / 	III 	 I I 	 I 	 I 	II 

	

CHICAGO • 	  / I I 	 I I 	 I 	 I 	I I 

	

NEW °MUSS • 	 / I 	 I I 	 I 	 I 	 I I 

	

MUCO CITY • 	  / 	 I I 	 I 	 I 	 I I 

	

PARMA CITY • 	  / I 	 I 	 I 	I I 

	

SEATTLE • 	  I I 	 I 	 I 	I 	 I I 

	

SAN FRANCISCO • 	  / I 	 I 	 I 	 I 	I I 

	

JUNEAU • 	  / 	  / 	 I 	I 	I I 

	

HONOIULU   / 	 I 	I I 

	

SHANGHAI • 	  I I - - - I 	 I 	I I 

	

TOKYO • 	  / I 	I 	 I 	I I 

	

MANILA • 	  / 	I 	 I 	I I 

	

GUAM • 	  / 	 I 	I I 

	

SANTIAGO • 	  / - 	I 	 I 	I I 

	

BUENOS AIRES • 	  / 	I 	 I 	I I 

	

RIO DE JANEIRO • 	  / 	  / 	 I I 

	

CADE TORI • 	  / I 
SUI= • - - - I 	 I 

	

ME LEVANE • 	/ 	  / 

Australia. These clusters must be picked out from a confusing array of 27 clusters. 
(There would have been 29 except for two coincidences of gap values.) The usual 
output of the single-linkage algorithm is a binary tree of M — 1 clusters (of more 
than one object) for M objects. The binary tree is convenient to construct but difficult 
to interpret, since many of the clusters differ only slightly for each other. For example, 
in the European cluster there is the sequence of clusters 

((((Paris, London) Berlin) Rome) Moscow). 

Should all of these be accepted as different clusters, or should only the European 
cluster (Paris, London, Berlin, Rome, Moscow) be offered ? This question will be 
discussed later in Section 11.12. 

11.4 COMPUTATIONAL PROPERTIES OF SINGLE LINKAGE 

The single-linkage algorithm produces clusters invariant under reordering of the 
objects, although the initial object may be selected arbitrarily. For example, if the 
first object selected in Table 11.5 were San Francisco, the next would be Seattle, then 
Juneau, then one of Montreal—Panama City, and so on. The computations require 
0(N2) comparisons; roughly, each element in the distance matrix is looked at once. 
It is not necessary to store and compute the whole distance matrix before beginning 
the algorithm—for 3000 objects and three variables, you had better compute the dis-
tances as you need them. 

The clusters obtained are invariant under monotonic transformation of the dis-
tance matrix. 
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11.5 SPIRAL SEARCH ALGORITHM 

Preliminaries. In many clustering algorithms, including the single-linkage algor-
ithm, the principal computing expense is in finding the closest object of some set to a 
given object. Normally this requires 001N) computations, where M is the number 
of objects searched over and N is the number of variables used in the distance cal-
culations. The spiral search technique avoids computation of the larger distances 
entirely by searching over objects that are close to the given object on all variables. 
It is most useful for M very large and N small. 

The object which is /th largest on the Jth variable is denoted by 0(1, J). At each 
stage, there will be two candidate objects 01(J), 02(J) corresponding to the Jth 
variable. All objects closer than these to the given object on the Jth variable will 
have been considered. If the minimum distance of 01 (J), 02(J) to the given object is 
T(J) on the Jth variable, then all objects not considered have a distance overall which 
exceeds [T(1)2 + • • T(N)91/2. The search therefore stops when an object already 
considered has a distance to the given object less than this lower bound. 

STEP 1. For 1 J N, let the rank of the given object on the Jth variable be 
K(J). Initial candidate objects for the Jth variable are 

01(J). 0[K(J) — 1,J] 
and 

020= 0[K(J) + 1,4 

The closest of these to the given object in the Jth variable is distant T(J). Initially the 
closest object overall to the given object is not defined, so set DM1N = op. Also, if 
K(J) — 1 O, assume that 01(J) is infinitely distant and, if K(J) + 1 > M , assume 
that 02(J) is infinitely distant. 

STEP 2. For each J in succession (1 J N), select 01(J) or 02(J), whichever 
is closer to the given object on the Jth variable. If the distance overall, of this selected 
object from the given object is less than DM1N, set OMIN equal to this object, and 
set DMIN equal to this new minimum distance. If 01(J) is used, redefine 01(J) to 
be the next lowest object on the Jth variable. If 02(J) is used, redefine 02(J) to be the 
next highest object on the Jth variable. Redefine T(J) to be the minimum distance of 
01(J) and 02(J) to the given object on the Jth variable. If DMIN2 T(1)2 + • • • + 
T(N)s, stop. Otherwise, continue repeating Step 2. 

Nom. Since ordering the objects on all variables takes 0(M log M)N comparisons, 
the above calculation saves time only when many searches for closest objects must be 
made, all using the same initial orderings of the objects. 

11.6 APPLICATION OF SPIRAL SEARCH ALGORITHM 
TO BIRTHS AND DEATHS 

The birth and death rates of 70 countries are given in Table 11.6. The orders of 
countries by birth and death rates are given in Table 11.7. In the single-linkage 
algorithm, the first step would be to find the closest object to some initial country—
say, Algeria, object 1. Apply the spirai search algorithm as follows: 



Table 11.6 Birth and Death Rates per 1000 Persons 

BIRTH DEATH 

ALGERIA 	36.4 	14.6 

2. COrGO 	 37.3 	8.0 

3. EGUT 	 42.1 	15.3 

4. GHARA 	 55.8 	25.6 
5. IVORY COAST 	56.1 	33.1 

6. WIAGASY 	41.8 	15.8 

7. 20:ROCCO 	46.1 	:8.7 

8. TUNISIA 	41.7 	Io.' 

9. CAMBODIA 	41.4 	19.7 

Io. CEylON 	35.8 	8.5 
11. CHINA 	 34.0 	11.0 

12. TAIWAN 	 36.3 	6.1 

13. HONG KONG 	32.1 	5.5 
14. INDIA 	 20.9 	8.8 

15. INDONESIA 	27.7 	10.2 

16. raAQ 	 20.5 	3.9 
17. ISRAEL 	 25.0 	6.2 

18. JAPAN 	 17.3 	7.0 
19. JORDAN 	46.3 	6.4 

2o. KOREA 	 14.8 	5.7 

21. MALAYSIA 	33.5 	6.4 

22. MONGOLIA 	39.2 	11.2 

23. PHILLIPINES 	28.4 	7.1 

24. SYRIA 	 26.2 	4.3 

25. THAILAND 	34.8 	7.9 

26. VIETNAM 	23.4 	5.1 

27. CANADA 	24.8 	7.8 

28. COSTA RICA 	49.9 	8.5 
29. DOMINICAN R 	53.0 	8.4 

30. GUATEMALA 	47.7 	17.3 

31. HOEDURAS 	46.6 	9.7 

32. mExICO 	45.1 	10.5 

33. rICARAGUA 	42.9 	7.1 

34. PANAMA 	40.1 	8.0 

35. UNITED STATES 	21.7 	9.6 

From Reader's Digest Almanac (1966). 

BIRTH DEATH 

36. ARGENTINA 	21.8 	3.1 

37. BOLIVIA 	17.4 	5.8 

38. BRAZIL 	45.0 	13.5 

39. CHILE 	 33.6 	11.8 

4o. coLOMBIA 	44.o 	11.7 

41. ECUADOR 	44.2 	13.5 

42. pERU 	 27.7 	8.2 

43. URUGUAY 	22.5 	7.8 

44. vENEZUELA 	42.8 	6.7 

45. AUSTRIA 	18.8 	12.8 

46. BELGIUM 	17.1 	12.7 

47. BRITAIN 	18.2 	12.2 

48. BULGARIA 	16.4 	8.2 

49. CZECHOSLOVAKIA 16.9 	9.5 

50. DENNARK 	17.6 	19.8 

51. FINLAND 	18.1 	9.2 

52. FRANCE 	 18.2 	11.7 

53. E. GERMANY 	17.5 	13.7 

54. W. GERMANY 	18.5 	11.4 

55. GREECE 	17.4 	7.8 

56. HUNGARY 	13.1 	9.9 

57. ZRELAND 	 22.3 	11.9 

58. ITALY 	 19.o 	lo.2 

59. NETEKRLANDS 	2o.9 	8.0 

6o. NORWAY 	17.5 	10.0 

61. POLAND 	 19.0 	7.5 

62. PORTUGAL 	23.5 	lo.8 

63. ROMANIA 	 15.7 	8.3 

64. SPAIN 	 21.5 	9.1 

65. SWEDEN 	 14.8 	lo.1 

66. SWITZERLAND 	18.9 	9.6 

67. U.S.S.R. 	21.2 	7.2 

68. IUGOSLAVIA 	21.4 	8.9 

69. AUSTRALIA 	21.6 	8.7 

70. NEW ZEALAND 	25.5 	8.0 

19 7 
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Table 11.7 Countries Ordered by Birth Rates and Death Rates 

	

BIRTH DEATH 	RANE 	BIRTH DEATH 	RANE 	RUM DEATH POSITION 

	

56 	16 	7o 	67 	48 	116 	 12 	11 	22 

	

20 	2 1 4 	69 	 68 	63 	45 	 1 	22 	21 

	

65 	26 	68 	64 	29 	144 	 2 	54 	20 

	

63 	13 	67 	69 	10 	43 	22 	40 	19 

	

48 	20 	66 	35 	28 	42 	54 	52 	18 

	

49 	37 	65 	36 	49 	41 	 9 	39 	17 

	

46 	12 	64 	57 	69 	40 	 8 	57 	16 

	

18 	17 	63 	43 	14 	39 	 6 	47 	15 

	

37 	19 	6z 	26 	55 	38 	 3 	46 	14 

	

55 	21 	61 	62 	70 	37 	44 	45 	13 

	

53 	44 	60 	27 	68 	36 	33 	38 	12 

	

6o 	18 	59 	17 	64 	35 	40 	41 	11 

	

50 	23 	58 	7o 	51 	34 	41 	53 	10 

	

51 	33 	57 	24 	35 	33 	38 	1 	9 

	

47 	67 	56 	15 	66 	32 	32 	3 	8 

	

52 	61 	55 	42 	31 	31 	 7 	6 	7 

	

54 	27 	54 	23 	56 	3o 	19 	30 	6 

	

45 	43 	53 	13 	6o 	29 	31 	7 	5 

	

66 	25 	52 	29 	8 	28 	30 	9 	4 

	

58 	2 	5 1 	'21 	65 	27 	28 	50 	3 

	

61 	34 	so 	39 	15 	26 	 4 	4 	2 

	

16 	59 	49 	11 	58 	25 	 5 	5 	1 

	

14 	36 	48 	25 	32 	24 

	

59 	312 	47 	 10 	62 	23 

Country 56, Hungary, is 70th in birth rate. (See Table 10.6) 

sTEP 1. Algeria is 21st in birth rates and 9th in death rates, so K(1) = 21, K(2) = 9. 
Initial candidate objects are 

OI (1) = 12, 
and 

02(1) = 2, 	T(1) = 0.1 

02(1) = 53, 	02(2) = 3, 	T(2) = 0.7. 

These are the objects immediately adjoining Algeria in birth and death rates. 

STEP 2. ForJ = 1, the closest object is 01(1) = 12. Then D(1, 12) = 8.5. The new 
object 01(1) = 10, T(1) = 0.6, DMIN = 8.5 and [T(1) 2  + T(2)2) 1 /2  = 0.9, so Step 
2 is repeated. ForJ = 2, the closest object is 02(2) = 3. Then D(1, 3) = 5.7, 02(2) = 
6, and T(2) = 0.9. Set DMIN = 5.7. For J = 1, the closest object is 01(1) = 10, 
which is further from object I than 5.7. Set 01(1) = 25, T(1) = 0.9. Continuing in 
this way, no change in DMIN occurs unti] object I1 is reached, DMIN = 4.3. This 
is stili greater than the stopping threshold, so the spirai continues. Then again at 
object 39, DMIN = 3.9. After severa] more objects are checked, arrive at 01(1) = 29, 



11.8 Joining and Splitting 	199 

01(2) = 34, 02(1) = 47, and 02(2) = 30. The thresholds are T(I) = 3.4, T(2) = 
2.4, and now 

DM1N2 T(1)2 + T(2)2, 

so the search stops. The closest object to Algeria is object 39, Chile. The total number 
of objects considered was 17, which is a substantial reduction on the 70 required 
without spiraling. 

11.7 SINGLE-LINICAGE CLUSTERS FROM PARTMONS 

The gaps obtained in the single-linkage algorithm of Section 11.2 may be interpreted 
as diameters of the clusters corresponding to them. If a cluster C corresponds to a gap 
G, any pair of objects I, J in the cluster C are connected by a chain of objects--say, 
/ = /(1), /(2), . . , 1(K) J—such that D[1(L), I(L + 1)] G for every L (1 
L < K). Another way of generating single-linkage clusters is to link any pair of 
objects whose distance is no greater than G. The objects and links form a graph 
whose maximal connected components are single-linkage clusters. At each gap level 
G, these components form a partition of the data. For example, at G 26 in Table 
11.5 the partition of cities would be Europe and North America, Asia, South America, 
South Africa, and Australia. The clusters at gap level G* (<G) will each be included 
in a cluster at gap level G. (For if two objects are connected by linlcs of length no 
greater than G*, they are also connected by links of length no greater than G.) 

Single-linkage clusters are the outcome of exact optimization of a partition P(M, K) 
using the error function (contrived for the occasion) 

e[P(M, K)] = max DIAM fC(L)], 
i<L5K 

where DIAM(C) is the minimum value of G such that all pairs of objects in C are 
connected by a chain of links no greater than G. The optimal partition will be the 
maximal connected components of the graph, with objects linked when their distance 
is no greater than G for some G. 

Single-linkage clusters comprise optimal partitions with the error function 
e[P(M, K)] = 	DIAM [C(L)] but not with the error function e[P(M, K)] = 

DIAM [C(LANUMB[C(L)], where NUMB(C) is the number of objects in the 
cluster C. This last error function is the most natural analog to the sum-of-squares 
criterion used in the K-means algorithm. 

11.8 JOINING AND SPLITTING 

Begin with M clusters, each consisting of a single object. Define the distance between 
any two clusters as the minimum distance among pairs of objects, one in each cluster. 
Find the closest pair of clusters, and construct a new cluster by joining them. Thus at 
each step the total number of clusters is reduced by one, and after M — 1 steps a 
single cluster consisting of all objects remains. During the steps, 2M — 1 clusters 
will have been computed (ignoring the annoying case when two (or more) clusters 
are closest to another cluster and are both joined to it in one step), and these are just 
the single-linkage clusters. This way of approaching single-linkage clusters is con-
ceptually simple but not convenient for computation, because it does not provide an 
order for the objects in which clusters are contiguous sequences of objects. Other 
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"joining" algorithms suggest themselves, with the distance between clusters defined 
as the maximum distance among pairs of objects in the two clusters, or the average 
distance, or other combinations of distances (see, for example, Sokal and Sneath, 
1963; Johnson, 1967; Lance and Williams, 1966). 

In the other direction, consider splitting the set of all objects into two clusters such 
that the distance between the clusters (defined as the minimum over pairs) is maxi-
mized. Then split each of these clusters in the same way, and so on until only clusters 
consisting of single objects remain. The clusters obtained in this way allo are single-
linkage clusters. Note that joining and splitting give the same clusters with this 
minimum distance between clusters, but the clusters are not necessarily the same with 
other definitions of distance between clusters. 

11.9 ULTRAMETRICS 

Define the chain distance between any two objects as the minimum value G such that 
the objects are connected in the graph obtained by linking objects no more than G 
apart. Denote this by DCH(I, J). Single-linkage clusters are then characterized by 
the property that, for every I, J in C and every K in C and L not in C, 

DCH(I, J) < DCH(K, L). 

The diameter of a cluster C is the maximum value of DCH(I, J) over I and J in C. 
The chain distance is an ultrametric (see Chapter 8); that is, for any triple 1,.1, K, 

DCH(I, J) < max [DCH (I, K), DCH(J, K)]. 

The tree corresponding to the ultrametric is just the single-linkage tree with the 
definition of cluster diameter given above. 

Which ultrametric D* best approximates the given distance D? The measure of 
error considercd in Hartigan (1967) is e(D, D*) [D(I, J) — D* (I, J)] 2 , which 
corresponds to the distance between clusters being equal to the average distance between 
pairs of objects in the two clusters. Suppose that D* (I, J) < D(I, J). For any error 
e(D, D*) that is increasing with D(I, J) — D* (I , J), the ultrametric minimizing 
e(D, D*) is D* = DCH. The single-linkage tree is thus optimal, but under the rather 
unusual constraint that D* (I, J) < D(I, J). This result is hinted at in Hartigan 
(1967), but it is stated and demonstrated more explicitly in Jardine, Jardine, and 
Sibson (1967). 

11.10 STRUNG-OUT CLUSTERS 

Single-linkage clusters are famously strung out in long sausage shapes, in which 
objects far apart are linked together by a chain of dose objects. Of course, the clusters 
are not necessarily convex. A cluster of objects may, on the average, be dose to some 
other cluster, but because of a few "bridge" objects it may be connected to some far-
off third cluster (see Figure 11.1). This problem can be approached by using the 
joining algorithm with both minimum and average definitions of distance. 

Sometimes' clusters are far-flung sausage shapes with high densities of objects 
within each cluster. The single-linkage algorithm will be better at discovering such 
shapes than the average or maximum method. 
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Figure 11.1 Strung-out single-linkage clusters. 

11.11 MINIMUM SPANNING TREES 

A number of cities are to be connected by a road network, consisting of links between 
selected pairs of cities, which has a fixed cost per mile. What is the network of mini-
mum cost, such that a path exists between every pair of cities? First, it is clear that 
there will be only one path between each pair of cities, because otherwise a link 
bctween citics could be removed, which would reduce costs. The network is thus an 
undirected tree. This should not be confused with directed trees of clusters. 

The tree contains M — 1 links for M cities, and the minimum spanning tree is the 
tree for which the sum of the distances over the M — 1 links is a minimum (see 
Kruskal, 1956). 

For objects and distances between them, a minimum spanning tree may be con-
structed by selecting an arbitrary object, linking to it the closest object to it (giving a 
tree on two objects), linking to this tree whichever object among the remainder is 
closest to an objcct in the tree (giving a tree on thrce objects), and so on, building up 
the tree one object at a time. The minimum spanning tree is not necessarily unique, 
because the closest object to the prescnt tree at each stage in the algorithm may not be 
unique. Note that the order in which objects are added to the tree is the order in which 
the clusters are contiguous in the single-linkage algorithm of Section 11.2. 

The single-linkage clusters may be obtained from the minimum spanning tree by a 
number of methods (Gower and Ross, 1969). For example, by deleting all links from 
the tree of length greater than G, the maximal single-linkage clusters of diameter no 
greater than G are obtained. To obtain all the single-linkage clusters, remove the 
largest link from the tree to obtain two connected clusters, then the second largest to 
obtain two more clusters, and so on. (There will be a division into three or more 
clusters if the largest link is not unique.) 
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Figure 11.2 Minimum spanning tree for births and deaths (Table 11.6). 

In just two dimensiona, the judgment of closest distances by eye makes it feasible 
to construct minimum spanning trees and thence single-linkage clusters, for up to 
100 points by hand. The birth and death rates data are so treated in Figure 11.2. 
AlI 69 single-linkage clusters may be constructed from this tree by removing links 
in order of their sizes. There are perhaps two or three real clusters in the data: (Ghana 
and Ivory Coast) with extremely high birth and death rates, the developing countries 
with high birth rates, the developed countries with low birth rates. 

11.12.* REALITY OF CLUSTERS 

An important, difficult, and unsolved problem is the selection of just a few significant 
clusters from the many produced by the single-linkage and other joining algorithms. 
In particular, are there any "real" clusters other than the set of all objects? Is the tree 
different from those obtained from objects randomly selected from a multivariate 
normal distribution? 

Estabrooke (1966) proposes a measure of isolation for a single cluster C, which he 
calls the "moat" of C, equal to the diameter of the smallest cluster including C minus 
the diameter of C. A similar measure, with distances converted to ranks, is proposed 
by Ling in an unpublished Ph.D. thesis (Yale University). Ling, using results on 
connectedness of random graphs due to Erdos and Renyi (1961), obtains exact and 
approximate distribution theory for his isolation index under the null hypothesis 
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that any of the [M(M — 1)/2]! permutations of the ranked distances are equally 
probable. He acknowledges that this null hypothesis is not the most plausible one, 
since D(I, J) and D(J, K) small imply D(I, K) small for a metric distance and this 
property is violated by the uniform distribution over permutations. 

To test the reality of the tree overall, it is necessary to use all the cluster diameters 
in some way. A sequence of cluster diameters arises naturally from the algorithm in 
Section 11.2 in the gaps. G(2), . . . , G(M). This sequence is not unique because the 
initial object may be arbitrarily chosen. Suppose that the objects were sampled from 
a unimodal distribution and that the initial object were chosen at the mode. Except 
for simpling errors, the gaps will be steadily increasing as objects are successively 
added from regions where the density of the distribution is decreasing. On the other 
hand, if the objects were sampled from a bimodal distribution, the gaps will increase 
as objects at the outside of the first cluster are brought in, then decrease as objects 
in the second cluster are brought in, and then increase again. The reality of the clusters 
may thus be tested by checking departures from monotonicity of the gap sequence. 
(See Figure 11.3, for the relation between the modality of distribution and the modality 
of the gap sequence.) 

Single cluster 	 Gap sequence 

o 

Unitisi point 	o 

o o o/ 	 o o o 

o o 	o 	o o oo 

o o o o 	 o 

o IIIIIIIIIIIIIIIIIIIIIII o o 

Double cluster 	 Gap sequence 

Figure 11.3 Modality of distribution related to gap sequence. 

For M cases and N variables, assume that the gap powers GN(2), . . . , GN(M) 
are independent exponentials with GN(/) having expectation A(I), where A(2) 
• - • A(M). (This assumption is justified for large samples from a unimodal dis-
tribution; DM1N, the smallest distance from a given point to one of the sample points, 
is the minimum of a large number of independent random variables, from which it 
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follows that DMIN N  times the density is approximately exponentially distributed with 
constant expectation. Nearly all the gaps are such minimum distances.) The log 
likelihood of the observed gaps is I —log A(I) — G N  A(I). This log likelihood is 
maximized by averaging neighboring gaps (following Barlow et al., 1972). 

STEP 1. Initially set A(I) = GN(I) (2 S  I S M). 

STEP 2. For each I (1 < I < M), if A(I) S  A(I + 1) increase / by one and go back 
to Step 2; if A(I) > A(I + 1), find the minimal J such that A(J) A(J + 1) Z • • • 
A(I) and the maximal K such that A(I + 1) Z  A(I + 2) Z • • • A(K), and replace 
each of A(J), A(J + 1), . . . , A(K) by the average value of A(J),... , A(K). Set 
I = J — 1, and begin Step 2 again. 

The log likelihood under this monotonic constraint, subtracted from the log likeli-
hood without constraint, is log [A(/)/G N(/)]. The larger this value, the less plausible 
is the monotonic hypothesis; the value is always nonnegative, and it is zero only if 
the sequence is nondecreasing. The criterion for departure from monotonicity is then 

log [A(/)/GN(/)], where the A(I) are selected as above. The actual distribution of 
this quantity will depend on the real distribution of gaps rather than the exponentials 
hypothesized. Under the exponential model, its asymptotic distribution [given that 
the A(I)'s are nondecreasing but that only a finite number of different A(I)'s occur] 
is norma! with mean M1 1  and variance Mcc 2 , where cc, = —5 (log x)e-3  dx, and 
cc2  = 5 (log x)2  dx — ai. These are well-known integrals derivable from the gamma 
function; cc, = y = 0.577 (Euler's constant) and cc 2  = ir2/6 = 1.645. 

Thus, 
log [A(I)/GN(i)]  N(yM, 7r2M/6)• 

To test this procedure on the cities data (Table 11.1), begin with the moda) city 
Paris. The best monotonic fit to the squares gaps is computed by averaging over 
sequences of neighboring values that are monotonically decreasing. The tree can be 
redrawn with these new diameters; there are the small clusters {[(Paris) London] 
Berlin); then a large cluster, Europe; a stili larger cluster, Europe and North America; 

Table 11.8 Gaps in Single-Linkage Tree on Cities (From Table 10.5) 
OBSERVED GAPS 

	

2 	5 	7 	10 	11 	8 	8 	16 	20 	24 

	

24 	9 	7 	16 	15 	9 	8 	7 	4 	31 

	

16 	12 	11 	31 	7 	38 	39 	4  

OBSERVED GAPS SQUARED 

	

4 	25 	49 	100 	121 	64 	64 	256 	400 	576 

	

576 	81 	49 	256 	225 	81 	64 	49 	16 	961 

	

256 	144 	121 	961 	49 	1444 	1521 	16 

143NOTONIZED GAPS 

	

4 	25 	49 	87 	87 	87 	87 	219 	219 	219 

	

219 	219 	219 	219 	219 	219 	219 	219 	219 	300 

	

300 	300 	300 	505 	505 	994 	994 	994 
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then South America is added on; and finally Australia and South Africa are added. 
The monotonicity of the fitted gaps forces the clusters also to be monotonic (see 
Table 11.8). 

11.13 DENSITY-CONTOUR TREE 

lf objects are points distributed in an N-dimensional space (one dimension for each 
variable), clusters may be thought of as regions of high density separated from other 
such regions by regions of low density. It is easiest to first formalize this definition for 
a distribution of points (consisting of an infinite number of points), characterized by 
a density f(x) at each point x. The number f (x) is proportional to the number of 
objects per unit volume at the point x. A density-contour cluster at levelfo is a subset 
C of the N-dimensional space, such that C is maximal among connected sets satisfying 
f (x) f o for x e C. It is easy to show that such clusters form a tree. For a cluster C at 
level f,„ the density inside C is no less thanfo, but for every path connecting x in C to 
y outside C the density somewhere on the path is less than fo. The cluster C thus 
conforms to the informal requirement that C is a high-density region surrounded by a 
low-density region. An example of density-contour clusters is given in Figure 11.4. 

As the levelfo is reduced, the cluster C at levelf, gradually expands until suddenly, 
at some splitting levela , it coalesces with other clusters to form a much larger cluster. 
These "rigid" clusters, which cannot be expanded smoothly, are important in deter-
mining the tree structure. For example, if there is only one such cluster, the density is 
unimodal. A cluster C is rigid if every cluster properly including it contains a cluster 
disjoint from C. The rigid density-contour clusters form a tree that is a subset of the 
tree of all density-contour clusters. 

The essential components of the above definitions are the densityf, defined at each 
point, and the paths between points in the space. The definitions may be generalized 
to spaces in which these two components are present, and such a generalization is 

Figure 11.4. Density-contour clusters. C is a density-contour cluster at level 3. All densities 
inside C are no less than 3 and, for x in C and y outside C, some density on every path 
between x and y is less than 3. 
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advisable because the infinite number of points do not appear in practical clustering 
problems. Consider then a space S of a finite number of objects with some pairs of 
objects linked together. (This is just an undirected graph.) A path between object / 
and object J is a sequence / /(1), /(2), /(3), . . , l(K) = J such that I(L) is linked 
to I(L + 1) for each L (1 L < K). A connected set C is a set of objects such that 
each pair of objects in the set are linked by a path whose members all lie in the set C. 
With these definitions of path and connectedness, the definitions of density-contour 
cluster and rigid cluster apply to finite sets of objects, provided that a density is given 
for each object. 

Table 11.9 contains per capita income in the 50 states. The density is supposed to be 
proportional to the number of points per unit volume. Here each dollar earned in a 
state corresponds to a point in that state, and the volume of a state is the number of 
people in it. The volume measurement is always chosen as some comparable count 
to the point count, so the density is a ratio of two counts. There is no need for the 
density to refer to the objects to be clustered in any particular way, in order for the 

Table 11.9 U.S. Per Capita %come, 1964 (in Dollars) 

IN DEIAWARE . . . 	3426 	 Ne NEBRASKA . . . . 2302 

	

or CONNECTICUT. . . 3250 	 l% FLORIDA 	. . 2280 

NV IIEVADA 	 3248 	 VA VIRGINIA . . . 2224 

NT NEW YORK . . . 	 3139 	 AZ ARIZONA 	i, 2218 

AK AIASKA 	 3128 	 14T MONTANA 	 2183 

	

eA CALIFORNIA . . . 3092 	 TK MCAS 	  2175 

• ILLZOIS . . . 3003 	 UTAIL 	  2174 

	

NJ NEW =REE! . . . 2962 	 VT VERMONT . . . 	 2144 

	

MA MASSACHUSETTS. . 2922 	 YE NAME 	 2130 

	

MD MARYIAND . . . 2888 	 OX 01CrAlICMA . . . 	 2(195 

• MCCHIGAN . . . 	2733 	 ND NORTH DAKOTA . 	 2012 

	

WA WASHINGTON . . . 2634 	 ID IBM 	 2012 

OH OHIO 	  2623 	 11141 NAV MEDCICO . . . 2oio 

OR OREGON 	 26o2 	 wv wraT VIRGINIA . 1962 

MO 14ISSCURI . . 	2555 	 GA GEORGIA . . . . 1933 

	

CO COICRADO . . . 2551 	 Ne NORTH CAROIXNA . 1900 

HI HAWAII 	 2579 	 IA 10.13131ANA . . 1864 

PA PENNSYLVANIA 	 2575 	 IN TENESSE:E 	. 	1852 

111 INDIANA 	. 	 2529 	 OD SMITH DAKOTA . 	1832 

WI WISCONSIN . . 	2492 	 rc UNTOCI« . . . . 1811 

Ri more 	2479 	 AL ALABAMA . . . 	1737 

	

we WYOMENG . . . 2475 	 SC SOUTH CAROLIKA 	1647 

	

MEMBISOTA . . . 2373 	 AR ARKANSAS . i . . 1633 

	

IA   2370 	 Mil MISSISSIPPI 	. 1444 

NH NEW ~HIRE. 	 2340 

X23 ICANSAS  	2311 
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algorithm to be applicable. In this case, the density is the ratio of the number of dollars 
to the number of people, but the objects to be clustered are states and the connectivity 
properties are defined on states. The contour-density clusters will be regions of 
neighboring states where the densities are high surrounded by regions of states where 
the densities are low. 

In generai, there will be M objects, a density F(I) (1 5  I  S  M) for each object, 
and links specified between some pairs of objects. This information is converted to a 
distance 

D(I, J) = —min [F(I), F(J)] 	if I and J are linked, 

O 	 if I and J are not linked. 
The single-linkage clusters will be the maximal connected sets of objects of density 
greater than C, say. The single-linkage algorithm thus generates the density-contour 
clusters with this measure of distance. 

From per capita income in Table 11.9 and from the links between neighboring states 
in Table 11.10, the single-linkage algorithm produces the clusters in Table 11.11. Only 

Table 11.10 Links between States 
STATE 
	

BORDERS ON 	 STATE 
	

BORDERS ON 

DE - - - NJ FA MD 

CT - - - NY MA RI 

NV - - - CA OR ID UT AZ 

NY - - - PA VT MA CT NJ 

Alt - - - 

CA - - - OR AZ NV 

IL - - - IA WI 	xy mo 
NJ - - - DE PA NY 

MA - - - RI CT NY VT NH 

MD - - - VA WV FA DE 

MI - - - WI IN" OH 

WA - - - OR ID 

OH---INMIPAWV RY  

OR - - - WA ID NV CA 

MO - - - IL TN AR OK KS NB IA KY 

CO - - - NM UT WY KS OK NB 

PA - - - NJ DE MD OH NYWV 

IN - - - IL MI OH KY 

WI - - - IA MN MI IL 

RI - - - CT MA 

WY - - - CO UT ID MI SD NB 

MN - - - ND SD IA WI 

IA - - - NB MO IL WI MN SD 

NH - - - VT ME MA 

See Table 10.9 for state code. 

KS - - - MO OK CO NB 

NB - - - CO WY SD IA MO KS 

FL - - - GA AL 

VA - - - KYWV MD TN NC 

AZ - - - NM UT CA 

MT - - - ND SD ID WY 

TX - - - NM OK AR LA 

UT - - - AZ NV ID WY CO 

VT - - - NY MA NH 

NE - - - NH 

OK - - - TX NM CO KS MO AR 

ND - - - MT SD NN 

ID - - - UT NV OR WA MT WY 

NM - - - TX OK CO AZ 

WV - - - VA KY OH PA MD 

GA - - - FL AL TX NC SC 

NC - - - SC GA TN VA 

LA - - - AR MS TX 

TN - - - MS AR KY VA NC GA AL MO 

SD - - - NB WY MT ND MN IA 

KY - - - TN MO IL IN OH WV VA 

AL - - - MO TN GA FL 

SC - - - GA NC 

AR - - - LA ME TX OK MO TN 

ME - - - LA AR TN AL 
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Table 11.11 Rigid Clusters of States from Density-Contour Algorithm Applied to 
Per Capita Income 

—GAP STATE 
	

—GAP STATE 

o 	DEIIIIII 	 2174 	Az I 	II 

2962 	NJIIIIII 	 2218 	NV I 	I I 

2962 	NYIIIIII 	 3092 	CAI 	I I 

3139 	CTIIIIII 	 2602 	ORI 	I I 

2922 	MAIIIIII 	 2602 	WA / 	I I 

2888 	MD/IIIII 	 2144 	VT 	I I 

2575 	PA 11111 	 2130 	MS 	I I 

2575 	OHIIIIII 	 2095 	OK 	I / 

2733 	MI//IIII 	 2095 	Tx 	I I 

2529 	IN 	IIII 	 2012 	ND 	 I I 

2529 	ILI IIII 	 2012 	ID 	 I I 

2595 	MO/ IIII 	 2010 	NM 	I I 

2492 	WI 	IIII 	 1962 	WV 	/ I 

2479 	RI 	IIII 	 1900 	NC 	 I 

2373 	DIN 	IIII 	 1900 	GAI 	I 

2370 	IA 	IIII 	 1933 	PLI 	I 

2340 	NH 	/I II 	 1864 	IA 	I 

2311 	IS 	III 	 1852 	DT 	 I 

2311 	COI 	III 	 1832 	SD 	 I 

2475 	WY / 	III 	 1811 	icy 	 I 

2302 	Pal 	II I 	 1737 	AL 	 I 

2224 	VA 	I I I 	 1647 	SC 	 I 

2183 	MT 	/ I 1 	 1633 	AR 	 I 

2174 	AP 	I i 	 1444 	NE 	 / 

o AK 

o HI 

the rigid clusters are shown; each rigid cluster is such that the smallest cluster properly 
including it contains a cluster disjoint with the rigid cluster. The principal features of the 
tree are a northeastern cluster of Delaware through Michigan, a northern cluster of 
Delaware through Montana, a western cluster of Arizona through Washington, and 
the isolated clusters of Alaska and Hawaii. (Sorry, Alaska and Hawaii!) 

11.14 RENSITIES AND CONNECTEDNESS, DISTANCES GIVEN 

Given a set of objects and links between some pairs of them, a natural measure of 
density at object I is the number of objects J to which it is linked. Thus density-
contour clusters may be constructed from any set of objects on which links are defined. 
In particular, if the distance is given for all pairs of objects, each pair of objects will 
be linked if their distance is less than some threshold DO. As a rule of thumb, DO 
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might be the minimum distance which connects the data (that is, the maximum gap 
in the single-linkage algorithm.) 

An example of density-contour clusters in two dimensiona is given in Figure 11.5. 
Note that there are only two rigid clusters, which corresponds to the intuitive visual 
clustering. 

11.15 THINGS TO DO 

11.15.1 Running the Single-Linkage Algorithm 

This algorithm requires a distance between every pair of points. It costs about 
comparisons between distances, so it is practicable only for small numbers of points-- 
say, M < 1000. It is possible to avoid some of the M(M — 1)/2 distance calculations 
by trickery like spirai searches. The clusters obtained have several global characteriza-
tions that make them easier to understand than many clusterings. A definite defect is 
that the single-linkage clustering depends only on the smail distances in the distance 
matrix, and so it will be relatively unstable if these distances are not accurately deter-
mined. The average joining algorithm gives more compact and more stable clusters. 

Mutation distances (Table 11.12) and stock yields (Table 11.13) are proposed as 
trial data sets. 

Table 11.12 Mutation Distances 

MAN 	 O. 

MONICEY 	 1. o. 

DOG 	 13.12. o. 

HORSE 	 17.16.10. o. 

DONEEY 	 16.15. 8. 1. o. 

13.12. 4. 5. 4. O. 

RABBIT 	 12.11. 6.11.10. 6. 0. 

KA1AR03 	12.13. 7.11.12. 7. 7. O. 

PERII( DUCI{ 	17.16.12.16.15.13.10.14. o. 

PMEON 	16.15.12.16.15.13. 8.14. 3. o. 

MOUT 	 18.17.14.16.15.13.11.15. 3. 4. O. 

EING PENGOIN 	18.17.14.17.16.14.11.13. 3. 4. 2. 0. 

SNAPPING TURTLE 19.18.13.16.15.13.11.14. 7. 8. 8. 8. o. 

RAITZESNAEE 	20.21.30.32.31.30.25.30.24.24.28.28.30. O. 

TONA 	 31.32.29.27.26.25.26.27.27.27.26.27.27.38. 0. 

SCREWKIRNPLI 	33.32.24.24.25.26.23.26.26.26.26.28.30.40.34. 0. 

NOMI 	 36.35.28.33.32.31.2,9.31.30.30.31.30.33.4 1 .41 . 16 . 0. 

BAKSR I S NDULD 	63.62.64.64.64.64.62.66.59.59.61.62.65.61.72.58.59. o. 

RiAD TEAST 	56.57.61.60.59.59.59.58.62.62.62.61.64.61.66.63.60.57. 0. 

S1 	FURMS 	66.65.66.68.67.67.67.68.66.66.66.65.67.69. 69. 65. 61 . 61 . 41 . O. 

From Fitch and Margoliash, Science (1967). A distance between two species is the 
number of positions in the protein molecule cytochrome-c, where the two species 
have different amino acids. 
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Table 11.13 Yield of Stocks 
Yield equals the cash dividend by the average price of stock (from Moody's Handbook 
of Common Stock,$). 

Aetna Life &Casualty 

Allied Chemical 

American Airlines 

American Broadcasting Company 

American Cyananid 

Anerican &Treno 

Arerican Motore 

59 	6o 	61 	62 	63 	64 	65 	66 	67 	68 	69 

1.4 1.6 1.2 1.4 1.2 1.0 1.2 1.5 2.1 2.1 2.6 

2.8 3.4 3.1 3.9 3.6 3.3 3.6 4.5 4.8 4.5 3,9 

3.5 4.7 4.3 5.1 3.7 2.6 2.2 2.1 2.0 2.7 2.6 

3.7 2.7 1.9 2.8 3.0 2.9 2.4 2.1 1.9 2.7 2.6 

2.9 3.2 3.6 4.0 3.3 3.2 2.8 3.2 3.9 4.4 4.3 

2.6 2.6 2.0 2.5 2.8 3.2 2.3 1.7 1.0 1.o 2.4 

3.9 4.5 5.8 6.6 5.1 6.3 5.6000o 

Arerican Telephone & Telegraph 3.8 3.5 2.8 3.1 2.8 2.8 3.1 3.9 3.9 4.5 4.5 

Anaconda Cospany 

Atlantic Richfield Co. 

Bank America 

Bethlehem Steel 

Burroughs Corporation 

Chase Manhattan 

Chrysler 

Coca Cola 

Columbia Broadcasting 

Consolidated Edison 

Dor Chemical 

Du Pont 

Fireatone 

Ford 

General Electric 

General Foode 

General Mille 

General Motore 

A& P 

Greyhound 

Gulf Oil 

1Mperial Chemical 

I.B.M. 

International Rarvester 

International Tel. &Tel. 

Johnson &Johnaon 

3.7 4.5 4.6 5.7 5.3 5.1 5.4 5.7 5.1 4.3 4.7 

5.3 4.3 4.8 4.5 4.0 3.5 3.4 3.1 1.9 o 1.8 

4.1 4.3 3.3 3.7 3.2 2.9 3.3 3.8 4.0 2.9 3.2 

4.4 5.: 5.4 6.1 4.7 4.0 3.9 5.3 4.3 5.1 5.6 

2.7 3.0 2.8 2.6 3.6 3.9 2.6 1.4 0.7 0.5 0.4 

3.8 3.9 3.2 3.4 2.9 2.6 2.9 3.5 3.4 3.0 3.5 

1.6 2.7 2.1 1.8 1.3 1.9 2.4 4.4 4.5 3.3 4.5 

4.5 3.7 2.6 2.8 2.7 2.4 2.1 2.3 1.9 1.6 1.7 

3.0 3.5 3.8 3.6 2.4 2.5 3.0 2.3 2.2 2.7 2.8 

4.4 4.7 3.8 4.0 3.9 3.7 4.0 4.8 5.4 5.4 6.0 

1.4 1.6 1.9 2.8 2.6 2.4 2.4 3.0 2.8 3.0 3.4 

4.6 4.8 5.3 5.1 4.2 3.3 2.5 3.0 3.1 3.4 3.9 

la 2.5 2.3 2.7 2.9 2.7 2.6 3.0 2.8 2.6 2.8 

3.9 3.9 3.3 3.8 3.6 3.6 3.7 5.0 5.1 4.4 5.1 

2.3 2.4 2.8 3.0 2.5 2.6 2.2 2.6 2.8 2.9 3.0 

2.8 2.2 1.8 2.3 2.3 2.3 2.5 3.0 3.3 3.1 3.3 

3.0 4.2 3.4 4.3 3.2 2.8 2.6 2.5 2.3 2.1 2.4 

3.3 3.7 3.8 5.2 5.9 4.8 5.6 6.6 6.5 4.2 3.8 

2.4 2.8 2.5 2.7 3.8 3.8 5.8 4.7 5.2 4.9 4.3 

4.9 4.6 4.6 4.o 3.1 2.6 3.4 4.6 4.7 4.3 4.8 

2.5 3.1 2.9 3.9 3.6 3.1 3.3 3.8 3.6 3.4 3.9 

2.0 2.5 2.3 3.0 2.2 2.6 3.1 3.3 4.9 3.2 3.2 

0.5 0.6 0.5 0.7 1.0 1.1 1.3 1.3 0.9 0.8 1.1 

4.1 5.4 4.9 4.8 4.3 3.7 3.7 4.1 4.9 5.2 5.8 

2.5 1.9 2.2 2.1 1.8 2.0 2.0 1.5 O 1.6 1.8 

1.3 1.5 1.1 1.2 1.1 	I.o 1.o o.8 0.7 0.6 

11.15.2 Density Contour and Single Linkage 

If all densities are unity and two objects are linked if their distance is less than some 
threshold DO, then the clusters obtained are all single-linkage clusters. If the density 
at object / is the number of objects within some threshold distance of object /, the 
clusters will not be single-linkage clusters but will differ from them in inhibiting the 
formation of long thin clusters. Two objects will lie in the same density-contour 
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la) 

(b) 

(c) 

Figure 11.5 Rigid density-contour clusters from distances. (a) Choose threshold DO to be 
minimum connecting distance. (b) Density equals number of objects within threshold. (c) 
Rigid density-contour clusters. 

cluster if they may be connected by a chain of objects in which each object is close to 
its predecessor and also has sufficiently high density. See Figure 11.5. 

These facts should be demonstrated by constructing an example in two dimensions. 

11.15.3 Modes 
For a set of objects / (1 	/ M), densities F(1) are given and each object is connected 
to some other objects. An object is a mode if its density is a maximum of the densities 
of the objects to which it is connected. Show that the maximal density-contour 
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cluster containing a specific mode, and no other, is a rigid cluster, if such a cluster 
exists. 

11.15.4 Density Estimates 

A natural density estimate is the number of objects within a threshold distance of the 
given object. Another natural density estimate is the inverse of the threshold distance 
necessary to find K objects within threshold. This second estimate is more satisfactory 
in sparse regions of the distribution where the first estimate will produce un-
discriminating unit densities for all objects. 

11.15.5 Reducing the Number of Clusters 

A possible way to reduce the number of single-linkage clusters is to consider only 
rigid clusters. Another way is to truncate the originai distance matrix to just a few 
levels—say, D(1), , D(L). Thus, if D(Kl) < D(I,J) S  D(K2), the value of 
D(I, J) is changed to D(K2). Show that ali the clusters obtained from the new distance 
matrix are single-linkage clusters. 

11.15.6* Convexity 

Single-linkage clusters are serpentine, and average distance clusters tend to be globular. 
An intermediate restraint on clusters is that they be convex. A joining algorithm that 
constructs convex clusters goes as follows. Begin with a number of convex sets 
C(1), . . . , C(K) containing N(1), . . . , N(K) points, respectively. The diameter of a 
cluster C(I) is N(I) log [N(I)IV(I)], where V(I) is the volume of the Ith cluster. Joining 
C(/) and C(J) produces a new cluster C*, the smallest convex set containing C(I) and 
C(J). Those clusters are joined which least increase the total cluster diameter, and the 
joins are continued unti) a single cluster remains. Initializing C(1), . . , C(K) is tricky. 
Try this technique in one dimension. 

11.15.7 Avoiding distance calculations 

If a distance D is a metric, much distance calculation may be avoided by first using 
a quick partition algorithm of the leader type. If the threshold is T, and I has leader 
L(I), then D(I, J) Z  D(L(I), L(J)) — 2T. In looking for small distances, it will usually 
be sufficient to know only the distances between leaders. 
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similar, and so on. If the next most similar lie in groups already formed, the groups 
are coalesced. 
SOKAL, R. R., and SNEATH, P. H. A. (1963). Principles of Numerical Taxonomy, 
Freeman, San Francisco. On p. 180, a description of the single-linkage algorithm: 
The most similar objects are coalesced, then the next most similar, and so on, with 
two groups coalesced whenever any pair of objects in them are the next most similar. 
On p. 182, it is suggested that the distance between clusters should be the average 
distance between the pairs of objects, rather than the minimum. On p. 192, there is a 
discussion of the serpentine character of single-linkage clusters. 
WISHART, D. (1969). "A generalization of nearest neighbor which reduces chaining 
effects," in Numerical Taxonomy, A. .1. Cole, ed. Academic, London. Ball-like 
clusters, such as arise in the K-means algorithm or in the joining algorithms with a 
maximum distance between clusters, sometimes result in cluster boundaries cutting 
across regions of high density. An example is given for the Hertzprung—Russell 
diagram, plotting color against brightness, which clusters stars into four types, main 
sequence, super giants, giants, and dwarfs. These are long sausage clusters which 
are not detected at all by a ball-oriented algorithm. 

On the other hand, the single-linkage algorithm can easily join quite different 
clusters if a few "bridge" objects are fortuitously placed between them. To reduce the 
effect of these noisy objects, use the following algorithm: 

(i) Select a frequency threshold K. 
(h) Associate with each object / the distance PM1N(/), the smallest distance 

such that K objects are within distance PMIN(/) of object L 

(iii) Begin a new cluster with the object for which PMIN(/) is a minimum. 
(iv) Incorporate objects in the tree in the order of the PMIN(/). When object / 

is incorporated, there will be a number of clusters partitioning objects all'eady in-
corporated. Begin a new cluster with object / and amalgamate any pair of clusters 
which are linked by a distance less than PMIN(/). 

(v) All clusters formed along the way form the tree. 

PROGRAMS 

SLINK 	computes single-linkage tree, reorders distance matrix according to 
order of objects consistent with tree. 



SUBROUTINE SLINK(DeMeNB/ 
C..  	 20 MRY 1973 
C.... COMPUTES SINGLE LINKAGE TREE FROM DISTANCE MATRIX D. REORDERS DISTANCE 
C.... M = NUMBER OF OBJECTS 
C.... D = M BY M BORDERED SYMMETRIC ARRAY 
C.... NB . 3 BY M CLUSTER ARRAY 
C 	 198(1.R) 	FIRST OBJECT IN CLUSTER 
C 	 NBI2.K) = LAST OBJECT IN CLUSTER 
C 	 NBI3,KI = CLUSTER DIAMETER 
C.... ONLY M-2 CLUSTERS ARE PRODUCED 

OIMENSION DIM.MI.NB(3.M) 
DO 30 NEXT . 104 
J=NEXT+1 
IFINEXT.EQ.11•G0 TO 50 
IFINEXT.EQ.M1 GO TO 30 
DMIN.10.**10 
IMIN.NEXT 
DO 31 I=2,NEXT 
IF(D(I,11.GE.OMIN) GO TO 31 
DMIN.D(I.1) 
IMIN-I 

31 CONTINUE 
N813,J1.100.40MIN 
1.0(1.1MIN/ 

C.... INTERCHANGE OBJECT I AND J 
DO 32 0.1.M 
A=DlIgKI 
0(1,10.D(J,K) 

32 D(J,K)-A 
DO 33 K.1,M 
A=DIK,11 
DIR,II.DIK.JI 

33 DIR,JI.A 
DO 36 K■2,NEXT 
IFCDI1.K1.EQ.11 DI1,KI.2 

36 IF(Dll.K/.EQ.J) D(1.10.1 
C.... UPDATE CLOSEST OBJECT TO GRABBED OBJECTS 

50 CONTINUE 
DO 34 I.2.J 
DlleJI.J 
1F(D(1.11.GT.J1 GO TO 34 
D(1,11.1 
Cd1.11.10.**10 
DO 35 K.J.M 
IFIK.EQ.Jà GO TG 35 
IFI0(I.KI.GE.0(1.11) GO T3 35 
DII.II.D(1.KI 
D(1.11.K 

35 CONTINUE 
34 CONTINUE 
30 CONTINUE 

C.... FIND BOUNDARIES OF CLUSTERS 
M3,21.104410 
00 40 K=204 
NE111,Ki.K 
NB(2,10.K 
DO 41 L.F.04 
IF(L.EQ.Kh GO TO 41 
IFINB(3.1.à.GT.NB(3.101 GO TO 42 

41 NB(2,1(1.L 
42 CONTINUE 

DO 43 L.2,K 
LL.R—L+2 
IFIL.EQ.21 GO TO 43 
IFINB(3,LL).GT.NB(3.Ki) GO TO 44 

43 CONTINUE 
44 NBI1,1U.LL 
40 CONTINUE 

MM.M-2 
DO 45 R.1,MM 
CO 45 L=1.3 

45 NBIL.X1.NBILL,K+21 
C.... SET MAXIMUM DIAMETER EGUAL TO 100 

FMAX • O 
DO 46 K.1.MM 

46 IFINMAX.LT.N5(3.K11 NMAX.NBI3,K) 
DO 47 K.1.MM 

47 NB(30(1.INB(3,KI*1001/NMAX 
C.... REPAIR DISTANCE MATRIX 

DO 60 I.1.M 

.60 IFII.NE.11 D(1.11-0 
RETURN 
END 
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CHAPTER i 2 

Distance and Amalgamation 

Algorithms 

12.1 INTRODUCTION 

In Table 12.1, the outcome is given of the first five matches of each of the Ivy League 
colleges in the 1965 football season. In order to predict future matches, it is desirable 
to identify similar colleges; for example, if Brown is similar to Yale, it might be pre-
dicted that Dartmouth will beat Yale about 35-9, since it has already beaten Brown 
by this amount. 

The single-linkage technique proceeds by computing distances, somehow, between 
every pair of colleges, joining the closest pair, and then treating this cluster in later 
steps as a single object by defining its distance to all other objects in some way. 

A generalization of this technique assumes the following to be given: 
(i) a rule for computing a distance between any pair of objects; 
(ii) a rule for amalgamating any two objects to form a third object. Algorithms 

using these two rules will be called distance and amalgamation algoritluns. There stili 
remains to be specified the exact method of tree construction. The first method con-
sidered is a joining technique, which finds the two closest objects using the distance 
rule, then amalgamates these two objects to form a new object using the amalgama-
tion rule, and repeats the step on the reduced set of objects. 

12.2 JOINING ALGORITHM 

Preliminaries. It is assumed that a rule is given for computing distances between 
any two objects, and another rule is given for amalgamating any two objects to form 
a third object. The algorithm proceeds by finding the closest pair of objects, removing 
them from the set of objects, and replacing them by a single amalgamated object. 
There are two difficulties—the first is the problem of searching over all pairs of objects 
at each step, the second is keeping track of the sequence of amalgamations so the 
tree can be conveniently reconstnicted. A number of clusters will be constructed by 
amalgamation in the course of the algorithm. Initially, each object is regarded as a 
cluster. At each step, the value IMIN(/) denotes the closest cluster to the /th one 
(among clusters not yet amalgamated), and the value DMIN(/) denotes the distance 
of / to IMIN(/). Once the /th cluster is removed by amalgamation, DMIN(/) =-- oo 
and IMIN(/) equals the cluster absorbing L 

216 
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Table 12.1 Ivy League Football, First Hall* of 1965 Season 

BROWN 	 HOLY CROSS - - - HC 

BUCKNELL - - - BL 	 LAFAYEITE - - - LE 

COLGATE - - - - CE 	 LEHIGH 	LH 

CONNECTICUT - - CT 	 PENNSYLVANIA - - PA 

COLUMBIA - - - 'CA 	 PRINCETON - - - PN 

CORNELL - - - - CL 	 RHODE ISLAND - - RI 

DARTMDUTH - - - DH 	 RUTGERS 	- - - RS 

HARVARD - - - - ED 	 TUFTS 	 TS 

NEW HAMPSHIRE - 	 TALE 	 YE 

BROWN 	6-14(RI) O- 7(PA) O- 3(YE) 9-35(DH) 6- 0(CE) 

comen 	o -14(LE) o-31(m) 6-21(ED) 21 - 7(yR) 12. 7(Rs) 

CORNELL 	O- o(CE) 49-13(LH) 27-36(PN) 3- 3(11D) 14 -24(TE) 

DARTMDUTH 	 56- 6( ) 27- 6(HC) 24-19(PA) 35- 9(BN) 14- 001D) 

HARVARD 	 17- 7(11C) 33- o(TS) 21 - 6(CA) 3- 3(CL) 044 (DIO 

PENNSYLVANIA 	 2o-14(LH) 7- 0(BN) 19-24 (DH) 16-13(BL) 0-51(PN) 

PRINCETON 	 32- 6(RS) 31- 0(CA) 36-27(CL) 27- 0(cE) 51- o(pA) 

YALE 	6 -13(cri o- 7(CE) 3- 0(EN) 7 -21(CA) 24 -14(CL) 

sTEP 1. For each / (1 	/ M) let IMIN(/) be that object which is closest to /, 
and let DMIN(/) be its distance to L Set K = M. 

STEP 2. Let DM be the minimum value of DMIN(/) (1 / K). Let J, L be 
clusters (J < L) such that IMIN(J) = L, IMIN(L) J, and DMIN(J) = 
DMIN(L) = DM. 

STEP 3. Define a new cluster, the (K + 1)th, to contain all objects in cluster J or 
cluster L. Set DMIN(J) = DMIN(L) = oo, IMIN(J) = IM1N(L) = K 1. 

STEP 4. Let D(K + 1, I) be the distance between the (K + 1)th cluster and the /th 
cluster, computed whenever DMIN(/) < co. If D(K 1, I) < DMIN(/), set 
DMIN(/) D(K 1,1), IMIN(/) = K 1. Let DMIN(K + 1) be the minimum 
value among the D(K + 1, I) and let IMIN(K + 1) be the corresponding / value. 

For each / (1 / K) with DMIN(/) < co, if IMIN(/) = J or IMIN(/) = L, 
recompute the closest cluster IMIN(/) and its distance DMIN(/). 

STEP 5. Increase K by 1 and return to Step 2 unless K = 2M. 

STEP 6. Initially, POS(/) = 1 for 1 / M, and POS(/) = O for M < / < 2M. 
Eventually POS(/) is the position of the /th object in the ordering, such that each 
cluster is contiguous. 
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s-rEP 7. For each I (1 S  I < 2M — 1) replace POS[IMIN(/)] by POS[IMIN(I)] 
POS(/). After this step, POS(/) is the number of objects in the Ith cluster. 

STEP 8. For each I (2M — 1 > 	1), in reverse order, replace POSI) by 
POS [IMIN(/)], and change POS[IMIN(/)] to POS[IMIN(/)] — POS(I). 

12.3 JOINING ALGORITHM APPLIED TO IVY LEAGUE 
FOOTBALL 

The distance is computed between each pair of schools as the average squared difference 
between the scores over those schools which they have both played. For example, the 
distance between Brown and Cornell, since they played only Yale in common, is 
5-(0 — 14)2  -I- -}(3 — 24) 2]. Notice that the score by the opposing school and the score 
against the opposing school are both included, although it might be plausible to use 
only the difference of the scores. 

To amalgamate a pair of schools, associate with the amalgamated schools all 
scores of all schools played by either amalgamated school. If a school was played by 
both, list both scores. If the amalgamated schools played each other, list the score 
in each order. 

For example, to amalgamate Cornell and Harvard, the list is 

0-0(CE) 	49-13 (LH) 	27-36(PN) 	3-3(HD) 	14-24(YE) 

17-7(HC) 	33-0 (TS) 	21-6 (CA) 	3-3(CL) 	0-14(DH). 

With this amalgamation rule, the distance may be simply computed between clusters. 
Suppose cluster I is amalgamated with cluster J, cluster I has R scores in common 
with cluster K, and cluster J has S scores in common with cluster K. Then the amal-
gamated cluster—L, say—is distance D(L, K) from K, where (R S)D(L, K) 
RD(I, K) SD(J, K). The distance matrix may thus be updated directly without 
reference to the lengthening list of scores for each cluster. It is actually more con-
venient to work with the sums of squares RD(I, K) and the number of common 
opponents R, since the updating is then by simple addition. 

srEP 1. For the first object, BN, the closest object is object 8, YE, which is distance 
51.5 from BN. (All distances are given in the first matrix in Table 12.2.) Therefore 
IMIN(1) = 8, DMIN(1) = 51.5. The closest object to object 2, CA, is object 8, 
YE, and its distance is 392. Therefore IMIN(2) = 8, DMIN(2) = 392. The list of 
closest objects and corresponding distances is given in Table 12.3. Set K = 8. 

STEP 2. The minimum value of DMIN(I) (1 S 15 8) is O. Clusters 3 and 5 both 
have this minimum distance to each other. So J = 3, L = 5. 

STEP 3. The ninth cluster is now defined, consisting of clusters 3 and 5, the objects 
CL and HD. Set DM1N(3) = DMIN(5) = co, IMIN (3) = IMIN(5) = 9. Clusters 
3 and 5 will not be considered again in the amalgamation process, but the final value 
of IMIN is used later in reconstructing the tree. 

STEP 4. It is necessary to compute D(9, I) (1 S  I  S  8), the distance of the new 
cluster to all other clusters except the ones removed by amalgamation. For the defini-
tions of amalgamation and distance used in this problem, these new distances may be 
computed by weighted averages of the old. For example, cluster 3, CL, played two 
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Table 12.2 Sequenee of Distance Updates in Applying Joining Algorithm to Football 
Data (Table 12.1) 

SDIE OP ENDABED DIFFEHENCES BETWEEN BCOREB/NUMBER OP =MON OPPONENTE 

W
W

W
E i

M
P

g
al 

BN 	CA 	CL 	DR 	ED 	PA 	PN 	TE 
o 

457/1 	O 
673/2 1425/ì 	O 

2072/2 	505/1 	130/1 	o 
522/1 	450/1 	0/1 	493/2 	o 
319/2 	400/1 	1796/2 	915/2 	461/1 	0 

3091/2 	2323/2 	891/2 	1090/1 	1801/2 	52o2/1 	o 
103/2 	392/1 	249/2 	1105/1 	983/2 	16/1 	2108/3 	o 

AMALGAMATE CL and BD 

BN 	BN 	C.A 	CL-HD 	DR 	PA 	19/ 	TE 
CA 	457/1 	o 
CL-BD 1195/3 1875/4 	o 
DH 	WifF77 -317717 	623/3 	O 
PA 	319/2 	400/1 2T9f7Y 	915/2 	o 
Pii 	3091/2 2323/2 Tr9174- 1090/1 	5202/1 	o 
113 	10/2 	392/1 TUVW 1105/1 	16/1 2108/3 	o 

~MANATE 32 and PA 

BN 	BN 	CA 	CL-HD 	DH 	PA-13 	PN 
a 	457/1 	o 
CL-HD 1195/3 1875/4 	o 
DH 	2072/2 	505/1 	623/3 	o 
PA-3E 422/4 	792/2 3489/7 2020/3 	o 
PN 	3T9-172- 23177ff ~W T7017r 7310/4 	O 

AMALGAMATE BN and PA-TB 

BN-YE BN-YE 	CA 	ClrRD 	DR 	PN 
C.A 	1249/3 
CL-HD 4684/10 1875/4 	O 
DH 	4092/5 	505/1 	623/3 	O 
pg 	alTarn 2323/2 2692/4 1090/1 	o 

	

AMAI:AMATE and CL-11D 	 AMAICAKCE CA and EN-YE 

BN-311 BN-331 	CA 	CL-D11 	PN 	 13N-CA BN-CA 	CL-DH 	PN 
CA 	1249/3 	o 	 ci,-gg 11156/20 
cImgg 8776/15 2380/5 	O 	 ps 	Tinn7U- 3782/5 
pg fuRy7s- ~ 3782/5 	o 

schools in common with cluster l, BN, and cluster 5, HD, played just one school in 
common with cluster 1, BN. Thus, 

4D(9, 1) 2D(3, 1) + D(5,1) 
and 

D(9, 1) = 1195/3. 

The updated distance matrices, after each amalgamation, are given in Table 12.2. 
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With the particular definitions of distance used here, it is not possible for D(9, I) 
to be less than DMIN(/), since D(9, I) is a weighted average of distances not less than 
DMIN(/). 

The value DMIN(9) is the minimum of the D(9, I), which from Table 12.2 shows 
DMIN(9) = 208, IMIN(9) = 4. 

Some clusters have one of the amalgamated clusters 3 or 5 as their closest cluster, 
and a new closest cluster must be discovered. Clusters 4, DH, and 7, PN, are both 
closest to 3. They are both closest to the new cluster 9, so IMIN(4) = IMIN(7) = 9, 
and DMIN(4) = 208, DMIN(7) = 673. 

The full record of these changes in IMIN and DMIN due to amalgamation is carried 
in Table 12.3. 

grEP 5. Increase K to 9 and return to Step 2. 

REPEAT STIBPS 2-5. The minimum value of DMIN(I) is 16 for J = 6, PA, and L = 8, 
YE. The 10th cluster consists of PA and YE. The distance matrix is updated by weighted 
averaging. The closest cluster to 10 is cluster 1, BN, DMIN(10) = 105. Clusters I 
and 2 originally had cluster 8 as their closest cluster, and it is replaced by cluster 10. 
Increase K to 10, and return to Step 2. 

Eventually, a single cluster will remain; the amalgamations in order are 9 = (3, 5), 
10 = (6, 8), 11 = (1, 10), 12 = (4, 9), 13 = (11, 2), 14 = (12, 13), and 15 = (7, 14). 
These amalgamations, in their order, may be discovered from the final values of IMIN. 
For example, IMIN(3) = IMIN(5) = 9, 1MIN(6) = IMIN(8) = 10, and so on. 

STEP 6. Initially, POS(1) = 1 for I S  I S 8, and POSI) = O for 8 < I < 16. 

srEP 7. For / = 1, IMIN(1) = 11, so POS(11) is replaced by POS(11) + POS(1) = 
1. For I = 2, IMIN(I) = 13 and POS(13) becomes 1. At I = 3, POS(9) becomes 1. 
At I = 4, POS(12) becomes 1. At I = 5, POS(9) becomes 2. Eventually POSI) = I 
for 1 S  I S 8, and POS(9) = 2, POS(10) = 2, POS(11) = 3, POS(12) = 3, 
POS(13) = 4, POS(14) = 7, and POS(15) = 8. 

STEP 8. At I = 14, POS(14) becomes 8, POS(15) becomes 1. At I = 13, POS(13) 
becomes 8, POS(14) becomes 4. At / = 12, POS(12) becomes 4, POS(14) becomes 1. 
Eventually POS(1) = 6, POS(2) = 5, POS(3) = 3, POS(4) = 2, POS(5) = 4, 
POS(6) = 7, POS(7) = 1, and POS(8) = 8. These are the positions of the objects 
such that the clusters are contiguous; the objects are ordered 

7 4 3 5 2 1 6 8. 

The tree can be quickly reconstructed from the IMIN array. Here 

[7 ( [4(35)]{2 [1(68)]})]. 

In conclusion, with these data, there are about three clusters, {Princeton}, {Cornell, 
Dartmouth, Harvard}, and {Brown, Columbia, Pennsylvania, Yale}, that might 
vividly be described as the powerhouse, the pretenders, and the pushovers. The use 
of the clusters is in giving an extended Iist of scores in making predictions. For example, 
how well will Dartmouth do against Princeton? The only school similar to Dartmouth 
that Princeton has played is Cornell (the score, 36-27). So, the prediction is Princeton 
36, Dartmouth 27. As it turned out, the score was Princeton 14, Dartmouth 28. Note, 
how accurately the Dartmouth score is predicted! 
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Table 12.3 Sequence of Closest Distances in Applying Joining Algorithm to Football 
Data (Table 12.1) 

JOIN CL and HD 

CLUSTER IMIN DMIN 

8 	5 2 

2 	8 	392 

3 	9 	c° 

4 	9 	208 

5 	9 

6 	e 	1 6 

7 	9 	673 

8 	6 	i 6 

9 	4. 	208  

JOIN PA and YE 

CLUSTER Imm DMTN 

	

lo 	105 

2 	10 	396 

3 	9 	. 

4 	9 	2 oII 

5 	9 	. 

6 	io 	ce 

7 	9 	673 

8 	lo 	. 

9 	il 	208 

10 	1 	105 

INITIALLY 

CLUSTER IMIN DKEN 

Br( 	1 	8 	52 

CA 	2 , 	8 	392 

CL 	3 	5 
	o 

DH 	4 	3 
	

130 

HD 	5 	3 
	o 

PA 	6 	8 
	

6 

PN 	7 	3 
	445 

YE 	e 	6 
	

i 6 

JOIN CL-HD 	and DH 	JOIN BN-YE and CA 

CLUSTER IMIN DMIN 	CLUS.TFIR 'NEN DMIN 

	

i 	 il 	 CD 	 1 	 11 	 OD 

	

2 	11 	412 	2 	13 	. 

	

3 	9 	. 	3 	9 	0, 

	

4 	12 	CD 	 4 	12 	. 

	

5 	9 	. 	5 	9 	. 

	

6 	10 	. 	6 	i o 	o 

	

7 	12 	75 6 	7 	12 	75 6 

	

8 	10 	Ce 	 8 	i o 	. 

	

9 	12 	. 	9 	12 	m 

	

10 	11 	m. 	10 	11 	D3 

	

11 	2 	412 	11 	13 	o 

	

12 	2 	476 	12 	13 	656 

13 	la 	656 

JOIN BN and PA-YE 

CLUSTER MIE DMIN 

1 

2 	 412 

3 	9 	o 

9 	208 

5 
	

9 

6 
	

10 

7 
	

9 	673 

8 
	

1 0 
	

01 

9 	4 	208 

10 	11 	m 

11 	2 	412 

JOIN BN-CA and CL-DH 

IMIN(12) 	IMIN(13) m 14 

JOIN BN-DH and PN 

IM1N(7) m IMIN(14) m 15 

What about Harvard-Yale? Against Harvard cluster schools, Yale has 24-14 
(Cornell). Against Yale-cluster schools, Harvard has 21-6 (Columbia). The suggestion 
is Harvard-Yale, 14-24 or 21-6; to make a single estimate, 17.5-15. The actual score 
was 13-0. 

With the distance and amalgamation rules used, it was unnecessary to refer to the 
actual scores once the initial distance matrix was computed. The amalgamation rule 
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implies the updating of the distance matrix (by using also the number of schools 
played by each team). For very large numbers of schools—say, 500—the 500 x 500 
distance matrix would be impractical, and it would be cheaper to store the data and 
compute distances when they are needed directly from the data. 

12.4 REMARKS ON JOINING ALGORITHM 

The joining algorithm, with various definitions of distance and amalgamation rules, 
includes many common types of algorithms. In particular, the single-linkage algorithm 
is a joining algorithm. The data for each object are a vector of distances to ali other 
objects. When two objects are combined, the new vector is the minimum distance to 
each object of the two amalgamated objects. Other amalgamation rules take weighted 
or unweighted averages of the two distances or take the maximum. A generai class of 
amalgamation rules on distances has been described by Lance and Williams (1966). 

The algorithm is not really suitable for large data sets, since M 2  distances must be 
computed and examined (although only the smallest distances need be looked at, 
so there may be some savings in using the spirai search technique). The final tree is 
invariant under permutation of the originai objects, provided all distances computed 
during the algorithm are different. If ali objects were originally identical, the binary 
tree would depend on their order. 

The algorithm produces 2M — 1 clusters, which must be reduced somehow. 
There is the automatic pruning which eliminates all clusters except the "rigid" 
clusters; the size of the minimum cluster properly including a rigid cluster exceeds the 
size of the rigid cluster by at least 2. ft would be better to be stingy in constructing the 
tree in the first piace. The basic joining operation, instead of joining two objects, 
would join many. The distance between two objects is an acceptable basis for joining 
two, but something more is necessary in joining many—a definition of cluster diameter. 
The algorithms would proceed—find the cluster of smallest diameter, amalgamate 
the objects in the cluster to form a new object, and repeat. It is only rarely possible 
to search over all clusters for that of smallest diameter, which makes this method 
computationally less clear cut than the distance methods. Sometimes the definition of 
diameter reduces the number of possible clusters. 

In one dimension, let X(1),... , X(M) denota the ordered objects. Let C have 
diameter max {I, J e C} IX(/) — X(J)JIN(C), where N(C) is the number of elements 
in the cluster C. The only clusters which need be considered are convex, consisting of 
objects {X(I), X(I 1), . . . , X(J)} in an interval, and there are only M(M — 1)/2 
of these. 

12.5 ADDING ALGORITHM 

Prelhninaries. It is assumed that a rule is given for computing the distance between 
any pair of objects and that a rule is given for amalgamating two objects to become a 
new object. The adding algorithm builds up a tree by successively adding objects to it. 
The objects are added in the order initially given, and, as a result, the tree may depend 
on this initial order. 

After the construction, there will be 2M — 1 clusters; the originai objects will be 
numbered I , 2, . . . , M and the clusters M + 1, , 2M — 1. There will be repre-
sentative objects associated with each cluster. The tree structure is described by the 
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vector CI (I), C2(1) which specifies for the /th cluster the two maximal proper sub-
clusters (M < / < 2M). The algorithm adds the Ith object by branching down the 
tree from the root, at each step moving toward that cluster to which it is closest. Its 
operation is similar to th.at of the triads- and tree-leader algorithrns. 

STEP 1. Define Cl(M + 1) = 1, C2(M + 1) = 2. Amalgamate 1 and 2 to form 
the object M + 1. 	. 

Erii 2. Add the /th object (3 / M). Set ICK =K=M-FI— 2. 

STEP 3. Set JJ = Cl(KK), LL = C2(KK). 
(i) IfKK Mor min {D(I, JJ), D(I, LL)} D(JJ , LL), defineCI (M + / — 1) = 

KK, C2(M + I — 1) = I; ifC1(K) = KK, set CI (K) = M - F I — 1; ifC2(K) = KK, 
set C2(K)= M + I — 1. Amalgamate KK and / to form the new object M + / — 1. 
Return to Step 2. 

(ii) Otherwise, set K = KK. 

sui 4. Amalgamate / with K to form a new object K. Define J = Cl(K), L = 
C2(K). 

If D(I,J) D(1, L), set KK = J. If D(I, J)> D(I, L), set KK = L. Return to 
Step 3. 

12.6 ADDING ALGORITHM APPLIED TO QUESTIONNAIRE 
CTABLE 12.4) 

Since some questions were asked positively ("The course content was about right") 
and some negatively ("I would prefer not to have my work criticized in public"), it 
is reasonable to prescale the questions so that they are all answered positively. A 
negative variable V is therefore transformed to 6 — V. Squared euclidian distance is 
then used on the transformed variables (or questions). Two variables are amalgamated 
by weighted averaging. The variable corresponding to a cluster will be the average of 
all variables in the cluster. 

STEP i . M = 31, C1(32) = I , C2(32) = 2. The object 32 is the average of variables 
1 and 2 for each of the eight students. 

sui 2. Add the third object, / = 3. Set K = ICK. = 32. 

STEP 3. Set JJ = C1(32) = 1, LL = C2(32) = 2. 
D(I , 2) = 7, D(1, 3) = 15, D(2, 3) = 17, which is equivalent to choice (i). 
Thus D(JJ, LL) D(I, JJ), D(I, LL). Define C1(33) = 32, C2(33) = 3. Amal-

gamate 32 and 3 to form object 33, (11 15 11 15 9 14 13 11)/3. Return to Step 2. The 
tree is now [(12)3]. 

S'TEP 2 REPEATED. Add the fourth object, / = 4. Set K = XX = 33. 

STEP 3. Set JJ = C1(33) = 32, LL = C2(33) = 3. 
D(4, 3) = 20, D(4, 32) = 13.75, D(3, 32) = 14.75. 
The otherwise choice (ii) occurs, K --= 33. 

STEP 4. Amalgamate 33 and 4 to form a new object 33, (16 18 13 19 13 19 17 15)/4. 
Set J = C1(33) = 32. Set L --= C2(33) = 3. Since D(4, 32) < D(4, 3), set KK = 32. 
Return to Step 3. 
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Table 12.4 Questionnaire About Data Analysis Course 

This questionnaire was given to eight students after a data analysis course in 1969. 
The responses are coded as follows: 1, strongly disagree; 2, disagree; 3, neutral; 4, 
agree; 5, agree strongly. 

CanISTIONS 
1. I learned a lot. 

2. Statisticiana can get along without most of this stufi. 

3. If had known what it was like I wouldn't have taken it. 

4. The °puree ehould be given before consulfing work. 

5. / think I will be able to use most of the material. 

6. Tha courae was interesting. 

7. 1156 thrown iato the computer without preparation. 

A working knowledge of Fortran should be a prerequisite. 

9. MON' emphasis ehould be placed on complete packagea. 

10. Mymathemstical background waa sufficient. 

1:. I didn't know enough statiatical theory to underatand. 

12. TOO much me assumed about elementary data analysie. 

13. I ma adequately prepared. 

14. I had to do too much work myself 

15. I spent too much time at the Computer Center fiddling 

16. The computingwas more fun than the statistica. 

17. There weren't enough interesting data sete. 

18. There shouLl be more packaged program 

15. I mut to write my own subroutines 

20. Ve shouldn't mete a NOCI= on student projecta. 

21. I would prefer not to have my work criticimed in public. 
22. The level of student participation is about right. 

23. Ve went tuono too met, too fasti, to egtap anything. 
24. I mut =C corgelations, and faceto? analysis. 

25. Ve epent toommh time on clustering. 

26. should consider Mai real variablen, let 0-1, category go. 

27.Ve need to diminuì time serie.. 

28. Too =eh emphaaie on trivial data analysie lika plots. 

29. More 	on regression and =Ami@ of veriance. 

30.A more mathematical treatment please. 

31.The couree content 	abaut right. 

RESPONSES 

4 5 4 5 4 5 4 5 

4 i 2 1 3 2 2 2 

1 1 3 i 4 1 1 4 

5 3 2 4 4 5 4 5 

44 44 4 5 4 4 

5544 4 5 5 4 

4 1 2 3 3 3 l 2 

4 5 4 2 3 4 5 3 

3 2 3 1 3 3 2 2 

5 5 4 5 3 5 5 4 

2 1 2 l 4 2 1 2 

3 2 2. 2 4 2 2 2 

3 5 4 3 2 4 5 3 

3 3 5 2 l 2 l 3 

4 5 5 4 1 4 l 3 

3 4 3 3 5 5 	3 

3 4 5 4 3 4 2 4 

3 2 3 1 4 4 2 2 

44 1 2 2 2 3 4 

1 . 1 4 2 2 2 l 3 

l l 3 2 1 2 1 2 

4 4 1 4 3 4 3 3 

4 544 5 4 1 2 

4 2 3 4 442 3 

3 2 4 2 4 4 2 2 

4 4 2 l 2 1 3 

4 3 34 1 4 4 4 

2 2 4 4 I 2 2 2 

4 4 2 3 1 5 3 4 

3 4 4 3 4 4 3 4 

4 4 4 3 4 4 4 4 

STEP 3. Set JJ = C1(32) = 1, LL C2(32) = 2. Then D(1, 2) = 7, D(1, 4) = 10, 
D(2, 4) = 24. Therefore (i) holds, with D(1, 2) D(1, 4), D(2, 4). Set C1(34) = 32, 
C2(34) = 4, amalgamate 32 and 4 to form 34, (11 13 10 14 11 14 12 14)/3. Since 
C1(33) = 32, set C1(33) = 34. Return to Step 2. 

The algoritlun proceeds by adding each object in turn to the tree, beginning at the 
root and branching at each choice toward the closest cluster. An object is computed 
for each cluster, which at each stage is the average of all original objects in the cluster. 
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These constructed objects are necessary in the allocation of new objects, but they are 
also useful in interpreting the final clusters. 

The result of the algorithm for the first eight questions are given in Table 12.5. 
There are about two clusters: first, the questions 1, 5, 6, 8, the first three of which all 
ask for an overall evaluation of the course and naturally go together. The second 
cluster contains questions 2, 7, 9. Questions 7, 9 both ask about computer preparation. 
The algorithm has been•successful in identifying similar groups of questions. 

Table 12.5 Output Tree of Adding Algorithm on Questionnaire (Table 12.4) 
Responses marked with a dash reflected about 3. 

CLUSTER NUMBER 35 36 38 37 39 32 34 33 

1. LEARNED----/-I--I- I 	I--I--I 

5. USE 	/-/ I I 	I I I 

6. INTEREST 	/----/ I 	I I I 

8. FORTRAN 	/ 	I I I 

- 2. WITBOUT -/ 	I -I I I I 

- 7. THROWN 	/ 	/1111 

- 9. PACKAGES- -/ 	 /- / I I 
4. CONSULTING-/ 	 / I 

- 3. TANEN 	 

OBJECTS CORRESPONDING TO CLUSTERS (ORIGINAL OBJECTS UNDERLINED) 

RESPONSES 

01 	 4 	5 	4 	5 	4 	5 	4 	5  

05 	 4 	4 	4 	4 	4 	5 	4 	4 

-35 	4 	4.5 	4 	4.5 	4 	5 	4 	4.5 

06 	 5 	5 	4 	4 	4 	5 	5 	4 

--36 	4.3 	4.7 	4 	4.3 	4 	5 	4.3 	4.3 

08 	 4 	5 	4 	2 	3 	4 	5 	3  

---38 	4.3 	4.5 	4 	3.8 	3.8 	4.8 	4.5 	4 

02 	 2 	5 	4 	5 	3 	4 	4 	4  

07 	 2 	5 	4 	3 	3 	3 	5 	4 

- 37 	2 	5 	4 	4 	3 	3.5 	4.5 	4 

09 	 3 	4 	3 	5 	3 	3 	4 	4 

--39 	2.3 	4.7 	3.7 	4.3 	3 	3.7 	4 .3 	4  

----32 	3.4 	4.7 	3.9 	4.0 	3.4 	4.1 	4.4 	4 

04 	 5 	3 	2 	4 	4 	5 	4 	5  

	34 - 	3.6 	4.5 	3,6 	4.0 	3.5 	4.3 	4.4 	4.1 

03 	 5 	5 	3 	5 	2 	5 	5 	2  

	35 	3.8 	4.6 	3.6 	4.1 	3.3 	4.3 	4.4 	3.9 
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Table 12.6 Seguace of Trees in Applying Adding Algorithm to Questionnaires 
(first Eight Questions) 

1 --32 	 1 --32--33 	1 —32-34-33 

2 --32 	 2 --32--33 	2 —32-34-33 

	

3 	33 	4 	34--33 

3 	 33 

I --35--32--34--33 	 I --35--36--32--3 4 --33 

5 --35--32--34--33 	 5 —35-36-32-34-33 

2 	32--34--33 	 6 	36--32--34--33 

4 	 34--33 	 .2 	 32--34--33 

3 	 33 	 4 	 34-33 

3 	 33 

1 —35-36-32-34-33 	 1 --35--36--38--32--34--33 

5 —35_36_32-34-33 	 5 —35-36-38.-32-34-33 

6 	36--32--34--33 	 6 	36--38--32--34--33 

2 --37 	32- 34- 33 	 8 	 38--32--34--33 

7 --37 	32--34--33 	 2 --37 	 32-34-33 

4 	 34--33 	 7 - -37 	 32-34-33 

3 	 33 	 4 	 34--33 

3 	 33 

I --35--36--38--32--34--33 

5 —35-36-38-32-34-33 

6 	36--38--32--34--33 

8 	 38--32--34--33 

2 --37--39 	32--3F--33 

7 —37-39 	32--34--33 

9 	39 	32--34--33 

	 34-33 

3 	 33 

The clusters may be interpreted by looking at the object corresponding to each 
cluster—here the mean over all originai objects in the cluster. For example, cluster 
36 containing 1, 5, 6 corresponds to an object, or question, with responses between 4 
and 5 indicating that the course was acceptable, overall, to all students. The responses 
for the "computer preparation" cluster are all about 4, except for the first student, 
who was dissatisfied, and the fifth student, who was neutral. For the cluster of all 
questions, the responses are simply averages over all questions. (Note that this average 
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would be senseless if the negative questions are not reflected about 3.) The fifth student 
has a neutral response on average, but it is much more revealing to find out what 
aspects of the course displease him and which please him, and for this it is necessary 
to identify clusters of questions and examine averages over the clusters. 

It is natural to think of clustering students, as well as qtiestions, and to try to 
relate the clusters of students to clusters of questions. One group of students wants 
more mathematical treatment, another group wants more time on linear methods, 
and so on. Two-way clustering techniques to perform this analysis will be discussed 
in later chapters. 

12.7 THINGS TO DO 

12.7.1 Running Distance and Amalgamation Algorittnns 

These algorithms are applicable to a very wide variety of data types, with the user 
specifying distance functions and amalgamation rules appropriate to the data type. 
The amalgamation rule results in a representative object for each cluster that is very 
useful in interpreting the results. 

The joining algorithm is the reconunended procedure for less than 100 objects. Its 
principal defect is the binary tree necessarily obtained; 99 clusters will rarely be 
justified by the data and will confuse interpretation. The adding algorithm is recom-
mended for more than 1000 objects, since it completes the classification in one pass. 
The results will be dependent on input order of the objects; this dependence might be 
reduced by an initial ordering by distance from a mean object. Another trick for re-
ducing order dependence is to add the objects, say, three times and then to eliminate 
all but the latest set of objects. (See nails and screws, Table 12.7, and cakes, Table 
12.8, for trial data sets.) 

12.7.2 Weighted and Unweighted Averages 

The first-thought distance between points is euclidean distance, and the corresponding 
amalgamation rule is the average of the two points. The K-means algorithm and 
analysis-of-variance techniques would suggest weighting the average by the number of 
original objects in the clusters corresponding to the points. The unweighted average 
is more attractive because clustering philosophy suggests discounting points dis-
covered very similar to other points. This it might be argued that, if 10 original data 
points were identical, only one should be used in the clustering. The weighted-averages 
technique is more likely to split a single dense cluster into two clusters. The difference 
between these distances should be explored by considering examples in two dimensions. 

12.7.3 Contingency Tables 

A variable V1 takes values 1, . . . , M, and a variable V2 takes values 1, . . . , K. 
The number of times VI = I and V2 = J is N(I , J). The measure for dependence is 
the log likelihood ratio 

{1 S I  S  M, 1 S J S  K}log[N(I,J)1 41(•,.)1N(I,«)N(.,J)], 
where 

N(I,.) =- {1 S I S K} N(I, I), 

N(-, J) =I {1 5  I  S  M} N(I,J), 
and 

N(-, .) =1{1 S I s M} N(I, 
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Table 12.7 Nails and Screws 
Codes. Thread: 	 YES-Y TIO-N 

Head: 	 FLAT.F CUP.0 CONE.° ROUND-R CYLINDERmY 

Head Indentation: NCNE -N STAR.T SLIT -L 

Bottom: 	 SHARP -S FLAT-F 

Length: 	 (HALF INCHES) 

Brass: 	 YES.Y NO.N 

TITREAD 	HEAD HEAD INDENTATION BOTTOM 	LENGTH BRASS 

TACK 	N 	F 	 N 	 S 	1 	N 

NAIL1 	N 	:2 	 N 	 S 	4 	N 

NAIL2 	N 	F 	 N 	 S 	2 	N 

NAIL3 	N 	F 	 N 	 S 	 2 	 N 

NUM» 	N 	F 	 N 	 S 	 2 	 N 

NAILS 	N 	F 	 N 	 S 	 2 	 N 

NAIL6 	N 	U 	 N 	 S 	5 	N 

NAIL7 	N 	U 	 N 	 S 	3 	N 

NAIL8 	N 	U 	 N 	 S 	3 	N 

SCREW1 	Y 	O 	 T 	 S 	5 	N 

SCREW2 	Y 	R 	 L 	 S 	4 	N 

SCREW3 	Y 	Y 	 L 	 S 	4 	N 

SCREW4 	Y 	R 	 L 	 S 	2 	N 

SCREW5 	Y 	Y 	 L 	 S 	2 	N 

BOLT1 	Y 	R 	 L 	 F 	4 	N 

BOLT2 	Y 	0 	 L 	 F 	i 	N 

BOLT3 	Y 	Y 	 L 	 F 	i 	N 

BOLT4 	Y 	Y 	 L 	 P 	i 	N 

BOLT5 	Y 	Y 	 L 	 F 	i 	N 

BOLT6 	Y 	Y 	 L 	 P 	i 	N 

TACK1 	N 	F 	 N 	 S 	i 	Y 

TACK2 	N 	F 	 N 	 S 	i 	Y 

NAILB 	N 	F 	 N 	 S 	i 	Y 

SCREWB 	Y 	O 	 L 	 S 	i 	Y 

The distance between two rows is the reduction in log likelihood ratio due to com-
bining two rows, which is just the log likelihood ratio for the part of the table con-
sisting of the two rows. The amalgamation rule adds the two rows. 

The joining algorithm may be applied to the rows, or to the columns, or to both at 
once. 

12.7.4 Decreasing Diameters 

The diameter of a cluster is the distance between objects joined to form the cluster. 
For some measures of distance, the diameter may not increase with the cluster. 
Consider the unweighted-averages euclidean distance rule. 
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Table 12.8 Ingredients in Cokes 

From The New York Times Cookbook (1961), Craig Claibome, Ed., Harper and Row, 
New York. 

IEGEND: 	UNII INGRED/ENT 	 LEGEND: 	UNIT INGREDIENT 

AE: Teaspoon, almond essence 	 LR: teaspoon, lemon rind 

Bm: cup, buttermilk 	 MK: cup, milk 

BP: teaspoon, baking powder 	 NG: teasixxxl, nutmeg 

BR: cup, butter 	 NS: cup, nuts 

BS: one, bananas 	 RM: ounce, rum 

CA: tablespoon, cocoa 	 SA: teaspoon, soda 

CC: pounds, cottage cheese 	 SC: cup, sour cream 

CE: cnince, chocolate 	 SG: tablespoon, shortening 

CI: cup, crushed ice 	 SR: cup, gra ulated sugar 

DC: tablespoon, dried currants 	 SS: qua" strawberries 

EG: one, eggs 	 ST: teaspoon, salt 

EY: one, egg yolk 	 VE: teaspoon, vanilla extract 

EW: one, egg white 	 WR: e11P, water 

FR: cup, sitted flour 	 IT: ounce, yeast 

GN: tablespoon, gelatin 	 ZH: ounce, zwlebach 

HC: cup, heavy cream 	 CS: cup, crumbs 

teblespoon, lemon juice 	 CT: teaspoon, cream of tartar 

CAKE 	 INGHEDIENTS 
man 	 : 1FR 1.5sR I0EW 1.25CT .25ST IVE .25AE 
BABAS AU ERIK 	: .25MK .2512 .6YT .2%/R 2EY .25SR 1EG .5LR 2DC 1.75FR 2RM 
SWEET =COLATE 	: 4CE .5WR IBR 2SR 4EG 1VE 2.5FR ISA 0.5ST IBK 
BUCHE DE NCEL 	: IFR 0.5ST 1.3SR 4EG 1VE 
MIEESECARE 	 6ZH ISR .25BR I.5CC .25FR .25ST EIPG ISC ILR 
RUM CHEESECAKE 	: 2GN ISR .25ST 2EG IMK ILR ILJ IRM I.5CC IHC 
BLENDER CHEESECAKE 	IGN 1LJ 1LR 0.5WR .3GS 2EY 0.5CC 1CI 1SC 
ONE BCWICHOCOIATE : 2FR 2BP 0.5SA 0.25ST 10CA I.5SR 10SG .5WR .7MK 2EG 1VE 
RED DEVIL'S FOOD 	I.75FR I.5SR 0.3CA I.25SA IST 0.5SO IMK 2EG IVE 
SOUR CREAM FUDGE 	: 2FR 1.ssn :m 1ST 0.3SG ISC 3CE 2EG IVE .25WR 
HUNGARIAN CREAM 	: 3FR 3BP IST 3EG I.5AE 2VE I.5SR 2HC 
CRUMB AND NUT 	: 1SG 1SR 4EG 2VE 3CS 1DS 3BP IMK 
SPICED POUND 	: 1BR 1.5NG 0.5ST 1.7SR 5EG 2FR 
STRAWMUIRYIROLL 	: 4EG .75DP IST .75SR IVE .75FR 0.5CC ISS 
SAVARIN 	 0.25ER 1.5FR .06SR 0.5ST 3EG .25MK .7BR IIR 
BANANA SHORTCAKE 	: 3FR 0.5ST 4BP .I3SR 0.6BR IMK 3BS IHC 
STRAWBERRY SHORTCAKE: 2FR 3BP .75ST .6SR .2CC .12BR 1EG 0.5MK ISS ISC 
SPONGB 	 : .75FR IBP .25ST 4EG .75SR 0.5AE 2WR 

12.7.5 Probability Models 

An initial log likelihood is given for each observation-say, L(I, O) for the Ith 
observation. The distance between / and J is 

max L(I, 0) max L(J, 0) - max [L(I, 0) + L(J, O)]. 
e 	 e 

The amalgamation rule specifies 	O) L(J, O) as the log likelihood for the new 
cluster. 
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REFERENCES 

LANCE, G. N., and WILLIAMS, W. T. (1966). "A generai theory of classification 
sorting strategies 1. Hierarchical systems." Comp. J. 9, 373-380. Clusters are con-
structed by joining, beginning with M clusters each consisting of a single object and 
ending with a single cluster containing M objects. The pair of clusters joined at each 
stage is the closest pair available at that stage. The distance between clusters, given 
the distance between objects, may be defined in a number of ways. A clustering 
strategy is "combinatorial" if, for the cluster k obtained by joining clusters i and j, 
the distance dhk  between k and any other cluster h is a function only of dm , dm , dei , 
and of ni , the number of objects in i, and n1, the number of objects in j. 

A particular form of this function, which includes many standard algorithms, is 

dhk  = ocidm  + ocsdm  + fido  + y Idm  — dm i 

For example, cci  = ad  = —y = 0.5, gives 

dhk  = min (dm, dm), 

the single-linkage amalgamation rule. Or, aci  = oci  = y = 0.5 gives 

dhk  = max (dhi, dai). 

PROGRAMS 

JOIN 	successively joins closest rows of a matrix. 
AMALG gives a rule for combining two rows to form a new row. 
DIST 	See program in Chapter 2. 



SUBROUTINE JUINCA,M,N,NBOMERLI 
• 	 20 MetY 1973 

C.... JUIN FINDS CLOSEST PAIR OF ROWS AND AMALGAMATES THEM TO FORM A NEW ROW, 
C.... CONTINUINO UNTIL A SINGLE ROW REMAINS. 	THE USER SHOULD PROVIDE DISTANCE 
C.... AND AMALGAMATION ALGORITHMS, APPCRPRIATE FOR HIS PARTICULAR DATA. 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A = M BY N BORDERED ARRAY 
C.... NEI = 3 BY M ARRAY DEFINING CLUSTER BOUNDARIES 
C.... DM . 1 BY M SCRATCH ARRAY 
C.... RL = 1 BY M ARRAY OF REORDERED ROW LABELS, SUITABLE FOR TQEE DRAWIMG 
C.. 

DIMENSION RL(M) 
DIMENSION A(MeN1,NB(30114DM(M1 
DO 10 I=201 

10 N6(3.I)=I 
MM=M*(N-21+1 

C.... FINO CLOSEST PAIR 
DO 30 K=101 
IF(K.GT.M-2) GO TO 30 
CMIN=10.**20 
IMIN■2 
JMIN=3 
DO 21 I=204 
IFINB(3.1).LT.O1 GO TO 21 
DO 20 .1=1.14 
IFINB(3.JJ.LT.0) GO TO 20 
IF(J.U.I) GO TO 20 
Z=DIST(A(1.2),A(J12).MM.M92.) 
IF1Z.GE.DMIN) GO TO 20 
IMIN=I 
JMIN=J 
DMIN=2 

20 CONTINUE 
21 CONTINUE 

C.... FORM A NEW CLUSTER BY AMALGAMATING ROWS 
I=IMIN 
NE1(1.1(1=I 
11=N11(3,JMIN) 
DM(K)=DMIN 
NE1(2.1()=11 
NB(3.JMINJ=—NB(3.I1 
NB(3,I1=II 
CALL AMALG(A(IMIN.2),A(JMIN,2101M.M,2.) 

30 CONTINUE 
C.... REORDER OBJECTS, ASSIGN LABELS 

J=M+1 
KC=M-2 
IFIM.EQ.21 RETURN 
L=NB(2.1(C) 
DO 71 JJ=2.M 
J=M—JJ+2 
LL*—NB(3.1.) 
NB(3,L)=J 
L=LL 

71 CONTINUE 
DO 72 K=1,KC 
L=NB(leK) 
NB(1,10=NB(3.1.1 
L=NB(2,10 

72 NB(2.1()=NB(3.1—) 
DO 73 I=2.M 
J=NB(3,1) 

73 RL(J)=A(1.1) 
C.... DEFINE LAST TWO CLUSTERS, AND CLUSTER DIAMETERS 

DMAX■ 0 
DO 40 I=1,KC 

40 IF(DM(I).GT.DMAX) DMAX=DM(I) 
WRITE(6,1) DMAX 

I FDRMAT(27H MAXIMUM JOININS DISTANCE =,F20.61 
DO 50 I=1,KC 

50 NB(3.11=1DMIII/DMAXI*100 
DO 60 J=1,3 
DO 60 K=KCeM 

60 NB(JeKl=NB(J.KCI 
RETURN 
END 
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SUBROUTINE AMALGIX.YeMeNeP/ 
CO4  	 20 44Y 1973 
C.... AMALGAMATES X AND Y VECTORS TO BE EQUAL 
C.... MM 	LENGTH OF VECTOR 
C.... M 	SKIP FACTOR. TO BE USED WHEN X AND V ARE ROWS OF A MATRIXI SEE DIST/ 
C.... X . FIRST VECTOR 
C.... Y 	SECOND VECTOR 
C.... P m PARAMETER OF JOIN 
C 	  

DIMENSION XCIIM/OgM) 
DO 20 I=1.MMeN 
X(11.(XCIPbYtIl//2. 

20 VIIP.X111 
RETURN 
END 
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CHAPTER I 3 

Minimum' Mutation Methods 

13.1 INTRODUCTION 

From Imms (1957), "In the embryo of most insects, evident rudiments of paired 
abdominal appenclages appear at some stage during development . . . . A variable 
number of these appendages may become transformed into organs that are functional 
during postembryonic life, while the remainder disappear. The most conspicuous of 
the persistent appendages are the cerci of the I 1th segment, which exhibit wid.e 
diversity of form, and may even be transformed into forceps, as in the Japygidae, and 
the earwigs." 

The cerci of each insect order is recorded as segmented, unsegmented, or absent, in 
Table 13.1. Given the tree connecting the insect orders (which is not well established), 
it would be d.esirable to predict for each cluster the cerci status of the most recent 
ancestor of the cluster. For example, the ancestral endopterygota probably had no 
cerci. A simple and plausible criterion for interpolating ancestral values is the mini-
mum mutation requirement. Values are assigned to the ancestors so that a minimum 
number of mutations (or changes of value between an object and its most recent 
ancestor) occur. Rules for assigning values to minimize the mutations were given for 
a binary tree by Fitch (1971) and for a generai tree, with optimality proofs, by Hartigan 
(1972). Prior structure sometimes exists on the values. For example, it might be 
specified that the only possible mutations of cerci are in the order segmented 
unsegmented —› absent. This case has been considered by Camin and Sokal (1965) 
and, with a more general partial order on the values, by Estabrooke (1968). With 
these prior structures, the interesting problem is construction of the tree, not the 
interpolation of values given the tree; the value of any ancestor is simply the most 
primitive value among the descendants. 

13.2 MINIMUM MUTATION FITS 

Preliminaries. A variable V has values V(1), V(2) , . . . , V(M) on objects 
1, 2, . . . , M. A tree of clusters 1, 2, . . . , NC is given on the objects, specified by an 
ancestor function T. For each cluster I, T(I), the ancestor of is the smallest cluster 
properly including L The function T is defined for all / (1 / < NC), but it is not 
defined fiir the cluster NC, the cluster of all objects. The numbering of clusters is 
such that / < T(I) for each / (1 / < NC). 

During the algorithm, the quantity V(/) is a subset of values corresponding to the 
/th cluster. For I / M, V(/) will be the value of variable V for object L At first, 
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8 1. MUNE% (Brietle tali) 

8 2. DIPIDRA 

A 3. PROTURA 

A 4. COLIZMBOTA (Spring tail) 

36. AFTERYGOTA 

O 5. EPHEMEROPrERA (May fliee) 

A 6. ODOMODATA (Dream fliee) 

30. FA/AMMIRA/T 34. ZROMERMOTA 37. PTERTUOTA 

8 7. PIECOPTERA (8tonsfliee) 	31. ORTROPTEROID 

8 8. GRILLOBIATTODEA 

U 9. ORTEOPTERA (EtwahoPPers) 

U 10. PUGNI:DA (Stick insect) 

U 11. DERMAPTERA (earwig) 

8 12. EMBIOPTERA 

8 13. DICTROPTERA (cockrcachea) 

U 14. I8OFTERA (temiteli) 

U 15. =MIURA 

A 16. PBOCOPTERA (book lice) 

A 17. MALIDNIAGA (bird lice) 

A 18. SIPHUNCUIATA (aucking lice) 

A 19. HEMITERA (plant buge) 

A 20. THYSANOPfERA (thrips) 

32. HEHIPTEROID 

A 21. NEUROPTERA (lacewinge) 	33. PANORPOID 	35. ENDOITERYGOTA 

A 22. NECOPTERA (ecorpion fliee) 

A 23. TAFTDOPTERA (butterfliee) 

A 24. TRICHOPTERA (Caddie fiiea) 

A 25. OMBRA (trae fliee) 

A 26. 8IPHONAPIERA (ama) 

A 27. HYMENOPTERA (anta) 

A 28. COLEOPTERA (beetlea) 

A 29. OTREPSIPTERA 
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Table 13.1 Presence of Cerci (Tail Appendages) in Insects 
S, segmented cerci; A, cerci absent, U, unsegmented cerci (From Imms, 1957). 

V(I) is constructed to be the set of values at cluster I compatible with a minimum 
mutation fit to the tree below cluster I (the tree consisting of clusters included in I 
and of I itself). Later, V(/) is the set of values at cluster I compatible with a minimum 
mutation fit to the whole tree. This terminology is illustrated in Table 13.2. 

STEP 1. For each 1 in turn (M < I S NC) find the set of clusters /(1), /(2), ... , 1(J) 
such that 7[1(K)] = I (1 S K S  J). Then V(I) is the set of values of V which occur 
with maximum frequency in V[I(1)], V[1(2)],..., V[I(J)]. 

STEP 2. For each I in turn (M < I < NC), beginning with I = NC - 1 and 
decreasing I by 1 at each step, if V(/) V[T(1)], set V(1) = V[T(/)]. If V(I) 
V[T(I)], find the set of clusters /(1), /(2), . . . , I(J) for which I is the ancestor. Then 
V(I) is the set of values of V which occurs with maximum frequency or frequency one 
less than maximum in V[I(1)], V[I(2)], 	, V[I(J)], V[T(1)]. 
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Table 13.2 Illustration of Terminology Used in Minimum Mutation Fit 

v 

V(1) . A 	1---I--I--I 

V(2) B 	2-../ I I 

V(3) A 	3-.1 I I 

V(4) C 	4--/ --i 

V(5) A 	5..-I 	I 

V(6) A 	6---/ -.../ 

CLUSTERS 	7.(1,2) 	8.(3;4) 	9.(5,8) 	10.(ix.2,3,4) 

ANCESTORS 	T(I ST(2).7 T( 3 ).T(4 ).8 T( 5 ).T(6 ).9 T(7 ).T(81.9 T(9).T(10).11 

INITIAL V V(7).(A,B) V(8).(A,C) V(9).(A) 	V(10).(A) 	V(11).(A) 

FINAL V 	V(7 ).(A) 	V(8 SU) 	V(9 SCA) 	V(10 ).(A) 	V(11 ).(A) 

NOTE 1. To obtain easily a single minimum mutation fit, in Step 2 change V(/)to 
V[T(I)] if V(/) V[T(1)), and otherwise change V(/) by dropping all but one value. 

NOTE 2. It is never necessary to change the values V(/) originally given for the 
objects 1, 2, ... , M. 

13.3 APPLICATION OF MINIMUM MUTATION ALGOIUTHM TO 
CERCI IN INSECTS 

The T values specifying tree structure may be recovered from Table 13.1. For example, 
for the four orders of Apterygota, T(1) = 36, T(2) = 36, T(3) = 36, and T(4) = 36. 

STEP 1. The first cluster considered is 30, Palaeopteran. The set of clusters whose 
ancestor is Palaeopteran are 5 and 6, so /(1) = 5 and /(2) = 6. Since V(5) = S and 
V(6) = A, the values S and A occur with maximum frequency. Therefore V(30) = 
(S, A). The next cluster is 31, Orthopteroid, for which /(1) = 7, /(2) 8, ... , 
/(9) = 15. The corresponding V values are S, S, U, U, U, S, S, U, U. The value U 
occurs 5 times and the value S occurs only 4, so V(31) U. Continuing, V(32) = A 
and V(33) = A. A new situation arises with 34, Exopterygota, ancestor of 30, 31, 32. 
The corresponding V's are {S, A}, {U}, {A}. Among these V's, A is maximal, so 
V(34) --= A. 

At the conclusion of Step 1, V(30) = (S, A), V(31) U, V(32) = A, V(33) = A, 
V(34) = A, V(35) = A, V(36) = (S, A), V(37) = A, and V(38) --= A. 

STEP 2. Running through the clusters in reverse order, cluster 37 is treated first. 
Since T(37) = 38, V(37) = A V(38) = A, so V(37) = A without change. For 
cluster 36, V(36) --= (S, A} includes V(38) = A, so V(36) = V(38) = A. The next 
interesting cluster is 31, V(31) = U. Since T(31) = 34, V(31) = U V(34) = A, 
so the second option is necessary. Thus V(31) becomes the set of values which are 
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maximal or submaximal in V(7), V(8), . , V(15) and V(34). The value U occurs five 
times, the value S four times, and the value A once. Thus V(31) = U. 

Finally, after Step 2 is completed, V(30) = A, V(31) U, V(32) = A, V(33) = A, 
V(34) = A, V(35) = A, V(36) = A, V(37) = A, and V(38) = A. 

The minimum mutation fit thus gives value A to all insect ancestors, except the 
orthopteroids, which are assigned value It must be admitted that this violates the 
accepted theory, which is that cerci are primitive appendages, so that segmented 
unsegmented absent would be the expected order of evolution. [A slightly different 
tree would produce this as a possible sequence. For example, if the orthopteroid 
cluster were omitted, V(34) = {U, S}, V(37) = [U, S, A), and V(38) {S, A). A 
minimum mutation sequence would then have all ancestors with segmented cerci, 
except Endopterygota (absent) and Hemipteroid (absent).1 

The total number of data values is 29, but these are represented in the minimum 
mutation fit by nine symbols (the ancient A, the orthopteroid U, and the seven present-
day objects differing from these). 

13.4 SOME PROBABILITY THEORY FOR THE 
NUMBER OF MUTATIONS 

If just a few mutations will explain a large number of values, the tree is validated. To 
make this precise, it is necessary to know how many mutations would be expected, if 
there were no relation between the tree and the data—that is, if the data values were 
assigned at random to the objects at the end of the tree. 

Suppose there are K different data values, and M objects. The probability theory is 
easiest if the data values are assigned independently to the M objects, with the Ith 
object taking the Jth data value with probability P(J). [This P(J) might be estimated 
by the proportion of objects taking the Jth value.] For the /th cluster, the set V(/) will 
be defined, as in the algorithm of Section 13.2, as the set of values assigned to cluster / 
compatible with a minimum mutation fit to the tree below /. The number of mutations 
may be determined from the V(/). Also P[V(I) = A], where A is some subset of values 
of V, may be determined by recurrence relations from these Probabilities for all the 
clusters whose ancestor is cluster /. In this way, the distribution of the number of 
mutations may be obtained for any given probabilities {P(J),J 1, . . , K) and any 
given tree. If there are many objects, this number of mutations is approximately 
normally distributed. 

This procedure will be followed for the simple case when only two values are 
possible and when the tree is binary. Let the values be denoted by X and Y. Suppose 
that a cluster / is ancestor to clusters J and K. Then 

V(/) = X if V(J) = X, V(K) = X 
or V(J) = X Y, V(K) = X 
or V(J) = X, V(K)= X Y, 

V(I) Y if V(J) = Y, V(K) = Y 
or V(J) = X Y, V(K) = Y 

	

or 	V(J)= Y, V(K) = X Y , 

	

V(I) --= X Y if 	V(J) = X, V(K) = Y 
Or V(J) = Y, V(K) = X 

	

or 	V(J) = X Y , V(K)= X Y. 
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A mutation will occur from / to J or from / to K, if and only if V(J) = X, V(K) = Y 
or V(K) = X , V(J) = Y . Events in J and K are independent since they contain different 
objects. Therefore 

P[V(I) = X] = P[V(J) = X] P[V(K) = X] + P[V(J) = X Y] P(V(K) = X] 

+ P[V(J) = X] P[V(K) = X Y] 

with similar expressions for P[V(I) = Y] and P[V(I) = XY]. The probability that a 
mutation occurs from / to J or from / to K is P[V(J) -= X] P[V(K) = Y] + 
P[V(J) = Y] P[V(K) = X]. Thus the expected number of mutations is 

I {P[r9) = )( inni() = n -I- P[VV) = nP[V(K) = Xi) 

summed over all clusters L [Complex recurrence relations on the number of muta-
tions in the tree below / when V(/) = X, when V(/) = Y, and when V(/) = X Y may 
be used to determine the distríbution of mutations in the whole tree and the variance 
of this number of mutations. Since the number of mutations is approximately normal 
for many objects, the mean and variance are sufficient to determine the distribution 
approximately. For dusters far from the ends of the tree, it may be shown that 
P[V(I) = X] = P[V(I) = Y] = P[V(I) = X Y] = l, approximately. This is not much 
use in determining the asymptotic distribution of mutations, since most mutations 
occur near the ends of the tree.] 

For a small and simple tree, the probabilities P[V(I) = X], P[V(I) = Y], 
P[V(I) = X Y] and the expected number of mutations and the distribution of muta-
tions are computed in Table 13.3. A typical recurrence relation occurs in computing 
P[ V(11) = X] by using probabilities for clusters 9 and 10: 

P[V(11) = X] = P[V(9) = X] P[V(10) = X] + P[V(9) = X] P[V(10) ,---- X Y] 
+ P[V(9) = X Y] P[V(10) = X] 

=ìxt-Ftx3IET-1--ìxf,-= M. 
The expected number of mutations is the sum of the probabilities of a mutation at 
each join. The actual distribution of mutations is computed here by enumeration over 
the 64 patterns of X's and Y's possible for the end objects. 

The mathematics goes nicely when the variable takes only two values, X and Y, 
and when the tree is ternary (every cluster is an ancestor of just three clusters). In this 
case, the set V(/) is either X or Y but cannot be X Y. If / is ancestor to J, K, L, 

P[V(I) =- X] = P[V(J) = X] P[V(K) = X] P[V(L) = X] 

x ( 
	1 
	 -I- 	

1 	 1  
P[V(I) = X] P[V(J) = X]

-1- 
P[V(K) = X] 2) 

13.5 REDUCED MUTATION TREE 

Preliminaries. This algorithm successively amalgamates "closest" pairs of clusters, 
beginning with M clusters each consisting of a single object and stopping when a 
single cluster containing all objects remains. The tree structure at each stage is de-
termined by an ancestor function T defined for every cluster. For clusters / that stili 
remain to be amalgamated, T(I) --= O. For a cluster / that has been amalgamated, 
T(I) denotes the cluster / was amalgamated into. 
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Table 13.3 Expected Number of Mutations 

CIUSTERS. 7-(1,2), 8.(3,4), 9- ■ (5, 6), 10.(1, 2, 3, 4), 11.(1, 2, 3, 4, 5, 6) 

X occurs vl.th probability 1/3; Y occurs with probability 2/3 . 

P[57(7).X] . 1/9 	p5r(7).2.3 . 4/9 	F[V(7).XY] • 4/9 	P[MUTATION1 . 4/9 

P[V(8).X] 1/9 	F[V(8).Y] . 4/9 	PEV(8).XY] 4/9 	PCMUTATION1 4/9 

P[V(9)-X] . 1/9 	PD/(8).Y1 . 4/9 	P [y( 8 ).XY] . 4/9 	P [PUTATION1 . 4/9 

P[Vtloba] 1 /9 	F[V(10)=Y] . 16/27 P[V(10).XY] . 8/27 PrAUTATION] . 8/81 

P[S7(11).X] . 23/243 pbr(1l)-y] 	160/243 p5r(11)-xyl 	60/243 IgurzATIorn . 22/243 

EXPECTED NU) ER OF MUTATIONS . 376/243 . 1.547 . 

PNUTATIONS . o] . 65/729 

P[MUTATIONS - 1] . 264/729 

P [b1UTATIONS - 2 ] 336/729 

P[MUTATIONS . 3] 64/729 

Used in computing similarities between clusters, the set V(I, J), defined for cluster 
I and variable J, is the set of values of variable J compatible with a minimum mutation 
fit of variable J to the tree of clusters included in cluster I (including I itself). After 
the tree is completed, the quantities V(I, J) for all I determine a minimum mutation 
fit to the whole tree (this fit is not necessarily unique). 

This algorithm is essentially a joining algorithm with distances and amalgamation 
rules specified on the sets V(I, J). 

STEP 1. Initialize V(I,J) (1 S  I  S  M, 1 S  J  S  N) to be the value of the Jth 
variable on the Ith object. The number of clusters so far considered is K = M. 
Initialize T(I) = 0 (1 S I s M). 

STEP 2. Compute the distance between clusters I and L as 

I - {l S J  S  N} #[V(I, J) n V(L, .1),x1 	J S N} #[V(I, J) v V(L, 

Here #(S) denotes the number of values in the set S. For clusters which are single 
objects, this distance is just the proportion of mismatches between the two objects 
for the N variables. Let the pair of clusters I, L with T(I) = O, T(L) = O, which are 
closest in this distance, be IM, LM. 
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STEP 3. Increase K by 1; define T(IM) = T(LM) = K. Set 

V(K, J) = V(1M, J) n V (LM, J) 	if 	V(IM, J) n V(LM,./) 	, 

V(K, J) V(IM, J) U V (LM, J) 	if V(IM, J) U V(LM , = 0 . 

If K < 2M — 1, go to Step 2. 

STEP 4. The tree is no‘w complete. Identify a minimum mutation fit in each variable 
by dropping all but one value (arbitrarily selected) from V(2M — 1, ./); then for any 
/for which V[T(I), J] contains a single value, replace V(I , J)by V[T(I), J] if V(I , J) 
V[T(I), J], and drop all but one value (arbitrarily selected) from V(I, if V(I, J) 
V[T(1), J]. 

NOTE. The minimum mutation fit obtained in Step 4 is not necessarily unique, 
since an arbitrary choice of values in the sets V(I, J) is sometimes necessary. The 
following technique does not yield a minimum mutation fit, but it does produce a 
unique specification of values on the tree from the V(1, J) obtained in Step 3. For all 
I , J , if V[T(I), J] consists of a single element and if V(I, J) 	V[T(I), J], set V (I , J) 
V[T(I), J]. Now for each / (1 / < 2M — 1) set V(I, J) = if V (I , J) = V[T(I), J] 
or if V(I, J) contains more than one element. 

13.6 APPLICATION OF REDUCED MUTATION ALGORITHM 
TO AMINO ACID SEQUENCES 

The data used are the amino acid sequences in the protein molecule cytochrome-c 
for a number of vertebrates, given in Table 13.4. Only the species man, monkey, 
chicken, duck, kangaroo, and rattlesnake will be considered. The sequence of joins is 
displayed in Table 13.5. 

STEP 1. The initial values of V(I, .1) (1 	I 6, 1 J 22) are just the data 
values. The cluster numberis K = 6. Initially T(1) = O, T(2) = O, T(3) O, T(4) = O, 
T(5) = O, and T(6) = O, which indicates that these clusters are available for joining. 

STEP 2. The distance between 1, human, and 2, monkey, is 1 — 	since they fail 
to match only in position 102. The distance between 3, chicken, and 4, duck, is 
1 — since they fail to match in two positions. Over all 15 pairs of clusters, 1 and 2 
are closest, so IM = I , LM 2. 

sTEP 3. Now K = 7 , T(1) = T(2) = 7, and the values V(7 , J) must be defined. For 
J = 1 (position 3), V(1, 1) = V and V(2, 1) = V. Thus V(1, 1) n V(2, 1) . 
Therefore V(7 , 1) = V(2,1) n vo , o = v. And so it goes until J = 20 (position 
102), where V(1, 20) = T, V(2, 20) --= A , and V(1, 20) n V(2, 20) = 0 Therefore 
V(7 , 20) = V(2, 20) L) V(1, 20) = {T, A). Return to Step 2. 

STEP 2 REPEATED. There is some novelty in computing distances between the new 
cluster 7, and the remaining clusters. For example, the distance between 7 and 3 is 
1 — 4.1-. Here there are 11 variables which match, including V(7 , 20) = {A, T} and 
V(3, 20) = T . The closest pair are chicken and duck, joined to make cluster 8. Then 
cluster 8 and kangaroo, joined to make cluster 9. Then clusters 9 and 7 joined to make 
cluster 10. And finally, the rattlesnake is admitted to the collection. 



Table 13.4 Amino Acid Sequence in Cytochrome-c for Vertebrates 

[From Dickerson, R. E. (1972). "The structure and history of an ancient protein," 
Sci. Amer. (No. 4), 222, 58-72.] Each letter denotes an amino a.cid. Only positions 
which vary over the vertebrates are recorded. 

11111 

11 12223 34445 55666 66888 88899 900000 

34912 5o283 6467o 48012 56135 68923 501234 

MAN 	 VEIIM SVKTIT FPYSA NIGED MEIVI KKEAD IKATNE 

MONKEY 	 VEIIM SVKTE FPYSA NIGED MEIVI KKEAD IKAANE 

HOP,Sv 	 VEIVQ AVKTH FPFTD NTKEP, MErVI KKTED IKATNE 

DONKEY 	 VEIVQ AVKTH FPFSD NTKEE MEIVI KKTED IKATNE 

PIG 	 VEIVQ AVKTH FPFSD NTGEE MEIVI KKGED IKATNE 

DOC 	 VEIVQ AVKTH FPFSD NTGEE MEIVI KTGAD IKATKE 

RABBIT 	 VEIVQ AVKTH FVFSD NTGED MEIVI KKDAD IKATNE 

V/RAIZ 	 VEIVQ AVKTH FVFSD NTGEE MEIVI KKGAD IKATNE 

KANGAR00 	 VEIVQ AVKTN FPFTD NIGED MEIVI KKGAD IKATNE 

=KEN 	 IEIVQ SVKTH FEFSD 1ZTGED MEIVI KKSVD IDATSK 

PIGEON 	 IEIVQ SVKTH FEFSD NTGED MEIVI KKAAD IQATAK 

DUCK 	 VEIVQ SVKTH FEFSD NTGED MEIVI KKSAD IDATAK 

TITRTLE 	 VEIVQ AVKTN IEFSE NTGEE MEIVI KKAAD IDATSK 

RATTIESNAKE VEIVQ SVKTH FVYSA NIGED MEVTL SKKTN IEKTAA 

EULLPRCG 	 VEITM ACKVY IAFSD NTGED MEIVI KKGQD ISACSK 

TUNA 	 VATVQ AVNVW FEYSD SVNND MEIVI KKGQD VSATS- 

DCGFIsu.. 	 VEVVQ AVNTS FQFSD STQQE RIIVL KKSQD IKTAAS 

Table 13.5 Application of Reduced Mutation Algorithm to Amino Acid Sequences of 
Man, Monkey, Chicken, Duck, Kangaroo, Rattlesnake 

(Only positions that vary are recorded.) 

CLUSTER pOSITION / 	3 	12 15 33 44 46 47 50 58 81 83 85 86 89 92 93 100 101 102 103 104 

1 HUMAN (HN ) 	V IMSH P IS A I IVIK E A DK A T NE 

2 . EMMY (EY ) 	V IMSH PYS A I IVIK 	A DK A A N E 

3. CHICON (CN) 	IVQSH EF S D T IVIK S 	ADD A T S 

4 . DUCK (DK ) 	VVQSH EP S D T IVIK S A DD A T A K 

5.KANGAROO(KO) 	V V QA N PF TD I IVIK G A DK A T N E 

6.RAITLRSNAKE(RE)V V QSH 	 A I VTLS K TNR 	T A A 

VALUEs OF VII,J) 

7. KN-MY 

8.CN-DK 

9. CN-KO 

io. HN-K0 

ii.ALL 

V IMSH PYS A I IV IK E ADK A TA 	E 

/V V QSH EP SD T IVIK S ADD A TSA K 

V V QSANH EP FST DTI I V I K SG A D KD A T NSA EK 

VVIQMSH PIF SDA I IV IKESG ADK A TRE 

IV QS H PV YS AI IV VT IL SK RUM AT DN KB AX T NA EA 

VALUES OF V (I, J ) IN ?CM!~ 147TATION FIT TO C OMPUTRD 

11. ALL 	 VVQ,SH PYS A I IV IK 	ADK A T N E 

1 o. HN-KO 	 VVQSH PYS A / /V IR 	ADK A T NN 

9 . CN-K0 	 VVQSH PF SD I IV IR S 	ADK A T NN 

7 . HN-EY 	 VIMS H PYS A I IVIK E A DK A T NN 

8. CN-DK 	 VV QS H EF SD T IV IK S ADD A T S K 
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12 . Q 	33 

15.S 	46 . Y 

47 - S 	58 . I 

50 A 	102 	T 

3 V 

11 . V 

44 . P 

81 . I 

83 .V 

85• I 
86 K 

92 - A 101 . A 

44 V 

81 V 

83.T 

93.D 	103.N 

100 K 	104 . E 

11 . I 	89•E 46 	 50 . D 85 • L 

89 . S 

58.T 
	

100 . D 

104.K 

3 . I 	103 . A 

103.5 

CHICKEN 

15•S 

33 . H 

47 . T 

89•G 

86 .S 

89•K 

92 T 

93.N 

100 	E 

101 	K 

103 .A 

104 . A 

HUMAN 102 . A 	44 E 

MONKSY 

DUCK 	KANGAROO 
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srEP 4. To identify a minimum mutation fit to the constructed tree, begin with the 
full cluster, 11. Consider only the variable 15 (position 89). Then V(11, 15) = ESGK. 
All but one value must be dropped, so set V(11, 15) = E. Now at / = 10, V(10, 15) = 
ESG V(11, 15) = E. Therefore, change V(10, 15) to E. At I = 9, Z(9, 15) = 
SG 1 E. The second option applies, so all but one value are dropped to set V(9, 15) -= 
S. When this is done for all clusters and variables, the resulting values of V(I, J) 
constitute a minimum mutation fit in every variable. 

According to the Note in Section 13.5, a cluster takes a value for a given variable 
only if this value is uniquely determined in the minimum mutation fit. This procedure 
does not necessarily lead to a minimum mutation fit, but it does allow a unique 
summary representation of the data, given in Table 13.6. 

Table 13.6 Representation of Amino Acid Data on Reduced Mutation Tree 

RATTLESNAKE 

13.7 THINGS TO DO 

13.7.1 Using Minimum Mutation Techniques 

The fitting algorithm is to be used with category data and a tree already computed. 
It results in a representation of the data with a minimum number of symbols. A typical 
use might be a summary representation of the votes of U.S. congressmen. An initial 
clustering of congressmen into blocs is necessary. Then each vote is reduced to a list 
of votes of the various blocs, with an individuai congressman appearing only if he 
votes differently to the smallest bloc including him. (See Table 13.7 for such data and 
Table 13.8 for data on Indo-European languages.) 

13.7.2 Uniqueness 

The minimum mutation fit is not necessarily unique. There may be more than one 
value assigned to a node, which is consistent with a minimum mutation fit. However, 



Table 13.7 Congrossmen by Bills (90th Congress) 

Code: 1, yes; 2, pair yes; 3, announced yes; 4, announced no; 5, pair no; 6, no; 
7,generalpair; 8, abstain;9,absent;C1, sponsor absent. 

SPONSOR BILIS 

ASPINALL I. Auth. Biscayne National Monument in Florida 

PERKINS 	2. Promote health and safety in building trades 

PATMAN 	3. Sr. extend 2 Yrs. auth. reg. intereat and dividend ratea 

DINGELL 	4. Rel. Dev. Fish Protein concentrate 

PERKINS 	5. Establish ccomdmaion on Negro History and Culture 

ASPIRALI 6. Designate parta of Morris City, N.J., sa Wilderneas 

UDALL 	7. Provide overtime and atandby pay for Trans. Dept. 

EIMARDS 	8. Amd. Bill for relief of sundry claimants 

GROSS 	9. Amd. Omnibus claims bili 

aposs 	lo. Strike Titie 8 of omnibus claims bili 

HALL 	11. Sttike Titie 9 of omnibus claims bili 

GROSS 	12. Strike Titie lo of =nue claims bili 

HALL 	13. Strike Title 11 of omnibus claims bili 

TAICOTT 14. Strike Titie 14 of omnibus claims bili 

POAGE 	15. Take FD and AG ACT AND SPKRS TBIE AGREE S CONF 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15  

A/3ERNETIII 	1 	1 	6 	1 	1 	6 	1 	i 	1 	6 	1 	6 	1 	1 	1 

ALIERT 	1111 	i 	i 	i 	i 	6 	6 	6 	6 	6 	6 	6 

WIDNALL 	1 	1 	1 	1 	7 	1 	7 7 9 9 9 9 9 9 9 

ANDREWS 	116116 	6 	1 	1 	611 	6 	1 	1 

ARENDS 	166161111116161 

WIISON 	1 	5 7 	1 	7 	1 	7 	1 	9 	9 	9 9 9 9 9 

AMORE 	7 7 5 1 1 7 7 7 9 9 9 9 9 9 9 

ASPINALL 	1111111 	6 	6 	6 	6 	6 	6 	6 	6 

AYRES 	1 	i 	i 	i 	i 	il 	6 	6 	6 	6 	6 	6 	i 	i 

BARING 	8 	1 	6 	7 	7 	7 	1 	1 	1 	9 	1 	1 	1 	1 	1 

ANDERSON 	1 	1 	6 	1 	1 	1 	1 	1 	1 	6 	6 	6 	1 	9 	1 

ASHBROOK 	1 	5 	5 7 7 7 7 711 	1 	1111 

BATTILA 	5 	6 	6 	1 	6 	1 	1 	1 	9 	6 	1 	1 	1 	1 	1 

BELI 	1111111119 	9 	9 	9 	9 	9 

CLANCY• 	1 	6 	6 	1 	6 	1 	1 	1 	1 	6 	1 	1 	6 	1 	i 

DAVIS 	i 	1 	1 	1 	1 	6 	6 	1 	1 	6 	6 	6 	6 	6 	6 

DOTE 	i 	6 	6 	1 	1 	1 	i 	1 	1 	6 	i 	1 	6 	6 	i 
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All 	Bad 	Belly Bleck Bone 	Day 	Die 	Drink 

ploxoj 

mauvais 

mal 

schlect 

dalig 

bad 

drwg 

kakos 

ole 

bad 

bad 

khorab 

zivot 

ventre 

vientre 

ventre 

bauch 

buk 

bellY 

bola 

kilym 

bolg 

shekam 

Pei 

pei 

cernyj 

noir 

negro 

nero 

schwarz 

evart 

black 

du 

mavros 

dubh 

eiah 

kalo 

kala 

kost 

os 

hueso 

osso 

knochen 

ben 

bone 

asgwrn 

kokalo 

chaimh 

ostokhan 

har 

hoddi 

den 

Jour 

dia 

giorno 

tag 

dag 

day 

dydd 

mera 

la 

ruz 

din 

din 

umirat 

mourir 

morir 

morire 

sterben 

do 

die 

petheno 

doluidh 

mordan 

mora 

plt 

boire 

beber 

bere 

trinken 

dricka 

drink 

yfed 

pino 

olaim 

nushidan 

khaoa 

pina 

vee 

tout 

todo 

tutto 

alle 

all 

all 

pawb 

olos 

vile 

hame 

sob 

sob 

Zar 	Eat 	Egg 	Zye Father Fish 	Five 	Foot 

oreille 

oreja 

orecchio 

ohr 

ora 

ear 

clust 

a/ti 

elusa 

gush 

kan 

ken 

est 

manger 

~edere 

mangiare 
essen 

ata 

eat 

bwyta 

troo 

ithim 

khordan 

khaoa 

khana 

jo3co 

oeuf 

heuvo 

120V0 

ed 

agg 

egg 

wy 

avgho 

ubh 

tokhm 

onda 

onda 

glae 

oeil 

ojo 

occhio 

auge 

oga 

eye 

AVgad 
nati 

sull 

chashm 

cok 

akh 

otec 

pere 

padre 

padre 

vater 

rader 

father 

tad 

pateras 

athair 

pedar 

baba 

bcp 

ryba 

poieson 

pez 

pesce 

fioche 

tisk 

fish 

pisgodyn 

psari 

iasc 

mahl 

monchi 

pjat 

cinq 

cinco 

cinque 

funf 

fem 

five 

pump 

pende 

cuigear 

panz 

pac 

pac 

nega 

pied 

pie 

pie 

fuso 

fot 

foot 

troed 

podh i 
cos 

Pa 

Pa 
per 
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Table 13.8 Indo-European Languages 
A subset of data belonging to Professor Dyen, Linguistics Department, Yale 
University. 

WORD 

LANGUAGE 

Russian 

French 

Spanish 

Italian 

German 

Swedish 

English 

Welsh C 

Greek 

Irish 

Persian 

Sengali 

Hindi 

LANGUAGE 

Russian 

French 

Spanish 

Italian 

German 

Swedish 

Engliah 

Welsh C 

Greek 

Trish 

Pereian 

Bengall 

Rindi 

the number of mutations in the fit, in the part of the tree descended from a node is 
equal to the minimum number of mutations when only this part of the tree is con-
sidered or to one more than this minimum. 

13.7.3 Probability Models 
A mutation occurs from X at node / to Y at node J, one of the descendants of 7, 
with probability P(X, Y). Assume thatP(X, X) = p for ali values Xand thatP(X, Y) = 
r for all X Y. Show that, if p r, then a minimum mutation fit and a maximum 
likelihood fit coincide. 
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13.7A Dittoing 

The sequence 1 O I O O 1 O O I O O O I O O I 1 1 1 1 O may be reduced to 
1010.10.10..10.1....0, 

where a dot signifies that a character is identical to the previous character. Such 
identities are the stuff of clustering. Another coding is 

10001C01100110021001140, 

with the even positions counting the number of times the previous value is to be re-
peated. This can produce large gains in storage and understanding if the neighboring 
members of the data sequence are highly correlated. 

In this technique, which is well known in communications theory, each value is 
connected to the previous one for prediction purposes. 

10100100. 

One generalization is to allow the /th object to be linked to the Jth object, where J 
is greater than / but J is not necessarily / -I- 1. (It is convenient to number the objects 
from the right.) 

1 O 1 O O 1 O O . 

H 	--i 	--i 
In this case, J = MT W> I is the predictor for the /th object. Of course, the pre-
dictor array MT defines a tree. If the positions that make predictions are initially 
empty, the assignment of values to positions is the minimum mutation problem. 

Another natural generalization allows transformations of values; for example, if 
neighboring values were negatively correlated, a one would be predicted to follow a 
zero. Such transformations may also be used with a tree prediction structure. 

13.7.5 Unrooted Trees 

The minimum mutation fit assigns values to the nodes of the tree to minimize the 
number of changes between neighboring nodes. For many variables, the error associ-
ated with a tree is I p(I , J), where /and J are neighboring nodes and p is the number 
of mismatches, summed over all variables, between nodes / and J . This measure of 
error is the same whichever node is the root. Thus the "best" minimum mutation tree 
will have no preferred root; the search is for an unrooted tree. 

13.7.6* Real Variables 

For a real variable, values V must be assigned to each node (or cluster) / to minimize 
I p[V(I), V(J)], summed over neighboring nodes / and J . First, choosing p(x, y) = 
(x — y)2 leads to optimal V(/) which are solutions of certain linear equations. These 
solutions may be obtained, in minimum mutation style, as follows. Associate with 
each cluster / a pair A(I), B(I) such that V(/) = A(I) V[T(I)] + B(I). For the objects 
at the ends of the tree, set A(I) = O, B(1) = V(I). Define A(I) and B(I) iteratively, if / 
is the ancestor of J(1), ... , J(K), by 

A(1) =-- (K + 1 — I {1 L K} A(J(L)))-1, 

B(I) = A(I)1 {1 L K} B(J(L)). 
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At the root, compute V(I) = B(/)/[1 - A(I)] and compute each V value successively 
by using the equation 

V(I) = A(I)V[T(I)] + B(1) . 

Choosing p(x, y) = Ix - y I permits a solution following the minimum mutation 
method, and the two problems coincide for 0-1 variables. Associate with each cluster 
I an interval [U(I), V(I)] within which the optimal value lies. For the objects at the 
end of the tree, U(/) = V(I). 1f cluster I is the ancestor of J(1), . , J(K), define 
[U(1), V(I)] from [U[J(1)], V[J(1)]], , [U[J(K)], V[J(K)]] to be the interval of 
values X for which the number of U values greater than X equals the number of V 
values less than X. (It is true, but not obvious, that these maximal X values form an 
interval. If U = V always, X will be the median.) Now, moving from the root toward 
the ends, choose any value in the interval [U(/), V(I)] at the root. Then, for each J, 
choose the value in [U(J), V(J)] which is closest to the fitted value for the ancestor of J. 

13.7.7 Iteration 

In the real case with p(x, y) = (x - y) 2  [or p(x, y) = lx - yi], it is simple to program 
an iterative procedure for computing the nodal values. Each nodal value is replaced 
by the mean (or median) of the neighboring nodal values. This works especially 
quickly for the median. The iteration converges to an optimal solution by a standard 
convexity argument, although this solution may not be unique in the case of the 
median. 

A similar iterative procedure does not necessarily converge in the category-variables 
matching-distance case. 

REFERENCES 

CAMIN, J. H., and SOKAL, R. R. (1965). "A method for deducing branching 
sequences in phylogeny." Evolution 19, 311-326. Each character is assumed to evolve 
through a known sequence of values. The goodness of a tree, constructed on objects 
with known values, is measured by the number of mutations in all characters. Some 
approximate methods of constructing the tree are applied to data on moduli and 
ancient horses. 

CAVALLI-SFORZA, L. L., and EDWARDS, A. W. F. (1967). "Phylogenetic 
analysis—models and estimation procedures." Amer. J. Human Genetics 19, 233-257. 
Some distance models are discussed in which the distance between any two objects 
is the sum of the distances of the links in the unique chain connecting the two objects. 
A minimum-distance tree connecting all objects is one for which the total of the link 
distances is a minimum. This is a continuous-variable version of the minimum-
mutation tree. No solution is cheaply available to the complete problem, but, given 
the tree structure, the optimal link distances and positions of ancestral nodes may be 
computed. 
ESTABROOKE, G. F. (1968). "A generai solution in partial orders for the Camin-
Sokal model in phylogeny." J. Theor. Biol. 21, 421-438. Instead of an order on the 
values taken by each character, each character evolves through a specified tree of 
values. The tree is a partial order with the requirement that any set of values have a 
unique most recent ancestor. 



246 	hffltdmum »dation Methods 

FITCH, W. M. (1971). "Toward defining the course of evolution: minimum change 
for a specific tree typology." Systematic Zool. 20, 406-416. The correct rules for finding 
minimum-mutation fits to a given binary tree are stated (without proof). 
FARRIS, J. S. (1970). "Methods for computing Wagner trees." Systematic Zool. 
19, 83-92. Consider objects as points in N-dimensional space and the ancestors also 
as points. For a given tree, the ancestors are positioned to minimize the sum of dis-
tances between each object or ancestor and its ancestor. If the distance 

D(X, Y) --= I {1 J N} IX(J) — Y(J)] 

is used, recurrence relations similar to those in Section 13.2 determine the optimal 
positions of the ancestors. 

This procedure applies to category variables taking only two values. 
An algorithm for constructing the tree begins with the closest two objects and adds 

the other objects one at a lime, at each stage adding that object which least increases 
the sum of link distances of the tree. 
HARTIGAN, J. A. (1972). "Minimum mutation fits to a given tree." Biometrics 29 
53-65. Rules are proved for finding all the minimum-mutation fits to an arbitrary 
given tree. 
IMMS, A. D. (1957). A General Textbook of Entomology, Methuen, London. 

PROGRAMS 

MMFIT minimum-mutation fit to a given tree. 
LINK 	constructs tree by adding objects in succession to minimize sum of link 

distances. 
MIDDLE amalgamates three objects to form a single object. 
DOT 	represents an array in a dot matrix, using minimum-mutation fits. 



SUBROUTINE MMFIT(X,M,MT,K,XM,NVAL) 
C •• •  	.2D MAY 1973 
C.... FINDS MINIMUM MUTATION FIT OF VARIABLE X TO TREE MT 
C.... INPUT VALUES OF X GIVEN IN INDICES 1,1 .LE. M, OUTPUT VALUES I, I .GT. M. 
C.... M = NUMBER OF OBJECTS, FIRST OBJECT IGNORED 
C.... K = NUMBER OF NODES OF TREE, K.GT.M. 
C.... X = 1 BY K ARRAY 
C 	 ON INPUT X(11 IS REAL BUT TAKES INTEGER VALUES, 1.LE.XIII.LE.1VAL. 
C 	ON OUTPUT, X CONTAINS VALUES FITTED TO NODES 
C.... MT = 1 BY K TREE ARRAY, MT(I).GT.I EXCEPT AT 1.K. 
C.... XM = K BY NVAL, SCRATCH ARRAY 
C.... NVAL = MAXIMUM VALUE OF X11) 
C..    . 

DIMENSION X(K1,XMIK,NVAL1,MT(K) 
C.... CHECK RANGE OF X(11 

DO 20 1=2,14 
NC=O 
IF(XID.GE.1.AND.X(11.LE.NVAL) GO TO 20 
hRITE(6,1I I 
NC=1 

20 CONTINUE 
I FORMAT(I5p33HTH VALUE OF VARIABLE OUT OF RANGE1 

IFINC.NE.01 RETURN 
C.... OPTIMAL ASSIGNMENT TO NODES IGNORING REST OF TREE 

DD 29 1=11,1( 
29 1F(I.GT.M) X(11=0. 

DO 30 1=2,K 
00 30 J=1,NVAL 

30 XM(I,J1=0 
00 31 I=2,14 
J=X(/7 

31 XM(I,J1=1 
DO 32 I=2,K 
XMAX=O 
DO 33 J=1,NVAL 

33 1F(XM(I,A.GT.XMAXi XMAX=XM(I,J1 
DO 34 J=1,NVAL 
IF(XM(I,J).LT.XMAX/ XM(I,J)=0 

34 1F(XM(1.J).NE.01 XM(1,..0.1 
1F(I.EQ.10 GO TO 32 
11=MT(11 
DO 35 J=1,NVAL 

35 XM(11,A=XM(11,J1+XM(1,J) 
32 CONTINUE 

C.... FINO OPTIMAL ASSIGNMENT OVER WHOLE TREE 
DO 40 I=2.1( 
I1=K-14.2 
IT=MT(III 
DO 40 J=1,NVAL 

40 IF(IX(111.EQ.0.0R.X(17).E0.n.AND.XM(11,J1.E0.1.) X(11/ ■J 
RETURN 
END 
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SUBROUTINE LINK1A,K,N,MT,DD,P1 
C... 	  
C.... K 	2*NUMBER OF OBJECTS 
C.... N = NUMBER OF COLUMNS 
C.... A . K m, N BORDEREO ARRAY 
C.... MT 	1 BY K TREE ARRAY, MT11/ NOT NECESSARILY GREATER THAN I. 
C.... DD ». 1 BY K ARRAY, 001II.DISTANCE OF OBJECT I AT AMALGAMATION 
C.... P . PARAMETER SPECIFYING TYPE OF L1NKAGE 
C 	 P.2.,MEANS 
C 	 P.1.,MEDIANS 
C 	 P.O.,MATCHING 
C 	  

DIMENSION MT(K),A(KgNi 
DIMENSION DOAK/ 

DATA CL/4HCLUS/ 
11.K/2 
DO 10 I.M.K 
1F11.EQ.M1 GO TO 10 
A11,1I.CL 

10 CONTINUE 
DO 19 1.2,K 

19 MT11/.0 
C.... INITIALIZE TREE 

~1441N-21+1 
OM.10.**10 
114.2 
JM.3 
DO 20 I.2,M 
DO 20 J.1.14 
IF(J.EQ.1) GO TO 20 
MM.0(N-21+1 
CALL MIDDLE(1111,21,A1J,D,AII,D,AIK,D,DIMM,K,P1 
CALL MIDDLEIA11,21,AIJ,2),A1J,21,A1K,2/,D1,MM,K,P/ 

03.D+01 
IF(D3.GE.DM1 GO TO 20 
IM.I 
.111.J 
DM.D3 

20 CONTINUE 
MT1J10.JM 
MTIIM/*JM 

C.... FINO DISTANCES TO INITIAL LINK 
DO 25 L.201 
IF1MT(Lb.OT.01 GO TO 25 
CALL MIDDLE1A(IM,21,A1.11421,AIL,2),A1K,21,GUL1,M4,K,P1 

25 CONTINUE 
C.... CONSTRUCT CLUSTERS 

KK=K-3 
DO 30 10.1,KK 
IFII.EQ.11/ GO TO 30 
DM.10.**10 
11.2 
12.2 
13.3 

C.... FINO BEST OBJECT TO ADD TO TREE 
DO 50 L.2,M 
IFILMTM.GT.Oi GO TO 50 
IFIDD1U.GE.DMi GO TO 50 
II.—MT(L1 
I2.MT111/ 
I3.L 
DM=0010 

50 CONTINUE 
CALL MIOULEIA111,2/eA1I2,21,A113,2/eA11121.D.MM,K,PI 
MT(131.I 
MT111.I2 
MT111/.1 

C.... UPDATE DISTANCE ARRAY 
DO 60 L.2.14 
IFIMT1L1.OT.0/ D0 TO 60 
CALL MIDDLE1A111,21,A11,21,A1L,U,A(K,21,D1~,K,P) 
CALL MIDDLECA112,21,A11,2),A1L,2),A01,2/.02,MM,KtP1 
CALL MIDDLEIAII3,21,A11,21.AIL,27,A1K,D,D3~,K,P1 
IF(11.EQ.—MEL11 ODO-1=10.9.10 
IF101.LT.DOILlì MT1L1=-11 
IF101.LT.001L11 DD(L1.01 
IF102.1.7.0010/ MT1L1...-1 

DDILI.D2 
IFID3.LT.DOM) MTIL1.-13 
IF1123.1.T.DO(L1/ DO1L1.03 

60 CONTINUE 
30 CONTINUE 

RETURN 
END 

20 46Y 1975 
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SUBROUTINE MIDDLE(XeYeZeUeDeM,N,P) 
C 	 20 MAY 1973 
C.... COMPUTES MIDDLE OF THREE VECTORS X.Y.Z. AND DISTANCE FROM MIDDLE 
C.... X = M BY I VECTOR 
C.... Y = M BY 1 VECTOR 
C.... Z = M BY 1 VECTOR 
C.... U = M BY 1 VECTOR 
C.... D = DISTANCE OF X.Y.Z. FROM U 
C.... M • NUMBER OF ELEMENTS IN VECTOR 
C.... N ■ SKIP FACTDR1 FOR USE WITH ROWS OF MATRIX. SEE DIST. 
C.... P . PARAMETER SPECIFYING DISTANCE MEASURE 
C 	 P - 2., MEANS 
C 	 P • I.. MEDIANS 
C 	 P . O., MATCHING 
C... 	 

DIMENSION XIMI.Y(M/sZIMI.UIM/ 
DO 20 1.1,M.N 
IFIP.EQ.2$ GO TO 21 
IF(IX(11—VII)/SIXIIP-Z(I)/•LE.0.1 UIIi.XII/ 
IFIIVIID—XII/MVIlha(1)1.LE.0./ UID.Y(I) 
IF(IIII)XII)ISIZIIIYI111.LE.0.1 UIII-ZII) 
GO TO 20 

21 U(I/.(X(Ii+V(IMI11)13. 
20 CONTINUE 

D.0 
DD.0 
DO 30 I.10404 
DO=DD+1 
IFIP.EQ.01 GO TO 31 
D.D+IABSIXIII—UdI///**P+IABSIVIIIUM))**P«ALISIZIII—U4I/1/**P 
GO TO 30 

31 IFIX(U.NEWII1I D=D+1 
IFIVID.NE.UIIII D.D+1 
IFIZI11.NE.U(I1I D.D+1 

30 CONTINUE 
0=0/00 
RETURN 
ENO 
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SUBROUTINE DOTIA.M.N.MT.K.XM.NVAL) 
C • • • 	 20 MAY 1973 
C.... REPRESENTS AN ARRAY A, IN A DOT MATRIX. USING THE TREE MT. 
C.... THE VACUE AT CASE I IS DOTTED IF 1T AGREES WITH THE VACUE AT THE SMALLEST 
C 	CLUSTER INCLUDING I. 
C.... A . M bY N BORDERED ARRAY, TAKING INTEGER VALUES BETWEEN 1 AND NVAL.LE.35. 
C.... M 	NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... MT . 1 bY K TREE ARRAY. MTIIi.GT.I EXCEPT AT 11.K. K.LE.100. 
C.... K 	NUMBER OF MODES OF TREE. K.GT.M. 
C.... XM = K BY NVAL SCRATCH ARRAY 
C••• 	  

DIMENSION AIM"MTIK),XMIK,NVALi 
DIMENSION X1100) 
DIMENSION AA136) 
DATA AA/1H.e1H1g1H2e1H3g1H4p1H5g1H6p1H7p1H8g1H9p1HAp1HB. 

.1HCp1HDp1HE.1HF,1HG.IHNIHIpIHJ,1HK.1HL.IHNIHN, 
0.1hU,1HP,1Kle1HR.IHS.IIHT.IHUp1HVelHW,IHXplHYpIHU 

C.... CHECK RANGE OF A 
DO 20 1=204 
DO 20 J.21N 

20 IFIAII,J).LT.1.0R.AII.D.GT.NVAL) WRITE1611) IpJ 
1 FORMATI15.2H ee15,2711 TH DATA VALUE OUT OF RANGE 

C.... COUNT NUMBER IN EACH CLUSTER 
DO 70 1.2.K 
XMII11/=0 

70 IF1I.LE.M) XMI1.11.1. 
DO 71 1.2.K 
IF1I.EQ.K) GO TO 71 
J.MT111 
XM1J.11.XMIJ.1)+XM(1.11 

71 CONTINUE 
WRITE(613) 

3 FORMATISHOTREE) 
C.... PRINT TREE. A LINE AT A TIME. 

DO 80 1=2,M 
J.K 
XMIJiplì.XMCJI1)1 
XIKJ.AAl25) 
DO 81 L=2,K 
LL3K-1.+2 
XFILL.EQ.K) GG TG el 
IFIXMILL.II.GT .Oi XMILL.1).—XMILL,1) 
XILL).AA(1) 
IFIMT1LL).NE.J) GO TO 81 
IFIXMLL.11.EU.01 GO TO 81 
J.LL 

XIA=AAI251 
81 CUNTINUE 

WRITE(6.7! JpAIJelle1XIL).L.2rKi 
80 CONTINUE 

C.... GO THROUGH VARIABLES, ONE AT A TIME 
WRITE(6.41111,J=1.101.1.1.91 

4 FORMATI22X,1815I1p1X1) 
WRITE16,5/111.I=1.91.J.1.101 

5 FORMATI9X./012H 0,411.1X.511)) 
KRITEI6,6) 
6 FORMAT110X.120(1H—)) 
DO 50 JJ=2pN 
DO 30 1.2eM 

30 X11)=A11,JJ) 
CALL MMFITIX.M,MT,K,XMpNVAL) 
OG 41 .1.2,K 
IFII.Eu.K) GO TO 40 
II=MT(I) 
IFIX(1).EG.X1Ilià AtI).0. 

40 CONTINUE 
J=XIII+1. 
IFIJ.LT.1) J=1 
IFIJ.ù7.35l J=36 
XII).AAIJ) 

41 CONTINUE 
WRITEI6p7) 

7 FORMAT(14.A5.3X.20(3A1,1X,2A1)i 
50 CGNT1NUE 

RETURN 
END 
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CHAPTER 14 

Direct Splitting 

14.1 INTRODUCTION 

For Table 14.1, the percentage Republican vote for president in the Southern States 
in 1900-1968, it is natural to seek clusters of states and also clusters of years. For 
example, Kentucky, Delaware, and Maryland have similar voting patterns over ali 
years, and also 1932, 1936, 1940, 1944, the Roosevelt years, have similar votes in ali 
states. 

In Table 14.2, the years have been clustered using euclidean distance, averaging 
squared differences over states. For example, D(32, 40) = {[(2 — 1) 2  + (4 — 3)2  + 
(7 — 11)2  + (40 — 42)2  + (36 — 41)2  + (35 — 48)1/6}1/2. The states have been 
similarly clustered using euclidean distance, averaging squared differences over years. 
The clusters of years and states are plausible. For example, KY, MD, MO are very 
dose together, SC, LA, MS are not quite so dose to each other, and there are large 
distances between the two groups. 

Yet the clusters are somewhat removed from the originai data, since they refer to 
distances rather than data. It would be much more useful to describe the clusters of 
states in terms of their behavior in different years and similarly to describe the clusters 
of years in terms of their behavior in different states. 

What is needed is a model for clusters that expresses interaction between the clusters 
of states and clusters of years. For a generai data matrix, in which all values in the 
matrix are expressed on the same scale, such a model is given in Table 14.3. In this 
model, there are three types of clusters: the row clusters, the column clusters, and the 
data clusters. Each data cluster is the subset of data values indexed by the rows in a 
row cluster and the columns in a column cluster. The data clusters partition the data 
matrix, whereas the row and column clusters each form a tree. Within each cluster, 
the data values are identical. The data matrix could thus be reduced by specifying a 
single value for each data cluster, as in the second matrix in Table 14.3. 

A direct splitting algorithm, for identifying clusters according to the above model 
was first given by Hartigan (1972). Procedures for clustering variables and then 
clustering cases (in order, rather than simultaneously) are given in Tryon and Bailey 
(1970). In Sonquist (1971), a single target variable is predicted by splitting the sample 
into two clusters according to a known binary variable, splitting one of these two 
clusters by a further binary variable, and so on. At each stage, that split is chosen 
which most reduces prediction error. Procedures of this type are applicable to two-way 
(or many-way) clustering models when all the margins are of size 2. For example the 
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•Table 14.1 Republican Vote for President 

Southern states by twentieth century years, in percentages (From Peterson, S. (1963) 
A Statistica! History of the American Presidentia! Elections, Ungar, New York). 

STATES 	 00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 

ALABAMA (AL) 	35 21 24 8 22 31 27 48 14 13 14 18 19 35 39 42 70 14 

ARKANSAS (AR) 	35 40 37 20 28 39 29 39 13 18 21 30 21 44 46 43 44 31 

DELAWARE (DE) 	54 54 52 33 50 56 58 65 51 43 45 45 50 52 55 49 39 45 

FLORIDA (FL) 	19 21 22 8 18 31 28 57 25 24 26 30 34 55 57 52 48 41 

GEORGIA (GA) 	29 18 31 4 7 29 18 43 8 13 15 18 18 30 33 37 54 30 

XENTUCXY (XY) 	49.47 48 25 47 49 49 59 40 40 42 45 41 50 54 54 36 44 

LOUISIANA (LA) 	21 lo 12 5 7 31 20 24 7 11 14 19 17 47 53 29 57 23 

MARYLAND (MD) 	52 49 49 24 45 55 45 57 36 37 41 48 49 55 60 46 35 42 

MISSISSIPPI (NB) 	10 5 7 2 5 14 8 18 4 3 4 6 3 40 24 25 87 14 

MESSOMI (MO) 	46 50 49 30 47 55 50 56 35 38 48 48 42 51 50 50 36 45 

NORTH CAR. (NC) 	45 40 46 12 42 43 55 29 29 27 26 33 33 46 49 48 44 40 

SOUTH CAR. (SC) 	7 5 6 1 2 4 2 9 2 1 4 4 4 49 25 49 59 39 

TENNESSEE (TN) 	45 43 46 24 43 51 44 54 32 31 33 39 37 50 49 53 44 38 

TEXAS (TI) 	31 22 22 9 17 24 20 52 11 12 19 17 25 53 55 49 37 40 

VIRGINIA IVA) 	44 37 38 17 32 38 33 54 30 29 32 37 41 56 55 52 46 43 

WEST VIRGINIA 	54 55 53 21 49 55 49 58 44 39 43 45 42 48 47 54 32 40 

model in Table 14.4, is correctly analyzed by this technique. In extending the tech-
nique to marginal variables taking many values, the clusters of marginal values ob-
tained may possibly overlap, so that no simple representation of the data matrix is 
possible, with a reordering based on the marginal clusters. 

The two-way splitting algorithm given here combines the discipline on marginal 
clusters in Table 14.3 with the generality of the Sonquist procedure (it is applicable to 
many marginal variables). The outcome of the algorithm is a partition of the response 
variable, specified by a hierarchial clustering of each of the marginal variables. 

14.2 BINARY SPLITTING ALGORITHM 

Preliminaries. This algorithm is the basic component of the one-way and two-way 
splitting algorithms. It may be studied independently as a method of dividing a set of 
cases into two clusters. It is assumed that data values A(I, J) (1 S  I  S  M, 1 S  J 5 N) 
are given, where I denotes a case and J denotes a variable. Weights W(I, J) are given 
for the Jth case and Jth variable, where W(I, J) is the number of observations com-
bined in the data value A(I, J). The two clusters of cases to be constructed are C(1) 
and C(2). The weighted averages of the Jth variable over the two clusters are B(1, J) 
and B(2, J). Thus 

B(I, J) = 	{I E C(1)} W(I, J)A (I, na {I E C(1)} 
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The error of a partition is based on the difference between the weighted averages, 

1  

	

e[P(M, 2)] = ( —I {1 J N} [B(1, J) — B(2 J)12) 	
1  yl 

(D(1, J) 	D(2, J)I 
where 

D(L, J) = {I e C(L)} W(I, J). 

The algorithm finds thecase whose removal from the rest most decreases the error 
and begins a cluster with this case. Next, that case is transferred to the new cluster 
which most reduces the error (the error may increase, but the case is transferred never-
theless). This procedure continues until all cases have been transferred. The split that 
has the smallest error during the M transfers is the final split. The error after the Kth 
transfer is E(K). 

Table 14.2 Marginai Trees on Percentage Republican in Presidential Elections 

YEARS 

1932 	1936 	I94o 	I96o 	1964 	1968 

STATES 	SC 

MS 

La 
Kr 
MD 

MO 

	

2 	1 	4 	49 	59 	39 

	

4 	3 	4 	2 5 	87 	i 4 

	

7 	I I 	i 4 	29 	57 	23 

	

4o 	4o 	42 	54 	36 	44 

	

36 	37 	41 	4 6 	35 	42 

	

35 	38 	48 	5o 	36 	45 

DISTANCES BETWEEN YEARS 

(ROCT OF AVERAGE SpDARED DIFFERENCE, OVER STATES) 

32 

3 i 40 

	

6 	5 I 3 6  

	

25 	23 24 h_so 

	

i 8 	18 	i e 	e 	6 8  

	

5o 	45 	47 	30 	34 	64  

DISTANCES BETWEEN STATES (OVER YEARS) 

SC 

12 I LA  

	

18 	14 I MS 

[— 

	

23 	26 	36 	KY 

	

28 	21 	35 	4 I  MD  

	

28 	25 	36 	4 	4 i MO 



1 	1 . 2 	3 	3 

1 	1 	2 	3 	3 

2 	2 	2 	3 	3 

5 	5 	4 	4 	4 

5 	5 	4 	li. 	14 

G 	6 	6 	6 	6 

MARGINAL 

7334 CIIJSTERS 

DATA 

CLUSTER 

1 	2 

3 

y. 1 

y 1 

y . 2 

Y. 3 

254 	Direct Splitting 

srEP 1. Initially, 

D(1, J) = {1 5 I s M} W(I, J), 

B(1, J) = {1 S  I 	
W(I, J)A(I, J) 

 
D(1, J) 

and 
D(2, J) = B(2, J) = O. 

Set K = O. E(0) = O. 

Table 14.3 Direct Partition Model 

i 	i MARGIMAL COLUMN 

CIUSTERS 

D.1 D.2 D.3 

D•2 

D.5 	D.4 

D=6 

Table 14.4 The Sonquist Technique 

C . 1 	C . 2 

R 	1 

2 

SPLIT FIRST ON COLUMNS, 

SPLIT SECCCID ON RCWS 

WITHIN FIRST COLMO. 
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Fru 2. The decrease in error due to transferring case I from cluster l to cluster 2 is 

EE = {1 	N} [A(I, .1) - B(1, JA2  D(1, J)W(I, .1)  
D(1, J) - W(I, J) 

D(2, J)W(I, J)  
- {1 J N} [A(I, J) - B(2, J)]2 

D(2, J) W(I, J) 

The case /, not equal to /(1j, 	, I(K), is transferred, which maximizes EE. 

suP 3. Increase K by 1 and set I(K) = E(K) --= E(K - 1) - EE. Update cluster 
means and cluster weights: 

DO, J) = DO, J) - W(I, J), 

B(1, J) = B(1, J) W(I, J)
B(1, J) - A(I, J) 

, J) 

D(2, J) = D(2, J 	W(I, J), 

B(2, = B(2, J) - W(I, J)
B(2, J) - A(I, J) 

• D(2, J) 

If K is less than M, return to Step 2. 

STEP 4. Set C(2) = {/(1), I(2), 	, l(K)}, where E(K) is a minimum over all K 
(1 K M). 

14.3 APPLICATION OF BINARY SPLITTING ALGORITHM 
TO VOT1NG DATA WITH MISSING VALUES 

Table 14.5 was derived from Table 14.2 by setting each value missing with proba-
bility 0.5. In terms of the algorithm in Section 14.2, MI, J) = 1 if the /th year is 
present for the Jth state, and W(I,J) O if the value is missing. Note that years are 
treated as objects or cases and states are the variables. 

STEP 1. Initially, D(1, J) is the sum of weights for variable J, and B(1, J) is the 
average of values present for variable J. For example, for J = 1, SC, there are four 
years present with values 2, 1, 59, and 39, so D(1, 1) = 4, B(1, 1) = 
(2 + 1 + 59 + 39)/4 = 25. The other values of D(1, J), D(2, J), B(1,1), and B(2, J) 
are given in Table 14.5 beneath the line K = O. 

STEP 2. The object whose transfer to the second cluster most reduces the error is 
1964, the fifth year, / 5. 

STEP 3. Increase K by 1, so K = 1, I(1) = 5, E(1) = -6041. Cluster means and 
cluster weights are updated. For example, 

D(1, 1) = D(1, 1) - W(5, 1) =-- 4 - 1 	3, 
B(1, 1) = 25 + (25 - 59)/3 .= 14. 

Since K 1 6, return to Step 2. 

STEP 2 REPEATED. The next object to be transferred is 1960, / --= 4. And then, 
successively, 1968, 1932, 1940, and 1936. Note that after 1936 is transferred the error 



Table 14.5 Binary Splitting Algorithm on Small Voting Matrix with Missing Values 
(50%, at Random) 

YEARS 

	

(1) 	(2) 	(3) 	(4) 	(5) 	( 6 ) 

	

1932 	1936 	1940 	1960 	1964 	1968 

SC 	2 	1 	 59 	39 

MS 	 3 	4 	25 	87 	14 

LA 	 11 	 29 

Ky 	40 	 42 	y4 	 44 

MD 	36 	37 

MO 	35 	38 	48 	50 

K . o E . o 

B(1,J) 	D(1,J) 	B(2,J) 	D(2,J) 

5C 	25 	4 	0 	0 

VS 	27 	5 	0 	0 

LA 	20 	2 	0 	0 

Ky 	45 	4 	o 	o 

MD 	37 	2 	0 	0 

MO 	43 	4 	0 	0 

	

K - 1 	I(1) - 5 	E - -6041 

B(1,J) 	D(1,J) 	B(2,J) 	D(2,J) 

	

1 14 	3 	59 	 1 

	

12 	4 	87 	1 

	

20 	2 	0 	0 

	

45 	4 	0 

	

37 	2 	0 

	

43 	4 	 0 

	

X . 2 	I(2) . 4 	E • 	-4679 

	

B(1,J) 	D(1,J) 	B(2,3) 	D(2,J) 

	

14 	3 	59 	1 

	

7 	3 	56 	2 

	

11 	1 	29 	i 

	

42 	3 	54 	1 

	

37 	2 	0 	0 

	

40 	3 	50 	1  

K • 3 	I(3) . 6 E . -4270 

B(1,J) 	D(1,J) 	B(2,J) 	D(2,J) 

1 	2 	49 	2 

3 	2 	42 	3 

11 	1 	29 	1 

41 	 2 	49 	2 

37 	2 	0 	0 

40 	3 	50 	1 

	

K . 4 	I(4) . 1 	E .. ..2674 

	

B(1,J) 	D(1,J) 	B(2,J) 	D(2,J) 

1 	1 	33 	3 

	

3 	2 	42 	3 

	

ii 	1 	29 	1 

	

42 	1 	46 	3 

	

37 	1 	36 	1 

	

43 	2 	43 	2  

K - 5 	I(5) • 3 E . -1626 

B(1,J) 	D(1,J) 	B(2,J) 	D(2,J) 

i 	1 	33 	3 

3 	1 	33 	4 

11 	1 	29 	1 

0 	0 	45 	4 

37 	1 	36 	i 

38 	i 	44 	3 
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should again be zero. This requirement checks the hand calculations. (There is a small 
rounding error in Table 14.5, so that the final error is 30 rather than zero.) 

sTEP 4. The smallest error occurs at K =1, so the second cluster consists of 1964 
alone. 

This algorithm is a refinement of the K-means algorithm, takes 0(M2) computa-
tions, and so is appropriate only for moderate data sets. lt is superior to the K-means 
algorithm in being more likely to reach the globally optimal partition. It is guaranteed 
to reach the global optimum for objects in one dimension. 

14.4 ONE-WAY SPLITTING ALGOR1THM 

Preliminaries. A data matrix A(I,J) (1 I M, 1 	N) is given and a 
threshold T. Clusters are to be constructed so that all variables have a within-cluster 
variance of no greater than T. (Different thresholds for different variables are acc,om-
modated by scaling the variables.) During the algorithm, the data matrix is reordered 
so that each cluster is a contiguous sequence of objects. The clusters 1, 2, 3, . . . , KC 
are constructed with cluster / determined by MIN(/), MAX(/) the two clusters it 
splits into. For a minimal cluster /, MIN(/) and MAX(/) are defined to be the first 
and last objects in cluster /. Also, after the algorithm is complete, define V(/) to be 
the set of variables which meet threshold within / but not within any larger cluster. 
The algorithm proceeds by progressively splitting clusters. At the Kth step, there will 
be K clusters /(1), /(2), . , 1(K) partitioning the objects, the minimal clusters in the 
set 1, 2, 3, . , 2K — 1. During the algorithm, V[I(J)] is the set of variables that do 
not meet threshold for any larger cluster. A binary split is performed on some I(J), 
using only the variables in V[I(J)] that exceed threshold. The two new clusters, 2K 
and 2K -F 1, have V(2K)= V(2K + 1) defined to be the set of variables in V[I(J)), 
which exceed threshold in 1(.1). Then V[I(J)] is changed to be the variables in V[I(J)] 
which do not exceed threshold in I(J), and the splitting continues. The splitting stops 
when every nig)] contains only variables which meet threshold in IO. 

The basic idea is that only variables which exceed threshold within a given cluster 
are used in splitting that cluster. 

grEP 1. Define M1N(1) = 1, MAX(1) = M. Set K l, 10) = 1, L = 1. Define 
V(1) = {1, 2, ... , N}. 

STEP 2. Try splitting AL). Compute the variance of each variable J {J e V[I(L)]} 
over the cases in the cluster AL). If none of these variances exceed T, go to Step 4. 
Otherwise, go to Step 3. 

s-rEp 3. Let VV be the set of variables whose variance, over the cases in AL), is 
greater than T. Apply the binary splitting algorithm to the cases /, MIN [AL)] 
/ MAX [/(L)], over the variables in VV. Rcorder the cases so that the first 
cluster consists of objects IL, IL + l, . . . , Il and the second consists of objects 
II + I , . . , IU. Define two new clusters K 1 and K + 2 with MIN(K + 1) = IL, 
MAX(K 1) = Il, MIN(K + 2) = Il + 1, MAX(K + 2) = IU. Define 
MAX[/(L)] = K 4- 2, MIN WL)] = K 1. Define V(K 1) = V(K + 2) = VV, 
and change V[I(L)] to V[I(L)] — VV. Set /(L) = K I , 1(K + 1) = K + 2, in-
crease K by 1, and return to Step 2. 

STEP 4. Increase L by 1 and, if L K, go to Step 2. Otherwise, stop. 
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14.5 ONE-WAY SPLITTING ALGORITHM APPLIED TO 
REPUBLICAN PERCENTAGES 

Either states or years may be treated as variables. In this problem years will be 
variables. The threshold variance is 25. As in other clustering techniques, a small 
threshold will give too many small clusters and a large threshold will give too few 
large clusters. A threshold of 25 corresponds to a standard deviation of 5, which 
seems a reasonable error between similar states. 

STEP 1. MIN(1) = 1, MAX(1) = 6. K = 1, /(1) = 1, L = 1. V(1) = {l, 2, 3, 4, 
5, 6}. 

sTEP 2. Try splitting /(1) = 1. All variables have a variance exceeding 25, ob-
viously. 

STEP 3. The set of variables to be used in the split, VV, is {1, 2, 3, 4, 5, 6}. The 
binary splitting algorithm produces two clusters, {SC, MS, LA} and {KY, MD, MO}. 
New clusters 2 and 3 are defined with M1N(2) = 1, MAX(2) = 3 and MIN(3) = 4, 
MAX(3) = 6. Redefine MIN(1) = 2, MAX(1) = 3. Define V(2) = V(3) =- 
{1, 2, 3, 4, 5, 6}, set V(1) = 0 , 1(1) = 2, /(2) = 3, K = 2, and return to Step 2. 

STEP 2 REPEATED. Try splitting 1(1) = 2. All variables except J = 1 have a variance 
exceeding 25. 

STEP 2 REPEATED. Then VV = {2, 3, 4, 5, 6}, and the binary splitting algorithm 
produces clusters {MS} and {SC, LA}. New clusters 4 and 5 are defined with 
MIN(4) = 1, MAX(4) = 1, MIN(5) = 2, MAX(5) = 3, MIN(2) = 4, MIN(2) = 
5. Define V(4) = V(5) = {2, 3, 4, 5, 6}, set V(2) = {1}, 1(1) = 4, /(3) = 5, K = 3, 
and return to Step 2. 

STEP 2 REPEATED. Since /(1) = 4 contains only one object, the variances for all 
variables are zero; go to Step 4. 

sTEP 4. Set L = 2. Since L s 3, go to Step 2. 

STEP 2 REPEATED. The cluster 1(2) = 3 consists of objects KY, MD, MO. All 
variables have a variance less than 25. Go to Step 4. 

STEP 4 REPEATED. Set L = 3, and go to Step 2. 

STEP 2 REPEATED. The cluster 1(3) = 5 consists of objects SC, LA. The relevant 
variables V(5) are {2, 3, 4, 5, 6}. Of these, all but J = 5 exceed threshold. The cluster 
splits into two single-object clusters {SC} {LA}. These two clusters are 6 and 7, with 
MIN(6) = 2, MAX(6) = 2, MIN(7) = 3, MAX(7) = 3, MIN(5) = 6, MAX(5) = 
7. Define V(6) = V(7) = {2, 3, 4, 6}, V(5) = 5, 1(3) = 6, 1(4) = 7, K = 4; return 
to Step 2. 

No further splits take piace. The history of the splits is represented in Table 14.6. 
A method of using the splitting information to summarize the table is given in Table 
14.7. This method is analogous to the representation of category data by using mini-
mum-mutation fits. The novelty of the one-way splitting algorithm lies in the associa-
tion with each cluster of the variables approximately constant over the cluster. 
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SECOND SPLIT 
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FIRST SPLIT 
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4 	3 	4 25 87 	14 
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MS 
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MD 
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Table 14.7 Representation of Data Using One-Way Splitting Algoritbm 

VARIABIE . 1932 

VARIABIE 2 . 1936 

,ARIABIE 3 1940 

VARIABIE 4 . 1960 

VARIABLE 5 . 1964 

VARIABIE 6 1968 

IA 
	

SC 
	

MS 
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14.6 TWO-WAY SPLITTING ALGORITHM 

Preliminaries. A mode] for which the two-way splitting algorithm is appropriate 
is given in Table 14.3. There is a data matrix A(1, J) (1 S  I S M, 1 S J S N) with 
entries comparable among both rows and columns. The algorithm computes row 
clusters 1, 2, . , KR, column clusters 1, 2, ... , KC and data clusters 1, 2, 3, ... , 
KD. The data cluster K is the submatrix of data values with rows in the row cluster 
IR(K) and with columns in the column cluster IC(K). Each data point lies in just one 
data cluster, so these clusters partition the matrix. The row clusters 1, 2, ... , KR 
form a tree. The structure of the tree is described by a pair MINR(I), MAXR(I), 
which specify the two largest clusters properly included in I, except for minimal 
clusters, when they specify minus the first and last row in cluster I. The matrix is 
reordered during the algorithm so that row clusters are contiguous sequences of rows. 
Similarly, for columns, the column clusters are 1, 2, . . . , KC, forming a tree described 
by the pair MINC(/), MAXC(/), which for the minima] clusters are minus the first 
and last columns in cluster I. Minus values of MINC and MAXC thus identify 
minimal clusters. 

During the algorithm, the quantity VR(K) is the average variance of columns in 
the Kth data cluster, and the quantity VC(K) is the average variance of rows in the 
Kth data cluster. The quantity VR(K) is set zero if all column variances are less than 
a threshold T, and the quantity VC(K) is set zero if all row variances are less than T. 
At the conclusion of the algorithm, all VR(K) and VC(K) are zero. 

At each step an average variance is computed for the Ith row cluster by averaging 
over all VR(K) for which VR(K) O, IR(K) = I. Similarly, an average variance is 
computed for the Ith column cluster by averaging over all VC(K) for which VC(K) 
O, IC(K) = I. That row or column cluster which has a maximum average variance is 
split by using the binary splitting algorithm. If the Ith row cluster is split, the data 
used will be the data clusters K such that IR(K) = I, VR(K) # O. After the split, 
each of these clusters will be replaced by two clusters, and two new row clusters will 
exist. New values of VR and VC are computed within the new clusters, and the next 
step is performed. 

The terminology is illustrated in Table 14.8. 

STEP 1. Initially KD = 1, MINR(1) = — 1, MAXR(l) = — M, MINC(1) = — 1, 
MAXC(1) —N. Also KR = 1, KC = 1, IR(1) = 1, IC(1) = 1. The quantity 
VR(I) is the average variance of columns, 

VR(1) = {1 J N} {1 I M}
[A(I,  J) —  AVE(J)] 2 

 

(M-1)N 

where AVE(J) = {1 S  I S M} A(1, J)1 M. 1f all column variances are less than T, 
set VR(1) = O. Similarly define VC(1), the average variance of rows. 

sup 2. For each L (1 S  L  5 KR), define the quantities RSUM(L) and RDF(L) 
as follows. Initially set RSUM(L) = RDF(L) = O (1 S L S  KR). For all K 
(1 S K S KD), if VR(K) é O, increase RSUM[IR(K)] by VR(K){MAXC[IC(K)] — 
MI NC [IC(K)] + 1} and increase RDF [IR (K)] by MAXC [IC(K)] — MINC[IC(K)] 
1. The quantity RSUM(L)/RDF(L) is then the average variance of the Lth row 
cluster over all data clusters with row margin equal to L and variances exceeding 
threshold. 
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Table 14.8 Two-Way Splitting Terminology 

COLMINS 

i 	2 	3 	4 	5 

	

Bar, i 
	

2 

	

2 
	

3 

	

3 	 5 	6 

4 

11Ciel CLUSTERS 	i . 	, 2 . (2) , 3 	(1,2) , 4 . (3,4) . 

COLUM11 CLUSTERS: i - (1,2) , z 	(3) , 3 . (1,2,3) , 4 . (4,2 . 

DATA CLUSTERS : i 	((1,1), 0,2), 0,3), (2,1), (2,2), (2,3)) , 

2 - ((1,4), 0,5)) , 	3. E(2,4), (2,5)) , 4 . ((3,1), (3,2), (4,1), 4,2)) , 

5 	((3,3), (4,3)) , 	6. (3,4), (3,5), (4,4), (4,5)) . 

DATA CLUSTERS ROW CLUSTE_RS 	IR(1) • 3 , IR(21 . 1 p 321( 3) - 3 , IR(4) . 4 , 

IR(5) . 4 , IR(6) - 4 . 

DATA CIUSTERS COLUM CLUS'MRS: IC(1) 3 , IC(2 ) . 4 , IC(3) . 4 

IC(4) .1, IC(5). 2 , IC(6) 	4 . 

ROW TREE STRUCTURE : IMMO ) 1 , MAXR(1 ) i 

IIIMR(2) . 2 , MAXR(2) 2 

MEM( 3 ) . , MAXR( 3 ) 2 

MIRR(4) . 3 , MAIM(4) 4 

caute 'ma sTRucrule: Icarc(i - 1 	wac(1) - 2 

NO3C(2) . 3 , MAXC(2) . 3 

MEM( 3) . 1 , MA)CC( 3) 	2 

mc cui 4 , MAXC(4) 5 

STEP 3. Similarly, compute for the Lth column cluster the average variance of rows 
in data clusters with column margin equal to L and row variances exceeding threshold. 
Let this average be CSUM(L)/CDF(L). 

sTEP 4. lf the maximum value over all row and column clusters of RSUM(L)/ 
RDF(L) and CSUM(L)/CDF(L) is zero, stop. Otherwise, choose that row or column 
cluster with maximum variance--say, the row cluster, L. Necessarily, L will be a 
minimal row cluster. Consider the data matrix obtained by combining data clusters 
K for which IR(K) -= L, VR(K) O. The binary splitting algorithm is applied to the 
rows of this matrix to yield row clusters [after reordering of the rows MINR(L), 
MINR(L) I , . . . , MAXR(L)] {/1, /1 I , . . . , /2} and {/2 -I- 1, /2 -I- 2, . . , 
/3}. 



3 	4 25 14 87 

2 	1 	4 49 39 59 

7 11 14 29 23 57 

40 40 42 54 44 36 

36 37 41 46 42 35 

35 38 48 50 45 36 

4 	3 	4 25 14 87 

2 	1 	4 49 39 59 

7 11 14 29 23 57 

40 40 42 54 44 36 

36 37 41 46 42 35 

35 38 48 50 45 36 

M 
	

4 3 4 25 14 87 

SC 
	

2 	1 	l& 49 39 59 

LA 7 11 14 29 23 57 

KY 40 40 42 54 44 36 

MD 36 37 In 46 42 35 

MO 35 38 48 50 45 36 

M 	4 	3 4 25 14 87 

SC 	2 	1 	4 45 39 59 

LA  7 11 14 29 23 57 

KY 40 40 42 54 44 36 

MD 36 37 41 46 42 35 

MO 35 38 48 50 45 36 

SIKTH SPLIT 

32 36 40 6o 68 64 

SEVENTH SPLIT 

32 36 40 6o 68 64 

M 
	

4 3 4 25 14 87 

SC 
	

2 	1 	4 49 39 59 

LA 7 11 14 29 23 57 

KY 40 40 42 54 44 36 

mr, 36 37 41 46 42 35 

MO 35 38 48 50 45 36 

MAL (- SEVENTH) SPLIT 
32 36 40 60 68 64 

M 	4 3 4 25 14 87 

SC 	2 	1 	4 49 39  59 

LA  7 11 14 29 23 57 

KY 40 40 42 54 44 36 

MD 36 37 41 46 42 35 

MO 35 38 48 50 45 36 
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STEP 5. Now the clusters are updated as a result of the split. First, two new row 
clusters KR + 1 and KR 2 are defined, with MINR(KR + 1) = —11, 
MINR(KR + 2) —12 + 1, MAXR(KR 1) = —/2, MAXR(KR -F 2) = —13. 
Also redefine MINR(L) = KR + 1, MAXR(L) = KR -I- 2. Each cluster K 
(1 S K S  KD) with IR(K) = L, VR(K) O is itself destroyed, and generates two 
new clusters. Define IR(K) = KR + 1, increase KD by one, and define IR(KD) 
KR + 2, IC(KD) = IC(K). Also compute new average cluster variances VR and 
VC within the new clusters K and KD. Increase KR by 2. Return to Step 2. (Step 5 
is analogous if a column cluster is split.) 

14.7 TWO-WAY SPLITTING ALGORITHM APPLIED TO 
REPUBLICAN VOTE FOR PRESIDENT 

(See Table 14.9 to follow the sequence of splits.) 
Choose a threshold variance, T = 25. 

STEP 1. Initialize the number of clusters, KD = 1, and the cluster boundaries 
MINR(1) = —1, MAXR(1) = —6, MINC(1) —1, MAXC(1) = —6. The number 

Table 14.9 Sequence of Splits of Republican Vote for President 

INITIAL DATA 
	

FIRST SPLIT 
	

SECOND SPLIT 

32 36 40 60 64 68 
	

32 36 40 60 68 64 
	

32 36 40 60 68 64 

Sa 

M 

ut 
KY 

MD 

MO 

M 

se 
LA 

KY 

MD 

MO 

M 

SC 

LA 

KY 

MD 

MO 

2 	1 	4 49 59 39 

4 3 4 25 87 14 

7 11 14 29 57 23 

40 40 42 54 36 44 

36 37 41 46 35 42 

35 38 48 so 36 45 

SC 	2 	1 	4 49 39 59 	SC 	2 	1 	4 49 39 59 

M 	4 3 4 25 14 87 	M 	4 	3 4 25 14 87 

7.A 	7 11 14 29 23 57 	LA 	7 11 14 29 23 57 

KY 40 40 42 54 44 36 	KY 40 40 42 54 44 36 

MD 36 37 41 46 42 35 	MD 36 37 41 46 42 35 

MO 35 38 413 50 45 36 	No 35 38 48 50 45 36 

THIRD SPLIT 	 FOURTH SPLIT 
	

FIFTH SPLTP 

32 36 40 60 64 68 
	

32 36 40 60 68 64 
	

32 36 40 GO 68 64 

RO' ( CEUSTERS 	(MD)((SC)(IA))(KY MD MO) 

COL CILMTERS 	((32 36)(40))((6o)(68))(64) 
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of initial row clusters is KR = 1, and the number ofinitial column clusters is KC = 1. 
The row cluster corresponding to data cluster I is IR(1) = 1. The column cluster 
corresponding to data cluster 1 is IC(1) = 1. 

STEP 2. The quantity RSUM(1) is the sum of all above-threshold variances within 
columns in data clusters whose marginai row cluster is 1. Thus RSUM(1) = 1827. 
The quantity RDF(1) is the number of such variances, RDF(1) = 6. Then RSUM(1)/ 
RDF(1) = 304. 

STEP 3. For column cluster 1, CSUM(1)/CDF(1) = 365. 

STEP 4. The maximum value of RSUM(L)/RDF(L) and CSUM(L)/CDF(L) is 365. 
The cluster to be split is thus column cluster 1. The data clusters involved in the split 
consist of the single data cluster, 1. The binary splitting algorithm splits the columns 
into years {1932, 1936, 1940, 1960, 1968} and {1964}. After reordering, the clusters 
are (1, 2, 3, 4, 5} and {6} in the order 1932, 1936, 1940, 1960, 1968, 1964. 

STEP 5. Two new column clusters 2, 3 are constructed with MINC(2) = —1, 
MAXC(2) = —5, MINC(3) = —6, MAXC(3) = —6. Redefine MINC(1) = 2, 
MAXC(1) = 3, denoting that column cluster 1 has divided into column dusters 2 and 
3. The data cluster 1 is destroyed and replaced by two new data clusters. For the new 
data cluster 1, IR(1) = 1, IC(1) = 2, so that the new marginal column cluster is 2. 
For the new data cluster 2, IR(2) 1, IC(2) --= 3. Finally the average variances of 
rows and eolumns are computed in the new clusters: VR(1) = 281, VR(2) = 350, 
and VC(1) = 133, VC(2) = O. The second-row variance VC(2) is zero because the 
rows in cluster 2 consist of a single element. Increase KC to 3 and KD to 2. Return 
to Step 2. 

STEP 2 REPEATED. There is a single row cluster with RSUM(1)/RDF(1) = 304. 

STEP 3 REPEATED. There are three column clusters, I , 2, 3. Initially CSUM(L) = 
CDF(L) = O (1 L 3). For all K (1 K 2), increase CSUM[IC(K)] 
by VC(K){MAXR[IR(K)] — MINR[IR(K)] + 1} and increase CDF[IC(K)] by 
MAX[IR(K)] — MINR[IR(K)] + 1. That is, with K = 1, increase CSUM(2) by 
133 x 5 and increase CDF(2) by 5, and with K = 2, since VC(2) = O, make no 
change. The optimal value of CSUM(L)/CDF(L) is therefore 133 for L = 2. 

STEP 4. The row or column cluster with maximum average column or row variance 
is row cluster 1, for which the average is 304. The binary splitting algorithm yields 
row clusters {SC, MS, LA} and (KY, MD, MO} or, without changing the ordering, 
rows {1, 2, 3} and {4, 5, 6}. 

STEP 5. The clusters are updated by first adding row clusters 2,3 with MIN(2) = 
—1, MAXR(2) = —3, MINR(3) = —4, MAXR(3) = —6. The row cluster 1 
splits into MINR(1) = 2 and MAXR(l) = 3. Each data cluster K (1 K 2) is 
destroyed and generates two new clusters. The cluster 1 has IR(1) = 2, IC(1) = 2. 
Increase KD to 3 with IR(3) =- 3, IC(3) = 2. Compute VR(1) = 116, VC(1) = 268, 
VR(3) --= O, VC(3) = 31. Note that VR(2) = O because all columns in the third data 
cluster have variance less than the threshold, 25. In later row splits, the third data 
cluster Wiii be ignored. For K = 2, IR(2) = 2, IC(2) = 3. lncrease KD to 4 with 
IR(4) = 3, 1C(4) = 4. Compute VR(2) = 281, VC(2) = O, VR(4) = O, VC(4) = O. 
Increase KR to 3. Return to Step 2. 
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Table 14.10 Reduced Representation of Republican Vote Based on Two-Way Split 

32 	36 	40 	6o 	68 	64 

MS 
	

4 	25 14 87 

SC 
	

49 	39 	
58 

11 	 26 

la 38 44 50 43 36 

MD 

MO 

STEP 2 REPEATED. There are three row clusters, for which RSUM(L) = O, 
RDF(L) = O, initially. There are contributions from the four data clusters: for K 1, 
1R(1) = 2, VR(1) = 116, so RSUM(2) becomes 698, RDF(2) becomes 5; for K = 2, 
1R(2) = 2, VR(2) = 281, so RSUM(2) becomes 979, RDF(2) becomes 6; for K 3 
and K = 4, VR = O, so no change in RSUM occurs. The maximum value of 
RSUM(L)/RDF(L) = 163 at L = 2. 

sTEP 3 REPEATED. The maximum value of CSUM(L)/CDF(L) = 149 at L = 2. 

sTEP 4 REPEATED. Split row cluster 2. The clusters involved in the split are those 
with IR(K) = 2—that is, K 1, K = 2. The split is into rows {MS} and {SC, LA}, 
or, after reordering the rows, {1} and {2, 3}. 

STEP 5 REPEATED. New row clusters 4 and 5 are defined, with MINR(4) = —1, 
MAXR(4) —1, MINR(5) = —2, MAXR(5) = —3. Redefine MINR(2) 4, 
MAXR(2) = 5. Each of the clusters 1 and 2 is destroyed and replaced by two new 
clusters. Define IR(1) = 4, 1C(1) = 2, IR(5) = 5, IC(5) = 1, increasing KD to 5. 
The new average variances are VR(1) = 1, VC(1) = 90, VR(5) = 82, VC(5) = 85. 
For cluster 2, define IR(2) = 4, 1C(2) = 3 and IR(6) = 5, IC(6) = 3, increasing KD 
to 6. The new average variances are all zero. Increase KR to 5 and return to Step 2. 

The splitting continues in this way until all within-cluster variances of rows and 
columns are within threshold. The complete sequence of splits for this data set is 
given in Table 14.9, and a reduced representation of the data on the fifteen final 
clusters is given in Table 14.10. The basic conclusions are that KY, MD, and MO are 
similar in all years. The years 1932, 1936, and 1940 are similar in each of the states 
MS, SC, and LA, but {1932, 1936} differ from {1940} in the states KY, MD, and MO. 

14.8 THINGS TO DO 

14.8.1 Running the Splitting Algorithm 

The binary splitting algorithm is a more rigorous version of the K-means algorithm, 
applicable to the same types of data. Use, for example, the mammal's milk or the 
New Haven school data. The one-way splitting algorithm treats variables and cases 
differently, ending with a hierarchical clustering of cases in which each cluster is 
characterized by certain variables being approximately constant within the cluster. 
The variables may be measured on different scales, but they should be rescaled before 
application of the algorithm so that an error of one unit means the same for each 
variable. Acidosis patients (Table 14.11) are suggested as a trial data set. 



Table 14.11 Acidosis Patients 

FIRST VARIABIE 	PH IN CEREBROSPINAL FIUID (nanomol/litre) 

SECOND VARIABIE PH IN BLOOD (nanomol/litre) 

TUIRD VARIABIE . HCO3 IN CEREBROSPINALFIU1D (millimolee/litre) 

FOURTH:VARIABLE . HCO3 IN BLOOD (millimoles/litre) 

IlkniVARIABLE'. CO2 IN CEF(EBROSPINAL FLUID (mm mercury) 

S]XTH VARIANE - CO2 IN BLOOD (mm mercury) 

	

39.8 	38.0 	22.2 	23.2 	38.8 	36.5 

	

53.7 	37.2 	18.7 	18.5 	45.1 	28.3 

	

47.3 	39.8 	23.3 	22.1 	48.2 	36.4 

	

41.7 	37.6 	22.8 	22.3 	41.6 	34.6 

	

44.7 	38.5 	24.8 	24.4 	48.5 	38.8 

	

47.9 	39.8 	22.0 	23.3 	46.2 	38.5 

	

48.4 	36.7 	21.0 	21.3 	44.5 	32.6 

	

48.4 	35.1 	23.9 	24.0 	50.6 	35.0 

	

48.4 	45.7 	18.6 	14.9 	39.4 	28.8 

	

41.7 	81.3 	9.8 	4.2 	17.8 	12.9 

	

46.2 	42.7 	15.5 	15.0 	31.3 	26.8 

	

48.4 	42.2 	19.6 	18.7 	41.6 	32.6 

	

49.6 	55.0 	14.6 	11.3 	31.8 	25.7 

	

47.3 	59.4 	10.4 	7.5 	21.5 	18.6 

	

42.7 	49.0 	15.3 	9.5 	26.9 	19.0 

	

38.5 	47.9 	13.7 	9.4 	23.0 	18.7 

	

46.2 	36.1 	23.2 	27.3 	46.9 	39.8 

	

51.3 	39.6 	23.1 	26.8 	52.3 	43.3 

	

49.0 	40.1 	18.9 	20.0 	40.4 	32.4 

	

46.0 	41.4 	18.9 	20.0 	44.8 	40.1 

	

50.9 	40.8 	23.3 	25.5 	52.0 	42.3 

	

50.0 	41.4 	24.6 	25.2 	53.8 	42.3 

	

49.0 	39.5 	24.5 	26.4 	52.4 	42.3 

	

49.4 	40.9 	22.9 	28.5 	53.1 	47.2 

	

47.2 	38.5 	27.2 	26.4 	54.9 	40.9 

	

47.7 	38.0 	26.2 	29.2 	55.5 	44.6 

	

49.0 	41.9 	27.6 	28.9 	58.0 	49.0 

	

53.1 	39.4 	26.2 	33.0 	59.9 	52.2 

	

52.5 	53.8 	29.4 	32.0 	66.2 	56.9 

	

51.3 	41.7 	28.4 	31.1 	62.6 	52.4 

	

52.7 	43.8 	30.4 	34.6 	69.0 	61.4 

	

48.2 	38.6 	29.4 	34.0 	60.6 	52.6 

	

42.7 	37.2 	20.7 	18.6 	38.6 	29.2 

	

44.2 	33.9 	20.7 	19.1 	40.3 	26.8 

	

43.6 	35.5 	21.9 	21.8 	41.7 	32.2 

	

49.0 	33.9 	22.4 	23.3 	46.9 	30.6 

	

54.9 	33.8 	22.9 	34.8 	45.1 	32.1 

	

46.6 	37.3 	22.5 	24.9 	44.8 	37.4 

	

47.5 	36.4 	22.3 	22.9 	45.4 	33.3 

	

44.3 	32.8 	22.8 	24.8 	42.8 	32.5 
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Table 14.12 Profitability of Sectors of U.S. Economy 
Profit as a percentage of stockholders' equity. 

2 ALL MANUFACTURING CORPORATIONS (EXCEPT NEWSPAPERS ) 
3 TOTAL CURABLE 

MOTOR VEHICIES AND EQUIPMENT. 
5 ErECTRICAL MACHINERY, EQUIPMENT, AND SUPPLIES. 
6 MACHINERY (EXCEPT EIECTRICAL). 
7 FABRICATED METAL PRODUCTS 
8 PRIMARY IRON AND STEEL INDUSTRY 
9 PRIMARY NON-FERROUS METAL INDUSTRIES. 

10 STONE, CIAY, AND GLASS PRODUCTS 
11 FURNITURE AND FIXTURES. 
12 LUWER AND WOOD PRODUCTS (EXCEFT FURNrTURE). 
13 INSTRUMENTS AND REIATED PRODUCTS. 
14 MISCELIANEOUS MANUFACTURING (INCIJJDING ORDNADICE). 

2 TOTAL NON-DURABIE 
3 FOOD AND KENDRED PRODUCTS 
4 TOBACCO MANITFACTURES. 
5 TEXTILE ?CELL PRODUCTS 
6 APPAREL AND REIATED PRODUCTS 
7 PAPER AND ALLIED PRODUCTS. 
8 PRINTING AND PUBLISHING (EXCEPT NEWSPAPERS ). 
9 CHEMICALS AND ALLIED PRODUCTS. 

i o PETROIEUM REFINING. 
i RUBBER AND MISCELLANEOUS PIASTIC PRODUCTS. 
12 LEATHER AND LEATBER PRODUCTS. 

59 	6o 	61 	62 	63 	64 	65 	66 	67 	68 

2 ALL 	10. 	9. 	9. 	IO. 	10. 	12. 	13. 	13. 	12. 	12. 

	

3 TOTA 	10. 	9. 	8. 

	

4 MOTO 	14. 14. 	11. 

	

5 EIEC 	13. 10. 	9. 

	

6 MACH 	Io. 	8. 	8. 

	

7 FABR 	8. 	6. 	6. 

	

8 PRIM 	8. 	7. 	6. 

	

9 PRIM 	8. 	7. 	7. 

	

lo STON 	13. lo. 	9. 

	

Il FuR 	9. 	7. 	5. 

	

12 LUM 	9. 	4. 	4. 
13 INS 	13. 12. 	11. 
14 MIS 	9. 	9. 	10. 

	

2 TOTA 	10. 10. 	10. 

	

3 FOOD 	9. 	9. 	9. 

	

4 TOBA 	13. 13. 	14. 

	

5 TEXT 	8. 	6. 	5. 

	

6 APPA 	9. 	8. 	7. 

	

7 PAPE 	Io. 	9. 	8. 

	

8 PRIN 	11. 	9. 

	

9 CHEM 	14. 12. 	12. 

	

10 PST 	10. 10. 	10. 

	

11 RUB 	11. 	9. 	9. 
12 LEA 	9. 	6. 	4. 

	

10. 	10. 	12. 	14. 	14. 	12. 	12. 

	

16. 	17. 	17. 	20. 	16. 	12. 	15. 

	

10. 	lo. 	14. 	15. 	13. 	12. 

	

9. 	lo. 	13. 	14. 	15. 	13. 	12. 

	

8. 	8. 	10. 	13. 	15. 	13. 	12. 

	

5. 	7. 	9. 	10. 	10. 	8. 	8. 

	

8. 	8. 	Io. 	12. 	15. 	n. 	11. 

	

9. 	9. 	10. 	10. 	10. 	8. 	9. 

	

8. 	8. 	10. 	13. 	14. 	12. 	12. 

	

6. 	8. 	10. 	10. 	10. 	9. 	15. 

	

12. 	12. 	14. 	18. 	21. 	18. 	17. 
9. 9. 	10. 	11. 	15. 	13. 	12. 

10. 10. 	12. 	12. 	13. 	12. 	12. 

	

9. 	9. 	lo. 	11. 	11. 	n. 	n. 

	

13. 	13. 	13. 	14. 	14. 	14. 	14. 

	

6. 	6. 	9. 	11. 	10. 	8. 	9. 

	

9. 	8. 	12. 	13. 	13. 	12. 	13. 

	

8. 	8. 	9. 	9. 	11. 	9. 	10. 

	

10. 	9. 	13. 	14. 	16. 	13. 	13. 

	

12. 	12. 	14. 	15. 	15. 	13. 	13. 

	

10. 	11. 	11. 	12. 	12. 	13. 	12. 

	

10. 	9. 	11. 	12. 	12. 	10. 	12. 

	

7. 	7. 	11. 	12. 	13. 	12. 	13. 
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Table 14.13 Connecticut Votes for President 

From Scammon, R. M. (1965). America at the Polls, University of Pittsburgh, 
Pittsburgh. 

1920 	 1924 	 1928 

Rep. 	Dem. 	Other 	Rep. 	Dem. 	Other 	Rep. 	Dem. 	Other 

FAIRFIELD 	55251 	24761 ' 3101 	58041 	18815 	10791 	71410 	55491 	1047 

HARTFORD 	54046 	30287 	4646 	61381 	28139 	9622 7 59 97 
 LITCIELD 14405 	6938 	504 	15499 

	E7 

2239 	 6502 

5 	15108 
MIDD 

M2
LESEX 	8447 	4170 	331 	

3
4009 	995 	711 95075 	773 868 96 	11  7380 	11r85 

NEW NAVEN 	65938 	37977 	5559 	
9383 

9709 	889 18205 	
80952 	82657 	1439 

NEW LONDON 17422 	 8615 	2386 	21378 	16299 	292 
5161 rOLIÀND 	5135 	2308 	322 	 885 	 4256 	126 
9488 WINDHAM 	859 4 	5071 	207 	 5475 	974 

	

10040 	9447 	66 

1932 	 1936 	 1940 

72238 	64367 	8092 	67846 	87329 	8088 	91190 	93688 	829 
72611 	72322 	5220 	65652 	103450 	7216 	88155 	114336 	462 

18682 	13469 	660 	18850 	17468 	87522956 	19537 	49 

10770 9286 	344 	10925 	12294 	359 	13447 	13044 	39 

79019 	86876 	8296 	76614 	117308 	10689 	103100 	126072 	517 

19721 	19576 	858. 	2 1367 	24999 	1337 

	

23329 	28286 	98 
6676 	488 5857 	4985 	455 	5965 	 7669 	25 

9522 	10801 	206 	11466 	12605 	857 	1 72 503 	14989 

1952 	

43 

1944 	 1948 

103693 	99181 	2423 	118636 	90767 	7669 	167278 	106403 	1814 

95274 	127841 	1153 	105262 	124874 	5157 	150332 	146551 	832 

24019 	19212 	248 	26848 	18628 	823 	35735 	20163 	107 
14315 	13551 	176 	16119 	14609 	537 	22157 	15722 	74 

108883 	123450 	1811 	120769 	121591 	6633 	165917 	136.476 	1149 

24153 	29304 	285 	27416 	29425 	973 	381 4 8 	31374 	148 

8208 	7721 	117 347 	13466 	9425 	52 

12032 	14886 	104 13692 	1 
7970 

 5433 	328 	17979 	15535 	74 

1956 	 1960 	 1964 

199841 	84890 	116 	167778 	146442 	6 	125576 	194782 	261 

175894 	126923 	25 	136459 	195403 	z 	88811 	240071 	622 

40029 	17226 	6 	34043 	29062 	3 	20834 	40172 	62 
25496 	13851 	e 	22045 	22158 	1 	14697 	30517 	71 

191215 	112208 	36 	136852 	188685 	2 	97656 	218743 	171 
43453 	27317 	11 	38070 	40625 	1 	24391 	94551 	49 

	

15880 1 	 0 	 58 
20029 	13553 	

15386 	14575 
553 	2 	15180 	20105 	0 	

9951 	22195 

	

9080 	25233 	19 

The two-way splitting algorithin produces more beautiful pictures, but it treats 
variables and cases symmetrically. Thus the data must be prescaled so that all data 
values are comparable. (This requirement restricts the range of data types to which 
the algorithm may be applied.) Suitable data sets are the profitability of various 
sectors of the economy (Table 14.12) and the votes for President in Connecticut 
(Table 14.13). The votes should be converted to percentage Republican. 

14.8.2 Missing Values 

The two-way splitting algorithm permits an estimation of missing values once the 
clustering is complete. A missing value is estimated by the mean of the smallest 
data cluster containing it. 
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14.8.3 Error Analysis 

An informal error analysis is provided by repeating the algorithm on the data several 
times, at each run declaring each value missing with probability 0.5. Clusters that are 
stable or reliable will reappear (with perhaps a little change) in most of the runs. 
This technique prevents finding and interpreting excessive numbers of clusters. 

14.8.4 Range 

Instead of using variance to measure spread within a cluster, it is plausible to use the 
range or the mean deviation from the median. These measures will be less sensitive 
to a few large values, which might dominate the choice of the first few splits, even 
though they will be isolated in small pockets later. Both measures are more convenient 
than the variance for small hand calculations. 

14.8.5 Binary Splits and Range 

Divide a set of M points in N dimensions into two clusters to minimize the sum of the 
ranges within clusters summed over all variables. Show that the division conforms to 
order for at least one variable, so that each value of the variable in one cluster is less 
than or equal to each value of the variable in the other cluster. Using the range in the 
one-way splitting algorithm thus allows identification of a few variables for each 
split which conform to the split. 

14.8.6 Experiments 

It would be interesting to know whether the binary split algorithm often produces 
better clusters than the K-means algorithm. This should be tried for various numbers 
of cases, numbers of variables, and data types. Various normal mixtures would be 
plausible trial data. 

For the two-way splitting algorithm, begin with an 8 x 6 data matrix divided into 
four data clusters. In each cluster the value is constant plus normal noise for each data 
value. See how well the data clusters are recovered for various choices of constants 
and noise variance. 

14.8.7 One-Way Mode! 
The one-way splitting algorithm partitions the data matrix into data clusters in which 
values are constant, but the corresponding marginal column cluster always consists 
of a single variable. This is necessary because values are not directly comparable 
between variables. 
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split (into four data clusters) of the residuals by maximizing 	where {r i} is a 
row vector of f 1's, corresponding to row clusters, {c .f} is a column vector of f l's 
corresponding to column clusters, and {4} is the residua) matrix. This technique is 
to be repeated on each of the clusters obtained. 
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technique is a step-wise application of a one-way analysis of variance model. Its 
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means explain more of the variation in the dependent variable than any other such set 
of subgroups." A set of objects is given on which are defined a dependent variable Y 
and a number of independent variables XI , X2, , Xi,. During the algorithm, a 
partition 1, 2, 3, . . . , K of the objects is constructed by successively splitting. 

STEP 1. Begin with an initial partition consisting of the set of all objects, K = 1. 

STEP 2. If all members of the partition have a sum of squared deviations of Y less 
than P, stop. lf K > R, stop. 

sruP 3. Choose an arbitrary member of the partition not tried before—say, I. 
For each variable Xj  (1 < J < P) consider splits of I into two clusters, in the first 
of which Xj  e A j  and in the second of which Xj  A j . (The possible forms of the 
set A j  depend on the type of variable A j . If X, is a category variable, A j  is any 
subset of the possible values of Xj ; if Xj  is an ordered variable, Aj  is of form 
{Xj  i Xj  < Cj }.) The split with largest between-cluster sum of squares over all Xj 

 and over all A j  is executed, provided this between-cluster sum of squares exceeds Q. 
Return to Step 2. 

This algorithm has been applied to a large number of problems, especially in the 
social sciences. The book contains a number of real examples, some careful studies 
validating the technique (using random data), and comparisons with other tech-
niques. 

TRYON, R. C., and BAILEY, D. E. (1970). Cluster Analysis, McGraw-Hill, New 
York. Variables are first clustered in a factor analytic approach, and a few factors 
are obtained. By using these factors as variables in the euclidean distance calculations, 
objects are clustered by algorithms of the K-means type. 

PROGRAMS 

SPL1T splits rows into two clusters to approximately minimize the within-cluster 
sum of squares averaged across the columns. 
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SPUTI splits rows until ali variables have sufficiently small variance within all 
clusters. 

OLTT1 prints output from SPUTI. 
SPL1T2 partitions data matrix into blocks within which all row and column variances 

are sufficiently small. 
CSPLIT splits columns in SPLIT2. 
RSPLIT splits rows in SPLIT2. 



SU8ROUTINE SPLIT1(AeW,M,N,NB,K,KC,TH,NC,XXI 
C..   	 23 MAY 1973 
C.... SPLITS ARRAY A INTO Th0 ROW CLUSTERS. THEN SPLITS EACH 3F THESE. 
C.... CONTINUING UNTIL EVERY VARIABLE HAS VAR1ANCE LESS THAN THE THRES13.0 TH 
C.... WITHIN EACH CLUSTER. 
C.... USES SUBROUTINE SPLIT. AFTER RUNNING SPUTI, LISE OUT1 FOR PRINTIN3 BLOCKS 
C.... A = M UY N BORDERED DATA MATRIX,PERMUTED ON OUTPUT 
C.... w = M hY N BORDERED WEIGHT MATRIX ( SET W(I,J)=0 F09 MISSIMG VALUES/ 
C.... N8 = 4 BY K BLOCK ARRAY, EACH BLGCK IS A ROw CLUSTER BY A VARIABLE 
C 	 NB(1,KI=FIRST ROW IN BLOCK 
C 	 NB(2,K)=LAST ROW IN BLOCK 
C 	 Na(3,I0=Nh(4,KI=COLUMN IN BLOCK 
C.... M . NUMBER OF ROWS 
C.... N . NUMBER OF COUJMNS 
C.... K = NUMBER OF BLOCKS,NEVER EXCEEDS 
C.... KC = ACTUAL NUMBER OF BLOCKS 
C.... NC = 2 BY M SCRATCH ARRAY 
C.... XX = 4 BY N SCRATCM ARRAY 
C.... TH = THRESHOLD VARIANCF FOR VARIABLES WITHIN CLUSTERS 
C 	. 

DIMENSION AIM,NieW(MeNI,N8(4pK/gNC(2,Mi 
DIMENSION XX(4,N) 

C.... INITIALIZE CLUSTER OF 	ROWS 
NC(1,11=2 
NC(2,1I=M 
KR.° 
KC=0 

50 KR=KR+1 
IF(KR.EQ.0) RETURN 
SP=0 
IL=NC(1,KIRA 
IU=NC(2,KR) 

C.... 1DENTIFY VARIABLES WITHIN THRESHOLD WITHIN CLUSTER, DEF1NE BLOCKS. 
DO 20 J=2,N 
W(1,J)=1 
S1=0 
S2=0 
S3=0 
DO 21 
IF(W(1,JI.E1.1.01 GO TO 21 
51=51+W(IeJà 
S2=52+A(11014A(11J/ 
S3=S3+4111,MAIII.J/**Z 

21 CONTINUE 
IF(51.EQ.0) GO TO 19 

S2=52/51 
53=S3/51-52**2 
IF(S3.GT.THI SP=1 
IF(S3.GT.TH1 GO TO 20 
KC=KC+1 
NB(1,KCI=IL 
NB(2,KU=IU 
Nh(3,KC)=J 
N8(4,KCI=J 
DO 22 1=ILpIU 

22 hilleJI=0 
19 W(1,J)=0 
20 CONTINUE 

C.... SPLIT LLuSTER KR IF NECESSARY 
KR=KR-2 

IF(SP.U.01 G3 TG 50 
CALL SPLIT(drA,MoNrILgIUIIM:XXIROMI 
NC(2,KH+li=NC(2pKR/ 
NC(Z,KR)=IM 
NC(1,KR+13=1M+1 
GO TO 50 
EN3 
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SUBROUTINE SPLITIW,A,M,N,IL,IU,IM,XX,DM) 
C  	 20 MAY 1973 
C.... USED IN SPLITI TC SPLIT A ROW CLUSTER ON SELECTED VARIABLES 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A 	M BY N BORDERED ARRAY 
C.... XX a 4 BY N MEANS MATRIX 
C.... DM = REDUCTION IN WITHIN CLUSTER SUM OF SQUARE 
C.... W . M dY N WEIGHT MATRIX 
C.... W1101=0 MEANS 1111*.0 wILL BE IGNORED 
C 	 WIII*11=0 *  I NOT ASSIGNED(SPECIFIED ON INPUTI 
C 	 W11,11=1* I IN FIRST CLUSTER, SPECIFIED ON OUTPUT 
C 	 W(1,1)=2* I IN SECOND CLUSTER* SPECIFIED ON DUTPUT 

• • • 
DIMENSION WiNNIIAIMIN1,XX(4*N1 

C.... FIND MEAN OF ALL CASES 
TH=10.**(-61 
DO 30 J=2*N 
XX(19.1)=0 
XX(3,41=0 
XX12,J)=TH 
XX(4*Ji-TH 

30 CONTINUE 
DO 32 J=2,N 
IFIW119.11.E11.01 GO TO 32 
DO 31 1=1L,IU 
XXII*D=XXII*J1+A(101*WII,J) 

31 XX129.11=XX12,D+W(1,J1 
33 XX11,41=XX111.11/XX(2,J) 
32 CONTINUE 

DM=0 
DD=0 
DO 50 IC=11,1U 
II=IU-1C+IL 
DMAX=-10.**10 
IMAX■ II 

C.... EFFECT OF MOVING ITH CASE 
DO 51 I=11.911 
0=0 
DO 57 J=20* 
IFIW110.1/.EQ.03 GO TO 57 
IFIXXI2g.11.EQ.W(1,0) XX(2e.11=W1I,J)+TH 
D=D+W(1,J1*XX12*.IMA11,J/—XX11,J1/**2/(XX(2,A.-.W(I,J)1 
D-D-4411*.11*XX(4,J)*IA(I.J1—XXI3,J11**2/(XX(4*Ji+W(I,J1) 

57 CONTINUE 
IF1D.LE.DMAX) GO TO 51 
IMAX=I 
DMAX=D 

51 CONTINUE 
DO.DO+DMAX 
IFIDD.GT.DM ) 
IFIDO.GT.DM1 DM=DD 

C.... UPDATE MEANS OF TWO CLUSTERS 
I=IMAX 
WIIMAX,11=2 
DO 55 J=2,N 

GO TO 55 
XX(2pJ1=XX12,Ji—WII*J1 
IF1XX(2pJJ.LT.TH ) XX12..11=TH 
XXI11,J/=XX(1,J1+(XX11*Ji—A(I.411*W1I,Ji/XX12v.11 
XX(4,..0=XX14,J1+W(I*J1 
XX(3e,11=XX13,J)—(XX1310/—AII*J11*WILIRJUXX(4,J1 

55 CONTINUE 
C.... INTERCHANGE SELECTED ROW WITH LAST FEASIBLE ROW 

DO 56 J=1,N 
C.A(1.43 
A(I,J)=A(11,J) 
A(11..là=C 
C=W(1.4) 
NCI,JI=h4(11,4) 

56 W(II,J)=C 
50 CONTINUE 

C.... DEFINE CLUSTERS 
RETURN 
END 
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SUBROUTINE OUT1IA,M,N,NB,KCi 
•• • 	 ..   	 20 MAY 1973 

C.... USE AFTER SPLIT1. 
C.... PRINTS OUT MATRIX A WHEN BLOCKS NB EACH CONTAIN ONLY ONE COLUMN 
C.... A = M ar N BORDERED ARRAY 
C.... M . NUMBER OF ROMS 
C.... N = NUMBER OF COLUMNS 
C.... NB = 4 BY KC BLOCK ARRAY 
C 	 NBIlpKi=FIRST ROM 
C 	 148(2,K)=LAST ROW 
C 	 NBI3eK)=NB(4.10=COLUMN 
G.... KC = NUMBER OF BLOCKS 
C •• 	  . . 

DIMENSION AIMoNhiNBI4pKCI 
DIMENSION AAI20/ 
DATA BLANK.DASH/4H 	g4H----/ 
WRITEI6.1IAIlel) 

1 FORMATI18H ONE MAY SPLIT OF FA4/ 
NN=IN-11/20+1 
DO 70 LL=1,NN 
JL=ILL-11*20+1 
JIP.LL*20 
IF(JU.GT.NI  JU=N 
WRITE(692/(AIlObJ=JL,JU1 
WRITEI6y2I(DASH,J=JL.JU/ 

2 FORMATI2X,20IA4,2XII 
DO 60 1=2,M 
WRITEI6.3/IAII.A.J=JL.JUI 

3 FORMATI1X,A4,1X.20F6.2/I7X,20F6.2II 
DO 50 L=1,20 

50 AAIU=BLANK 
NC=0 
DO 30 K=1,KC 
L=0 
IFINBI2.10.EQ.1/ L=NBI3,KI 
IFIL.GE.JL.AND.L.LE.JUI AAIL....IL+11=DASH 

30 IFIL.NE.D/ NC=1 
IFINC.EQ.0) GO TO 60 
WRITEI6e2hIAAILI.L=1.201 

60 CONTINUE 
WRITEI6,5I 

5 FORMATI1H1/ 
70 CONTINUE 

RETURN 
END 
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SUBROUTINE SPLIT2(AaM,NINB,KO.KA,XR.XCPTHrIOPOi 
C••• 	 20 MAY 1973 
C.... SPLITS ARRAY A BY ROWS AND CCLUMNS SIMULTANEOUSLY. ALL DATA VALUES SliCULC 
C.... BE COMPARABLE. MISSING VALUES AFE PEFRESENTED BY A(I,J1=99999. 
C.... USES WSPLIT,CSPLIT 
C.... A 	M 3Y N BORDERED ARRAY 
C.... M . NUMBER OF ROWS 
C.... N . NUMBER OF COLUMNS 
C.... KD = MAXIMUM NUMBER OF BLOCKSINEVER EXCEEDS M*Ni 
C.... KA = COMPUTED NUMER OF BLOCKS 
C.... NIS . 4 BY KD BLOCK ARRAY GIVING FIRST AND LAST ROWS AND COLUMNS 
C.... XR = 9 BY M SCRATCH ARRAY 
C 	 xachli = FIRST ROW IN ROW CLUSTER I 
C 	 XR(2,1) 	LAST ROW IN ROW CLUSTER I 
C 	 %Mai) 	REDUCTICN IN SSO VUE TO SPLITTING 
C 	 XR(4,Iè 	LAST ROW /N FIRST CLUSTER OF SPLIT OF I 
C 	 XR(5,11 	1 IF ROW IS INCLUDED IN PRESENT COLUMN SPLIT 
C 	 XR(6,Il = NUMBER OF COLUMNS IN ITH FON OF PRESENT COLJMN SPLIT 
C 	 XR(7,I) 	MEAN OF ITH PIN, FIRST COLUMN CLUSTER 
C 	 XR18,11. NUMBER OF CDLUMNSe SECOND CLUSTER 
C 	 XR(9,11 	MAN OF ITH RUN, SECOND CLUSTER 
C.... XC 	9 BY N SCRATCH ARRAYIUSED LIKE XR 
C.a.. TH = THRESHOLD(EACH ROW AND COLUMN VARIANCE WITHIN A BLOCK LESS TiANI 
C 	 IORD . O ROWS AND COLUMNS PERMUTED 
C 	 IURD = 1 LEAVE ROW ORDER 
C 	 IORD 2 LEAVE COLUI« DRDER 
C 	 IuRD • 3 LEAVE ROW AND COLUMN ORDER 
C 	  

DIMENSION A(MeNI,NB(4pKOhXR(9,MhXC(9,N) 
C.... INITIALUE BLDCKS AND ROW AND COLUMN CLUSTERS 

XR(1,1/.2 
XR(2.1~ 
XC(1o1).2 
XC(2,1).N 
KR.1 
KC.1 
KA.1 
N8(1,11.2 
NB(2,1i.M 
N8(3,11.2 
NA3(4g1j.N 
IRml 
IC.1 
K.KD 
CALL RSPLIT(A.MaNgNENNKAaXR.XCIpTHIpIRpIORD) 
CALL CSPLIT(AINN,NB,K,KApXR,XC,TH,IC,IORD) 

70 CONTINUE 
C.... FIND BEST ROW OR COLUMN SPLIT 

18.1 
X13.0 
DO 60 1.1~ 
IF(XR(3,11.LE.X111 GO TO 60 
XB.XR(3,1i 
IB.I 

60 CONTINUE 
DO 61 J.1,KC 
IFIXC(3.J).LE.XEU GO TO 61 
X8.XC(3.J4 
18=J+M 

61 CONTINUE 
IFIX8•EQ.0) GO TO 80 
SPLIT ROW CLUSTER 

KKC.KA 
IFIIB.GT.M) GO TO 64 
IL.XR(1,18/ 
IU.XR(2,113) 
IM*XRI4IIB) 
DO 62 K.1gKA 
IF(NB(IeKi.NE.IL.OR.N8(211“.NE.IU) GO TO 62 
KKC.KKC+1 
NBilyKKCi.IM+1 
NB(2,KKCi.NB(2,10 
NB(2,KI.IM 
NB(3,KKCI.NB(3pK) 
NB(4,KKCJ=NBI4,KI 

62 CONTINUE 
KA.KKC 
XR(2,18)=IM 
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KR=KR+1 
XR(15KRI=IM+1 
KRI2IKR/a1U 
CALI RSPLITCA I M,N.N8.KCNKA,KR.KC,TH.18.10RD) 
CALL RSPLITIA,MeNAB.KO.KA,KROCCeTHAR.IORD) 
GO TO 70 

64 CONTINUE 
C.... SPLIT COLUMN CLUSTER 

JB=I8-M 
JUdC11,J8/ 
JU=KC12pJ81 
JM=XC14.J19 
DO 65 K=1,KA 
IFIN8(3,10.NE.JL.OR.N844.10.NE.JU/ GO TO 65 
KKC=KKCil 
N813.KKC1=JM+1 
N8(40KKC)=N8(4,K) 
N8(4.K)=JM 
N811.KKC1=NBIL.K1 

NB(2,KKC)=N8(2,K) 
65 CONTINUE 

KA=KKC 
XCl2..113)=JM 
KC=KC+1 
XCI1iKC)=J101 
XCl2pKCA=JU 
CALL CSPLITIA.M.NeNB,K0,KArKRO(CeTHIKC,IORD/ 
CALL CSPLITIA,M,NINB,KMAOCRAC,TH.J8.10RD/ 
GO TO 70 

80 CONTINUE 
DO 81 K=1,KA 
DO 81 J=1,4 

81 IF1NB(J.10.LT.0) NBIJ.K1=-NBIJ,K) 
RETURN 
END 



SUKROUTINE CSPLIT(A.MeNeNseKMAARIRKC,THeIR.10R01 
C•• • 	 20 MAY 1973 
C.... SPLITS COLUMNS, FOR ARGUMENT DESCRIPTION SEE SPLIT2. 
C•• • * 	 

DIMENSION AIM.Ni.NB(4.KOI,KRI9pM/eXC(9,N) 
XM-99999. 
DO 23 1 ■ 201 

23 %R(MI.° 
C.... LOOK FOR nom WITHIN THRESHOLD 

JL=KC(1,1R) 
JU.KC(2,1Rà 
DO 20 K.1,KA 
IF(N6(3,K).NE.JL.OR.N9(4,Ki.NE.JU) GO TO 20 
IL+NElieKI 
IFI IL.LT.0) IL.—IL 
IU-NB(2,K) 

C.... COMPUTE VARIANCES 
NC=0 
DO 21 I.IL.IU 
51.0 
52.0 
S3.0 
DO 22 J-JL,JU 
IF(41(1.JI.EQ.KM/ GO TO 22 
51.514.1 
52.5249%1[16A 
53.53+AII,J)**2 

22 CONTINUE 
XR(6,1).51 
IFIS1.NE.01 M(7,11.52/51 
IF(51.NE.Ol S3.53/51—IS2/511**2 
IF(S3.67.1. 10 XR(5.11.1 
IFI53.GT.Th/ NC.1 

21 CONTINUE 
IF(NC.E02.0) N6(3.10 ■..-NB(3,K/ 

20 CONTINUE 
C.... FINO eesT COLUMN SPLIT 

DO 30 1.2,M 
XR(8,11.0 

30 XR(9.11.0 
DM.0 
KC(3,1R/.0 
XC(4,IRI-JL 
DO 31 J-JL,JU 
IF(J.N.JOI GO TO 31 
JJ.JU—JtJL 
JO=JJ 
00=-10.9930 
DO 32 L.JLIJJ 
IF(IORD.GE.2.AND.L.NE.JJ) GO TO 32 
DL-0 
00 33 I.2,M 
IFIXR(5.Ii.ELI.0) GO TO 33 
IF(A(I.LI.ECI.XMI GO TO 33 
DL=OL4AA(1.LI—KR(711II/**2. , (KR(6,I1+11/KR(6,1) 
DL.DL-1A(1,1A—KR(9.11/**2~(8,I~R(6,11+1,1 

33 CONTINUE 
IF(DL.LE.DDI GO TO 32 
DD.OL 
JO.L 

32 CONTINUE 
34 CONTINUE 

C.... INTERChANGE JD ANO JJ 
DO 35 1.101 
C-A(I,JJI 
A(IgJa.A(IIJD) 

35 AlI,JD).0 
C.... UPDATE MEANS 

DO 36 I.2,M 
IFO(R(5,11.E0.01 GO TO 36 
IF(A(1,JA.EQ.KM ) Q0 TO 36 
XR(6,1~(6,I)-1 
IF(XR(6,14.NE.0) XR(7,II.KR(7111+(KR(7.1/*A(I.JJIMR(6.I1 
xR0141).xkie.1)+1 
XR(9111=KR(9pI)—(KR(9.11—A(I.JJIID(R(O.I) 

36 CONTINUE 
DM.DM.DO  
IF(DM.LT.XCI3wIR)) GO TO 3L 
KC(3,1R).DM 
KC(4.110.JJ-1 

31 CONTINUE 
RETURN 
END 
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SUBROUTINE RSPLITIA,MIN,NB.KORKA,KROW.THIIR.IORDI 
C••• 

	
20 44Y 1573 

C.... FINO OPTIMAL ROW SPII.' FOR ARGUMENT DESCRIPTION SEE SPL1T2 

DIMENSION ACM,NNNB(4,KDbXR(9.M10(COIN/ 
KM.99999. 
DO 23 J=2,N 

23 XC(5.J1=0 
C.... LUOK FOR 5LOCKS WITHIN THRESHOLD 

IL.KKIleIRI 
IU=KRI211R3 
DO 20 K=1.KA 
IF(NBI1,10.NE.IL.OR.NBI200.NE.IU/ GO TO 20 
JL.NBI3,K) 
JU=N5(4pKI 	

• 

IFIJL.LT.01 JLO.-JL 
C.... COMPUTE VARIANCES 

NC.0 
DO 21 .1..M.,JU 
51.0 
52=0 
S3=0 
DO 22 I=IL.1U 
IFIAII,JMQ.KM/ GO TO 22 
S1=S14.1 
S2=52+A(1pJ1 
53=S3+AII,J)**2 

22 CONTINUE 
XCI6,J)=S1 
IFIS1.NE.01 S3=S3/51-..IS2/51/**2 
IFIS1.NE.0) XCIT.J1•52/51 
IFIS3•GT.TH/ KC(5,..13.1 
IFIS3•GT.TH/ NC=1 

21 CONTINUE 
IFINC.EQ.0) NBI1,1(1.—NB(1,K/ 

20 CONTINUE 
C.... FINO BEST ROW SPLIT 

DO 30 J=2,N 
XCIBeA=0 

30 XCI9sJI.0 
DM=0 
XR(3.1R).0 
XR(4,10.1.1L 
DO 31 I.IL,IU 
IFILED.Ipà GO TO 31 
II=IU-1.1L 
10=11 
DO.-10.**30 
DO 32 L=IL.11 
IFIIORD.U.I.OR.IORD.E41.3.AND.L.NE.II/ GO TO 32 
DL=0 
DO 33 J=2,N 
IFIXCIS,J1.EQ.0) GO TO 33 
IFIAIL.J].EQ.KM/ GO TO 33 
DL=DLfiAlLpJ)—KCI71,J11**24.1XCI6eJ14-1//XCI6tJ/ 
LL.DL—IAIL,41-..XCI9I•01**2*XCIB,J1/0(C(5,,n+II 

33 CONTINUE 
IFIDL...E.DO/ GO TO 32 
UD=OL 
ID=L 

32 CONTINUE 
37 CONTINUE 

C.... 1NTERCHANGE ID AND II 
DO 35 .1=1,N 
C=AIIIon 

35 /1(10..0=C 
C.... UPDATE MEANS 

DO 36 ..1=2.N 
IFIXCIS,JI.EQ.0) GO T3 36 
IFIAIII.JI.EQ.KM1 GO TO 36 
XCI6.4)=XCI6,J)-.1. 

XCI7,..0=XCI7,.1/41XCI7.J/—A111.M/XCI6.JI 
KC(B,JI=KCIB,J3.1 
XCI9eJI=XC(9,J.1-1XCI9.Jb-AIII,J))/XC(8..» 

36 CONTINUE 
DM=DM+OD 
IFIDM.LT.KRI3,IR)/ GO TO 31 
KRI3p1R)=DM 

31 CONTINUE 
RETURN 
END 
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CHAPTER is 

Direct Joining 

15.1 INIRODUCTION 

In Table 15.1, a number of species of the yeast candida are distinguished by their 
production of acid with various carbohydrates. It is desired to cluster the species and 
to characterize each cluster by its oxidation-fermentation behavior. It is also desirable 
to cluster the carbohydrates (if, for example, two carbohydrates always produced 
the same reaction, it would be unnecessary to use both). li is therefore necessary to 
construct clusters simultaneously on the species and on the carbohydrates. 

The three-tree cluster model postulates clusters of rows, clusters of columns, and 
clusters of the data values themselves. Each of the three types of clusters forms trees. 
(The change from the clustering model used in Chapter 14 is that here the data clusters 
form a tree rather than a partition.) This model is exemplified in Table 15.3. The 
responses within a data cluster C are ali equal, once values corresponding to clusters 
properly included in C are removed. This model for two-way tables can obviously 
be generalized to many-way tables. 

The candida data are of a specialized type, in which a comparable response is 
induced on all combinations of candida and carbohydrates. This wide homogeneity 
of the response simplifies the simultaneous clustering of candida and carbohydrates. 
The more generai type of data structure is the cases-by-variables structure, in which 
responses are comparable between cases for the same variable but not (without some 
prescaling) between variables for the same case. There is a correspondence between 
the two data structures shown in Table 15.2. In generai, consider an N-Way table with 
a response variable Y. The Jth margin of the table has a number of possible classes, 
and so it is a category variable--say, V(J). Each entry in the table is identified by a 
response Y and the values of the margins, V(1), V(2), . . . , V(N). Each entry in the 
table is a case from a data matrix with N + 1 variables, corresponding to the response 
variable Y and the N + 1 marginai variables. 

The many-tree clustering model on a data matrix with N marginai category variables 
and a response variable Y constructs clusters in each of the marginai variables and 
clusters on the cases themselves, so that (i) the response variable Y is equal within 
clusters of cases (after proper subclusters are removed), and (ii) each cluster of cases 
is the set of cases corresponding to a product of clusters of values in the marginai 
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Table 15.1 Oxidation-Fermentation Patterns in Species of Candida 

[From Hall, C. T., Webb, C. D., and Papageorge, C. (1972).] Use of an oxidation-
fermentation medium in the identification of yeasts, HSMHA Health Rep. 87, 172-
176.] The oxidation-fermentation of various carbohydrates is used in differentiating 
various strains of yeast in the species Candida. 

CARBOHYDRATES: 1 d =COSE, 2 .MALTOSE, 3 . SUCROSE, 4. LACTOSE, 

5 GAIACTOSE, 6 NELLBIOSE, 7 CELLOBIOSE, 8 INOSITOL, 9 'MOSE, 

io BAFFINOSE, il - TKMALOSE, 12 DULCITOL 

i. C. ALBICANS 	 

2. C TROPICALIS 	 

3. C. KRUSEI 	  

4. C. PARAPSTICISD3 	 

5. C. GUILLERMONDII 	 

6. C. STEIJATOIDEA 	 

7. C. PSEUDOTROPICALIS- 

8. 0. VINI 	  

I 2 3 4 	5 6 7 8 
▪ + + - 	+ M 

+ + + m 	+ m + m 

I. 	 - 

+ + + - 	 - 

+ + I. 	+ + + - 

+ m I. + 	+ m + - 

MIP 	 Mi  

9 10 11 12 

▪ + 

+ 

(+ means oxidative production of acid; - mano no acid production). 

variables. For example, if variable l takes values A, B, C and variable 2 takes values 
X, W, Z, U, then a data cluster would be the set of cases corresponding to the clusters 
(A, B) and (X, Z, U)—that is, to the set of cases {V(1) = A, V(2) = X}, 
{V(1) = A, V(2) = Z}, {V(1) = A, V(2) = U}, {V(1) = B, V(2) = X}, {V(1) = B, 
V(2) = Z}, { V(1) = B, V(2) = U}. 

It will be seen in the above model that the clusters are evaluated by the response 
variable Y, but they are constrained by the marginai variables V(1), . , V(N). In 
regression, Y would be the dependent variable and {V(J), 1 5 J S N} would be the 
independent variables. The above showed that an N-way table may be treated as a 
data matrix with /V + 1 variables. Conversely, a data matrix may be treated as an 
N-way table. 

Specifically, consider an arbitrary data matrix of category variables. Each variable 
is a partition of the cases, so the basic problem is the construction of an overall tree of 
cases that conforms as best as possible to the originai partitions. Some combinations 
of values of the category variables will appear in the data matrix, and some will not. 
Make an enlarged data matrix with one case for each combination of values and a 
response for each case equal to the number of times that combination of values ap-
peared in the originai data. This new data matrix is equivalent to an N-way table with 
responses equal to the number of times a particular combination of values appears. 
The outcome of the many-way clustering will be trees on each of the marginai 
variables and a clustering of cases. 

The algorithm to perform this construction is a joining algorithm that joins two 
values of one of the category variables at each step. 
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Table 15.2 Candida Data in Cases-by-Variables Forni 

Note that there are four columns of cases. 

ACID 	YEAST 	CARRO 	AP YS CH AP YS CH AP YS Ch 
PRODUCTION 	SPECIES 	HYDRATE 

+ 1 	 i 	+ 	3 	1 	+ 	5 	I 	+ 	7 	i 

+ 1 	 2 	. 	3 	2 	+ 	5 	2 	- ' 7 	2 
+ 1 	 3 	- 	3 	3 	+ 	5 	3 	+ 7 	3 
-, 	 1 	 4 	- 	3 	4 	- 	5 	4 	+ 	7 	4. 

+ 1 	 5 	- 	3 	5 	+ 	5 	5 	+ 7 	5 
-. 	 1 	 6 	- 	3 	6 	+ 	5 	6 	- 	7 	6 
.. 	 1 	 7 	- 	3 	7 	+ 	5 	7 	+ 7 	7 
- 	 i 	 8 	- 3 8 	- 5 8 	- 7 8 
. 	 1 	 9 	- 3 9 	+ 5 9 	+ 7 9 
. 	 1 	 1 o 	- 	3 	io 	+ 	5 	io . + 	7 	io 

+ 1 	 il 	- 	3 	11 	+ 	5 	il 	- 	7 	11 

.- 	 I 	 12 	- 	3 	12 	+ 	5 	12 	 7 	12 

+ 2 	 1 	 + 4 	l 	+ 	6 	1 	+ 	8 	1 

+ 2 	 2 	+ 4 2 	+ 6 2 	8 2 

+ 2 	 3 	+ 4 	3 	■ 6 3 	8 3 

- 2 	 4 	- 	4 4. 	- 	6 4 	8 	4 

+ 2 	 5 	+ 4 5 	+ 6 	5 	 8 5 

. 	 2 	 6 	- 4 	6 	- 6 	6 	- 8 6 

+ 2 	 7 	- 4 7 	- 6 7 	- 8 7 
.. 	 2 	 e 	— 	 4 	8 	- 	6 	8 	_ 	8 - 8 
+ 2 	 9 	+ 4. 	9 	+ 	6 	9 	- 	8 	9 

- 2 	 I O 	- 4 	I o 	- 	6 	I o 	- 8 	io 

+ 2 	 11 	+ 4 	11 	+ 6 n 	- 8 il 

..» 	 2 	 12 	- 	4 	12 	- 	6 	12 	8 	12 

15.2 TWO-WAY JOIN1NG ALGORITHM 

Preliminaries. The data matrix {A(/, J), 1 	/ M, 1 J N} consists of 
zeroes or ones. The outcome of the clustering is a tree of clusters of the data entries, 
each of which is the set of data in the matrix corresponding to a cluster of rows and a 
cluster of columns. Denoting the data clusters by 1, 2, .. . , KD, let IR(K) be the row 
cluster corresponding to the Kth data cluster and let IC(K) be the corresponding 
column cluster The row clusters are 1, 2, . , KR, and the tree structure is specified 
by the function JR(/), which is the smallest cluster properly including L Similarly, 
the column clusters are I , 2, . . , KC and the column tree structure is specified by 
JC(/), the smallest column cluster properly including column cluster L 

The algorithm at each step joins that pair of rows or columns that are closest in a 
certain measure of distance. The closest pair of rows, for example, are joined to make 



15.2 Two-Way Jolning Algorithm 	281 

CANDIDA 

2 

3 

Table 15.3 Three-Tree Model 
CARBOHYDRATES 

1 	2 	3 	4 

ACID 	CANDIDA 	CARBOHYDRATES 

+ i 	 i. 

+ i 	 2 

+ i 	 3 

+ 2 	 1 

+ 2 	 2 

+ 2 	 3 

+ 3 	 i 

3 	 2 

- 3 	 3 

- i 	 4. 

2 	 4 

3 	 4 

DATA 

CUJSTERS 

CANDIDA CLUSIERS 	CARBORYDRATE CILTSTERS 

2 al 
3 

a new row by using a certain amalgamation rule, possible data clusters are identified 
wherever the two rows do not match, and the algorithm proceeds to the next step. 

sirEp 	lnitially KD = O, KR = M, KC = N, JR(I) = O (1 I M), and 
JC(/) = O (1 / N). 

STEP 2. For each pair of row clusters (1 	J KR) with JR(/) =- JR(J) = O, 
compute the distance (noi + nio)/(noo nii + noi -I- nio), where nxy is the number 
of columns K, with JC(K) = O, and with A(I, K) = X and A(J, K) = Y. Similarly 
compute the distance between each pair of column clusters (1 I, J KC) with 
JC(1) = JC(J) = O. 

ErEP 3. Join the closest pair of rows or columns—say the closest pair of rows, 
I, J . Increase KR to KR + 1, define JR(/) = JR(J) = KR and JR(KR) = O. For 
each column K, JC(K) = O, define A(KR, K) to be A(I, K) n A(J , K), if A(I , K) n 
A(J , K) 0 , and to be A(I, K) u A(J , K) otherwise. If A(I, K) n A(J, = , 
define IR(KD 1) = /, IC(KD 1) = K and IR(K D + 2) = J , IC(KD + 2) = 

2 

3 
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K, which thus generates two new data clusters. Increase KD by 2. Return to Step 2, 
unless there is only one row, (1 S I S KR) with JR(I) = O and one column 
(1 s 15 KC) with JC(1) = 0. 

STEP 4. Reorder the data matrix in rows and columns so that row and column 
clusters consist of contiguous sequences of rows and columns. 

suP 5. Consider the data values {A(4.1), 1 s 15 M, 1 S J S  N} with respect 
to the data clusters 1 S K S KD. For each cluster K, define A(K) to be the set of 
values (either (0), {1}, or (O, 1}) which occur maximally in A(J), where J runs over 
the maximal proper subclusters of K. Define A (K) = A (I, J) on clusters consisting of 
a single data value. 

STEP 6. For the data cluster K of all data values, if A(K) = (0, 1), set A(K) = {1). 
Eliminate the cluster K if the minima] cluster L including K has A(L) A(K). The 
final number of clusters is (KD 1)/2. 

15.3 APPLICATION OF TWO-WAY JOINING ALGORITHM 
TO CANDIDA 

The value in the data matrix will be + or — rather than O or 1. (See Tables 15.4 and 
15.5 for the final results.) 

STEP 1. Initially specify the number of clusters, KD = O, the number of row 
clusters, KR = 8, and the number of column clusters, KC = 12. The strutture is 
initialised by JR(I) = 0, 1 5 15 6 and JC(I) = 0 (1 S I S 12). 

STEP 2. Distances are computed between each pair of row clusters I , J with 
JR(I) = JR(J) = 0. For example, with I = 1, J = 2, n++  = 5, n+_ = 0, n_4. = 2, 
n_ = 5. These numbers, of course, add to 12 which is the number of columns. The 
distance is Similarly, distances are computed for each pair of columns. 

STEP 3. There are some pairs of rows and columns that are identical, and these 
will be joined first. The algorithm does not specify the order of joining. Taking first 
columns 6 and 12, increase KC to 13, define JC(6) = 13, JC(12) = 13, JC(13) --= 0. 
Define A (K , 13) = A (K , 6) for l S K  S  8, since A(K, 6) n A(K, 12) = A(K, 6) 
always. Because of this identity, no data clusters are generated. Return to Step 2 and 
join identical columns 11 and 2 to make column cluster 14, and then join identical 
rows 3 and 8 to make row cluster 9. Return to Step 2. 

STEP 2 REPEATED. Compute distances between row clusters I, J (1 s I, J S  9), 
excluding I, J equal to 3 and 8 since JR(3) = JR(8) = 9. The distance between I = 1 
and J --= 2 uses the counts n++  = 4, = 0, = 2, n_ = 4, so the distance is 

whereas it was before the joining of the two identical column pairs. This is the 
mechanism for interaction between the row clustering and the column clustering. For 
example, two identical (or very similar) columns will have reduced weight in the 
clustering of rows because they will be joined early on. The closest pair of rows or 
columns is the pair of rows I = 4, J = 6, whose distance is 

STEP 3. Join row 4 and row 6. Increase KR to 10, define JR(4) = JR(6) = 10, 
JR(10) = O. For column 1, A(4, 1) = , A(6, 1) = +, so A(4, 1) n A(6, 1) = , 
and therefore A(10, 1) = +. Column 2 is not considered because JC(2) = 14. For 
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Table 15.4 Preliminary Outcomes of Joining Algoritlun 

CARBORYDRATRS 

4 	8 	6 	12 	11 	2 	7 	to 
	

9 
	

5 
	

3 

+ + + + + 

110 

▪ + + + 

+ + 	+ 

+ + + + 

+ + + + 

7 

e 
3 

1 

6 

4 

2 

C _ 
MI 

15.3 Application of Two-Way Joining ~daini to Candida 	283 

	

RCA4 CIUSTERS 	 COL CIUSTERS 
	

DATA CTDSTERS 

I JR(I) I JR(I) 	I XII) I JC(I) 	X IR(K) IC(K) K JR(K) JC(K) 

1 	12 	9 	13 	i 	19 	13 	20 	1 	4 	3 	13 	13 	17 

2 	11 	10 	11 	2 	14 	14 	20 	2 	6 	3 	14 	13 	19 

3 	9 	il 	12 	3 	15 	15 	19 	3 	2 	7 	15 	3 	20 

4 	10 	12 	13 	4 	18 	16 	17 	4 	io 	7 	16 	14 	20 

5 	15 	13 	14 	5 	15 	17 	21 	5 	i 	9 	yr 	15 	21 

6 	io 	14 	15 	6 	13 	18 	22 	6 	li 	9 	18 	15 	22 

7 	14 	 7 	16 	19 	21 	7 	7 	4 	19 	15 	23 

8 	9 	 8 	18 	20 22 	8 	7 	8 

9 	17 	21 	23 	9 	9 	i 

io 	16 	22 	23 	10 	9 	15 

11 	12 	13 

12 	13 
	

12 	12 	14 

column 3, A(4, 3) = + , A(6, 3) = — , so A(10, 1) = ±. Also construct two new 
data clusters with IR(1) = 4, IC(1) = 3, IR(2) = 6, IC(2) = 3. Increase KD to 2. 
Return to Step 2. 

sue 2 REPEATED. In distance calculations between row clusters, the value 	is 
ignored entirely. For example, between row 1 and row 10, n_H_ = 3, n.+_ O, n_+ = 1, 
n_ --= 5, with the third column ignored entirely. The algorithm continues until a 
single row cluster and a single column cluster remain. The final clusters of data, rows, 
and columns are given in Table 15.4. Each data cluster corresponds to a mismatch 
in two joined row or column clusters. 

STEP 4. The data matrix has been reordered in Tables 15.4 and 15.5, so that data 
clusters are represented as contiguous blocks. 
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Table 15.5 Final Data Clusters from Joining Candida 
CARBOHYDRATES 

4 	8 	6 	12 	11 	2 	7 	20 
	

9 	5 
	

3 

CANDIDA 7 

a 
3 

1 

6 

2 

5 

m 	 + 	+ + + + + 

••■ 	 m. 	m. 	m 	.. 	... 	m 	+ 

+ 

+ + 	 m. 	+ + + 

••• 	 ... 	+ 	+ 	m. 	m .'—'.".1. 	
+ = + 

m. 	+ + 	m + + + + 

.. 	+ + 	-M- 	me + + + + 

+ 	+ + 	+ 	+ + + + + 

STEP 5. In Table 15.4, there are nineteen data clusters within which data values are 
constant. Many of these clusters are unnecessary; for example, the cluster at (7, 8) 
may be dropped because this value is already implied by the larger cluster including it. 
These next steps prune away the unnecessary clusters by using the same techniques 
as in the minimum-mutation fit. 

For K 4, the subclusters are (4, 7) and (6, 7), for each of which A = —; thus 
A(4) = —. For K= 13, the subclusters are K= 3, 4, I , 11 and 11 single points. 
The value — occurs 13 times, and the value occurs twice. Thus A(13) = 

sup 6. In Step 6, unnecessary data clusters are pruned away. The largest cluster 
has A(19) = ±; set A(19) = Since A (18) = A(19), eliminate cluster 18. 
Similarly, A(13) = A(19), and so cluster 13 is eliminated. The final data clusters 
appear in Table 15.5, where it will be seen that only ten data clusters are necessary; 
this reduction in the number of clusters to (KD + 1)/2 always occurs. 

An overall criterion for this type of data is the representation of the data values 
exactly in a minimum number of clusters. It is stili necessary to have a search pro-
cedure through the immense number of possible structures, and the joining algorithm 
is such a search procedure. 

15.4 GENERALIZATIONS OF TWO-WAY JOINING 
ALGORITHM 

The algorithm may obviously be generalized to many-way tables. At each step, one 
of the N marginal variables is selected, and two of its values are amalgamated. Measures 
of distance and amalgamation rules are obtained analogously to the two-way case. 

A second direction of generalization is the response variable. In the two-way 
joining algorithm, the response is 0-1, but it could be a category variable with more 
than two categories, it could be an ordered variable, it could be an integer (as in 
contingency tables), or it could be on an interval scale. Different measures of distance 
and amalgamation rules will be necessary for each of these variable types. 

For an interval scale, each data point should be regarded as a range of values 
( n, Y2); before any clustering takes piace, 	= Y2 for every data point. A threshold 
T is given. Two data points, ( Y„ Y2) and (Z1, 	are compatible if max ( Y2 , Z2) — 
min ( Zi) T. The distance between two vectors of data points will be the number 
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of compatible pairs. Two data points (Y 1 , Y2) and (Z1 , Z2) amalgamate to 
(min ( Y1 , Z1), max (Y2 , Z2)) if compatible, and otherwise the amalgamated value is 
missing. 

15.5 SIGNIFICANCE TESTS FOR OUTCOMES OF TWO-WAY 
JOINING ALGORITHM 

Let M be the number of rows, let N be the number of columns, and let K ones and 
MN-K zeroes be assigned to the data matrix {A(I, J), 1 S I S  M, 1 S J S  1V) at 
random. What is the distribution of KD, the number of data clusters? 

Some asymptotic results are available. If M -> oo , K -> co, but N remains fixed, 
then KD = 2N. If M -> oo but K and N remain fixed, then KD - 1 equals the 
number of occupied cells when K balls are distributed at random among N cells. If 
M -> oo , N -> oo, but K remains fixed, KD = K + 1. 

Some empirical results are given in Table 15.6 for relatively small matrices. Only 
means and variances are given, as the distributions are approximately norma] as 
M, N, K" approach oo at comparable rates. Some generai conclusions are that the 

Table 15.6 The Number of Data Clusters when a Given Number of Ones are Assigned 
at Random to an M by N 0-1 Matrix. (Means and variance in 100 repetitions.) 

m . 6 N 	2 ■11. 1 '0 	1 	 2 	 3 	 4 	 5 	 6 

MAN, VARIANCE. 	. 2.00, 0.00 2.42, .24 2.81, .15 3.19, .35 3.43, .29 3.67, .32 

M . 4 N 	3 * 1's . 	1 	 2 	 3 	 4 	 5 	 6 

MAN, VARIANCE 	 2.00, .00 2.60, .24 3.07, .17 3.77, .66 3.94, .46 4.03, .45 

M 	12 N 	2 41, lie . 	1 	3 	5 	 7 	 9 
	

11 

MEAN, VARIANCE 	 2.00, .00 2.83, .14 3.20, .24 3.56, .27 3.86, .12 3.88, .11 

M.8 N.3 	1 	1 	 3 	 5 	 7 	 9 	 11 

MEAN, VARIANCE 	2.00, .00 3.05, .23 4.01, .47 4.86, .84 5.51, .95 5.73, .94 

M . 6 N 	4 	1's . 	1 
	

3 
	

5 	 7 	 9 	 11, 

MAN, VARIANCE 	. 2.00, .00 3.23, .28 4.25, .79 5.38, .92 6.10, .97 6.04,1 .84  

Al • 16 N m 3 4. 1'e Is 	2 	 6 	 10 	 14 	18 	 22 

bilAN, VARIANCE 	.. 2.68, .22 4.14, .42 5.40, 1.06 6.75, .69 7.20, .60 7.27, .62 

M . 12 /i 1. 4 .4. l'o  m 	2 	 6 	10 	14 	18 	22 

MAN, VARIANCE 	. 2.76, .18 4.75, .73 6.39, .90 7.98, 1.40 9.13, 1.43 9.46, 1.57 

M .. 8 N . 6 41. l'o - 	2 	 6 	10 	14 	18 	22 

ma, VARIANCE 	• 2.75, .19 5.17, .90 7.42, 1.28 9.21, 1.76 10.10, 2.07 10.43, 1.81 

M 1. 12 N or 8 t. 1 ' a . 	2 	 10 	18 	26 

MEAN, VARIANCE 	. 2.87, .11 7.86, 1.04 11.88, 2.23 15.57, 2.63 

M . 16 N . 6 ii. 1 1  s . 	2 	 10 	 18 

MEAN, VARIANCE 	. 2.83, .14 7.38, .84 10.82, 2.07 
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means and variance increase for M and N fixed, as K2 increases toward iMN. For 
MN fixed, means and variances increase as M increases toward NiMN. To illustrate 
the case M large, N and K small, consider M = 16, N = 3, K = 2. Then KD — 1 
is the number of occupied cells in distributing two balls at random in three cells, so 
KD = 2 with probability l, KD = 3 with probability 1; KD has mean 2.67, and 
variance 0.22. 

15.6 DIRECT JOINING ALGORITHM FOR VARIABLES 
ON DEFFERENT SCALES 

Preliminaries. This algorithm simultaneously clusters variables and cases when 
the variables are measured on different scales. The joining operation for variables is 
somewhat more complicated than that for the two-way algorithm, where all data 
values are comparable. At each stage in the algorithm, every variable is transformed 
to have the same first and third quartiles, and previous two-way joining rules are 
used on the transformed data. 

As in the algorithm of Section 15.2, there is the data matrix {A(I, J), 1 	I M, 
1 J N}, there are the data clusters 1, 2, . . . , KD with IR(K), IC(K) denoting 
the corresponding row and column clusters, there are the row clusters 1, 2, . . . , KR 
with JR(I) denoting the smallest cluster properly including /, and there are the column 
clusters 1, 2, . . . , KC with JC(/) denoting the smallest cluster properly including L 
There is also the linear transformation B(J), C(J) of the Jth variable, such that 
{B(J) A(I, J) + C(J), 1 I M, 1 J N} is a homogeneous data matrix. These 
linear transformations are discovered during the execution of the algorithm. 

STEP i . Initially KD = O, KR = M, KC = N, JR(I) = O (1 I M) and 
JC(/) =-- O (1 < / N). As the first standardization of the variables, choose B(J), 
C(J) so that B(J) A(I, J) + C(J) has the first quartile equal to —1 and the third 
quartile equal to +1. 

STEP. 2. For each pair of row clusters [1 I, J KR, JR(I) = JR(J) = 0], the 
distance is the proportion of column clusters K [1 K KC, JC(K) = 01, such 
that 1A (I, K) — A(J, K)1 1. (The threshold 1 is chosen rather arbitrarily.) Similarly, 
for each pair of column clusters [1 I, J KC, JC(/) --= JC(J) = O], the distance 
is the proportion of row clusters K [1 K KR, JR(K) = O], such that 
1A(K, J) — A(K, 1)1 1. If no pairs of row or column clusters satisfying the con-
ditions exist, go to Step 7 with K = i . 

STEP 3. If a pair of column clusters are closest, go to Step 5. lf a pair of row clusters 
I, J are closest, they are amalgamated to form a new cluster KR + 1 with JR(/) = 
JR(J) = KR + 1, JR(KR + 1) = O. Increase KR by 1. For each K [1 K KC, 
JC(K) = O], define A(KR, K) to be [A(1, K) + A(J, K)1/2 if III (1, K) — A(J, K)1 < 1. 
Otherwise, define A (KR, K) to be A(I, K) or A(J, K), whichever is smallest in absolute 
value, increase KD by 1, and set IC(KD) = K, IR(KD) = / or J, according as 
A(I, K) or A (J , K) is largest in absolute value. 

sTEP 4. Redefine B(J), C(J) for each column cluster J [1 J KC, JC(J) = 01, 
such that the values {A(I, J), 1 I KR, JR(I) = O} have the first quartile equal to 
—1 and the third quartile equal to +1. Return to Step 2. 
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sTEP 5. Suppose the column clusters J are closest. Amalgamate them to form 
a new column cluster KC 1 with JC(/) = JC(.0 = KC 1, JC(KC 1) = O. 
Increase KC by 1. For each row cluster K [1 K KR, JR(K) = O], define 
A (K, KC) = [A(K, I) + A(K, ./)]/2 if IA(K, I) - A (K , J)i < 1. Otherwise, set 
A(K, KC) = A (K, I) or A(K, J), whichever is smaller in absolute value, increase KD 
by 1, and set IR(KD) = K, IC(KD) = / or J according as A(K, I) or A(K, J) is 
greater in absolute value. 

STEP 6. Define B(KC), C(KC) so that A(I, KC)B(KC) C(KC) has the first 
quartile equal to -1 and the third quartile equal to +1. Return to Step 2. 

STEP 7. If K > N, stop. Otherwise, change B(K), C(K) as follows. Let L = K. 

sTEP 8. Let L = JC(L). IfJC(L) = O, increase K by 1 and return to Step 7. Change 
B(K)to B(L) B(K), and change C(K)to C(L) + C(K)B(L). Repeat Step 8. 

This algorithm is applied to percentages of farmland devoted to various crops in 
counties in Ohio. The initial data are given in Table 15.7, and the final data in Table 
15.8. There is a distinetive cluster of five counties which are high on hay and relatively 
low in other crops. The use of first and third quartiles for scaling the variables is 
somewhat arbitrary, and more careful scaling techniques will be discussed in 
Chapter 16. 

Table 15.7 Ohio Croplands 

The percent of total harvested cropland allocated to various crops in selected Ohio 
counties, U.S. Census of Agriculture (1949). 

CORE NIKO SNALL MINS WHEAT CATS HARLEY SOTWAN HAY 

ARANE 	42.41 	0.21 	22.47 	1.07 	0.37 	0.62 	27.80 

ALDO 	34.43 	0.13 	23.76 18.35 	0.11 	12.18 	15.31 

ASHTAHULA 	22.88 	0.24 	13.52 15.67 	0.02 	I.3o 	38.89 

ATHENS 	26.61 	0.18 	 8.89 	3.42 	0.05 	0.71 	53.91 

DELAWAHE 	33.52 	0.13 	17.60 11.33 	0.16 	11.82 	22.69 

CLINTON 	48.45 	0.24 	29.50 	3.10 	0.25 	2.72 	9.85 

GALLIA 	31.38 	o.83 	13.07 	2.03 	0.60 	0.71 	44.07 

GEAUGA 	23.04 	o.21 	12.68 17.44 	0.11 	0.41 	37.8o 

HANCOCK 	36.13 	0.12 	24.64 16.56 	0.13 	13.91 	16.46 

HIGRLAND 	4-.13 	0.11 	31.57 	1.59 	0.05 	1.46 	16.10 

MEIGS 	28.20 	0.28 	14.08 	3.06 	0.18 	0.67 	46.71 

PORTAGE 	26.67 	0.11 	19.13 18.67 	0.03 	0.69 	27.33 

pentm4 	30.97 	0.13 	24.16 15.28 	0.13 	14.10 	12.61 

WARREN 	43.23 	0.09 	24.97 	3.e0 	0.24 	4.68 	18.72 

WASKIWTON 25.08 	0.08 	13.43 	1.96 	o.66 	1.06 	50.27 

From U.S. cenane of agriculture, 1949. (There is acme prejudice for cluster-

ing counties contiguously.) 
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Table 15.8 Application of Direct Joining Algorithm to Ohio Croplands 

COFtN 	SOYHEAN 	RAY 	OATs 	WHEAT 

ADAM3 	 

WARREN 

PORTAGE---- 	26.67 	.69 

GALLIA 	 

WASHINGTON- 

MEIGS 	 

ASIITABUIA 	 

GEAUGA 	 

DELAWARE 
	

33.52 

PUTNAM 	
 

1 30.97 I 

ALLEN 
	

34.43 

HANCOCK 
	

36.13 

ATHENS 

HIGHIAND 	57.83 I 	1.46 

CLINTON 	 

11.82 

14.10 

12.18 

13.91 

22.61 	0.71 

48.45 I 	2.72 

27.33 

17.44 

22.69 

12.61 

15.31 

16.46 

I 	11.33 I 

15.28 

18.35 

16.56 

53.91 3.42 8.89 

1 6 .10 

9.35 

1.59 

3.10 29.50 

31.57 

	

131.38 	.71 	44.07 

	

25.08 	1.06 	50.27 

	

128.20 	.67 	46.71 

	

22.88 	1.30 	38.89 

	

23.04 	.41 	37.80 

15.7 THINGS TO DO 

15.7.1 Running the Two-Way Joining Algorithm 

The most important restriction in this algorithm is the requirement that data values 
be comparable across both rows and columns. Since variables are frequently measured 
on different scales, they must be scaled, often rather arbitrarily, before the algorithm 
may be applied. 

The generai algorithm requires specification of a within-cluster threshold. No 
absolute guidelines are available for the choice of the threshold. For 0-1 data or 
category responses in generai, the threshold should be zero. Then ali values within 
blocks will be identica]. For continuous data, reasonable thresholds are in the range 
of -à-4 of the standard deviation of ali data values. Tables 15.9 and 15.10 contain 
data sets on patterns of food consumption and on varieties of languages spoken in 
various European countries. 

15.7.2 Two-Way Clustering Models 

The basic component of the two-way clustering models is the block, or submatrix of 
the data, in which some simple model must be obeyed by the data. For example, all 
values must be equal or all values must lie within a certain range. 
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Table 15.9 European Food 

(From A Survey of Europe Today, The Reader's Digest Association Ltd., 25 Berkeley 
Square, London.) Percentage of all households with various foods in house at time of 
questionnaire. Foods by countries. 

WG IT FR NS BM LG GB PL AA SD rd DK NY PD SP ID 

GC ground coffee 

IC instant coffee 

TB tea or tea bags 

SS sugarless sweet. 

BP packaged biscuits 

SP soup (packages) 

ST soup (tinned) 

IP instant potatoes 

FF frozen fish 

VF frozen vegetables 

AF fresh apples 

OF fresh oranges 

Fr tinned fruit 
JS jam (shap) 

CG garlic clove 

BR butter 

ME margarine 

00 olive, corn oil 

YT yoghurt 

CD crispbread 

50 82 88 96 	94 97 27 72 	55 73 97 96 	92 98 70 13 

49 Io 4z 62 	38 61 86 26 	31 72 13 17 	17 12 40 52 

88 60 63 98 48 86 99 77 	61 85 93 92 	83 84 40 99 

19 	2 	4 32 	II 28 22 	2 	15 25 31 35 	13 20 - 	il 

57 55 76 62 	74 79 91 22 	29 31 - 	66 	62 64 62 80 

51 41 53 67 	37 73 55 34 	33 69 43 32 	51 27 43 75 

19 	3 11 43 	25 12 76 	 10 43 17 	4 10 	2 le 

21 	2 23 	7 	9 	7 17 	5 	5 17 39 	17 	14 	2 

27 	4 	14 	13 26 20 20 	15 19 54 51 	30 18 23 	5 

21 	2 	5 14 	12 23 24 	3 	15 45 42 	15 12 	7 	3 

81 67 87 83 	76 85 76 22 	49 79 56 81 	61 50 59 57 

75 71 84 89 	76 94 68 51 	42 7o 78 72 	72 57 77 52 

44 	9 40 61 	42 83 89 	8 	14 46 53 50 	34 22 3o 46 

71 46 45 81 	57 20 91 16 	41 61 75 64 	51 37 38 89 

22 8o 88 15 	29 91 11 89 	51 64 	9 11 	11 15 66 	5 

91 66 94 31 	84 94 95 65 	51 e2 68 92 	63 96 44 97 

85 24 47 97 	80 94 94 78 	72 48 32 91 	94 94 51 25 

74 94 36 13 	83 84 57 92 	28 61 48 3o 	28 17 91 31 

3o 	5 57 53 	20 31 	6 	13 48 	2 11 	2 - 	16 	3 

26 io 	3 15 	5 24 28 	9 	11 30 93 34 	62 64 13 	9 

The clustering structure assumed here is that the family of blocks form a tree, the 
family of row clusters (one to each block) forms a tree, and the family of column 
clusters forms a tree. The tree properties for row and column clusters guarantee, 
after some permutation of rows and columns, that each block consists of a set of 
contiguous data points. 

For any family of blocks, a plausible model is 

A(I, J) = {1 K L} R(I, K)C(K,J)B(K), 
where 

R(I, K) = 1 	if row / lies in block K, 

R(I, K) = O 	if row / does not lie in block K, 

C(J, K) = 1 	if column J lies in block K, 

C(J, K) = O 	if column J does not lie in block K, 

B(K) is the value associated with block K. 

This is a factor analysis model that may be fitted in a stepwise algorithm, which at 
each step identifies the new block and the new block value which most reduces 
deviation between the data and the model. See also 17.8.2. 
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Table 15.10 Languages Spoken in Europe 

(From A Survey of Europe Today, The Reader's Digest Association Ltd., 25 Berkeley 
Square, London.) Percentages of persons claiming to speak the language "enough to 
make yourself understood." 

LANGUAGES FI FINISH 

SW SWEDISH 

DA DANISH 

NO NORWEGIAN 

EN ENGLISH 

GE GERMAN 

DU DUTCH 

FL FIEMISH 

FR FRENCH 

IT ITALIAN 

SP SPANISH 

PO PORTUGUESE 

COUNTRY 

	

WEST GERMANY 	 

ITALY 	 

FRANCE 	 

3EGHERLANDS 	 

BELGIUM 	 

EUXEMSCURG 	 

GREAT BRITAIN 

PORTUGAL 	 

AUSTRIA 	 

SWITZERLAND 	 

EWEDEN 	 

DERIARK 	 

NORWAY 	 

FINLAND 	 

SPAIN 	 

IRELAND 	 

FI SW DA NO 

O 000 

O 000 

O 2 	3 	0 

O 000 

O 0 	0 	O 

O 000 

O O 	O 	0 

O 000 

O 000 

O 0 	0 	0 

5 100 10 11 

O 22 100 20 

O 25 19 100 

	

100 23 	0 	0 

O 0 	0 0 

O 000  

EN GE DU FL 

	

21 100 	2 	1 

	

5 	3 	0 	0 

	

10 	7 	1 	1 

41 47 100 100 

	

14 15 	0 59 

	

31 100 	4 	1 

	

100 	7 	0 	0 

	

9 	0 	0 	0 

	

18 100 	1 	1 

	

21 83 	1 	2 

	

43 25 	0 	0 

	

38 36 	1 	1 

	

34 19 	0 	0 

	

12 11 	O 	O 

	

5 	1 	0 	0 

	

100 	1 	0 	0 

FR IT SP PO 

10 	2 	1 	0 

11 100 	1 	0 

100 12 	7 	1 

16 	2 	2 	0 

44 	2 	1 	0 

92 10 	0 	0 

15 	3 	2 	0 

10 	1 	2 	100 

4 	2 	1 	0 

64 23 	3 	1 

6110 

10 	3 	1 	0 

4 	1 	0 	I 

2 	1 	0 	0 

11 	2 100 	0 

2 	0 	0 	r 

For example, 

[3 5 2 3 	1 1 0 1] 	[0 1 1 O] 	[0 0 0 01 

8 5 5 3 =3 1 1 0 1 +2 0 1 1 0 +5 1 0 1 0 

5 2 5 0 	0 0 0 0 	0 1 1 0 	1 0 1 0 

=3 

 [

1 	 1 

11[1 1 0 1] + 2 [11 [0 1 1 0] + 5 [1 [1 0 1 0] 

O 	 1 	 1 
3 2 01[1 1 0 1 

= [3 2 5 0 1 1 O] 

0 2 5 1 0 1 0 
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The overlapping clusters that arise from this procedure are difficult to present or 
interpret, and the actual data values within blocks do not obey any simple rule 
because there may be contributions from many other blocks. If the blocks form a tree, 
all values within any one block, not lying in a smaller block, will be equal. The re-
quirement that blocks form a tree considerably complicates the fitting procedure. 

15.7.3 Distances, Amalgsunation, and Blocks 
The basic ingredients of a joining algorithm are the methods of computing distances, 
of amalgamating, and of computing blocks. These operate during the process of 
joining two rows or two columns. 

For example, from Table 15.1, 

Row 4 + -I- -I- — + — — — + — + — 
Row 6 -F + — — + — — — + — + —. 

The distance between the two rows is the proportion of mismatches, 11§-. These rows 
will be joined before any more distant pairs of rows or columns. The amalgamation 
rule represents a mismatch as I, so that the new row is 

Row (4, 6) + + ± — -I- — — — + — + —. 

At this stage, either (row 4, col 3) or (row 6, col 3) might be a block, and in the 0-1 
two-way joining algorithm the decision is postponed until all rows and columns have 
been joined. Thus, during the algorithm, more blocks and more corresponding un-
specified values such as I are retained than is really necessary. 

A better, though more complicated, method decides the blocks and the amalgamated 
values at each step during the running of the algorithm. In the above example, row 1 
is found most similar to 4 and 6. Since row I takes the value -I- in column 3, the correct 
value there is set at -I-, and (row 6, col 3) is declared a block. (At this stage, the block 
consists of a single element, but in later stages each row will have been amalgamated 
from a number of rows, each column form a number of columns, and the blocks will 
correspond to sets of rows and columns.) 

15.7.4 Range 	
. 

For continuous-response variables, it is not practical to require exact equality within 
blocks, but it is plausible to require that all values within a block have a range less 
than a specified threshold T. During the algorithm, each data value will be a range 
( Yl, Y2), and, indeed, the original data values are frequently faithfully represented 
this way. 

The distance between two vectors of such values is the sum of combined ranges in 
each position, with this combined range set back to the threshold value T if it exceeds 
T. The amalgamation rule is the combined range in positions where the combined 
range is within threshold and a more complicated procedure otherwise, which is to be 
described. 

Thus, for a threshold of 10, 

Row 1 	(1, 3) 	(2, 5) 	(2, 3) 	(5, 6) 	(5, 5) 
Row 2 	(5, 6) 	(7, 10) 	(2, 4) 	(7, 16) 	(18, 19). 

The distance is (6 — 1) + (10 — 2) -I- (4 — 2) + (16 — 5)* -I- (19 — 5)* = 35, 
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where the asterisked values are set back to 10. The amalgamated values are 

Row (1, 2) 	(1, 6) 	(2, 10) 	(2, 4) 	(5, 6) 	(6, 18) 
Row 3 	(2, 5) 	(7, 12) 	(4, 7) 	(5, 12) 	(6, 18), 

where row 3 is the row closest to (1, 2). Consider position 4, where (5, 6) and (7, 16) 
are out of threshold. Since (5, 6) is within threshold of (5, 12), the amalgamated 
value is (5, 6) and (7, 16) would become a block. Another case is position 6, where 
both (5, 5) and (18, 19) are out of threshold with (6, 18). In this case (5, 5) and (18, 19) 
are blocks and the amalgamated value is (6, 18). 

15.7.5 Computational Expenses 

Since the data matrix is destroyed during the operation of a joining algorithm, it is 
necessary to set aside space for saving the originai data. The basic storage costs are 
thus 2MN. Storage is not often important because the time costs are so heavy for 
large arrays. The number of multiplications, nearly ali occurring in repeated distance 
calculations, is proportional to M 2N2 . 

15.7.6 Identica! Rows and Colui!~ 

If identical, or nearly identical, pairs of rows exist, they will be quickly joined and 
have the same weight as a single row in later calculations. The joining algorithms are 
thus insensitive to accidents of sampling which overrepresent some types of cases or 
some types of properties. This overrepresentation is one of the considerations necessary 
in weighting variables for distance calculations; the weighting takes piace automatically 
in two-way joining algorithms. 

15.7.7 Minimum Number of Blocks 

Usually it will be desired to represent the data in a minimum total number of blocks, 
and the joining algorithms join rows or columns to Ieast increase the number of blocks. 
An exact minimizing technique seems impracticable except for very small data sets. 
The blocks in a minimum strutture will not be unique in generai. Consider 

for which there are two four-biock structures. 

15.7.8 Order Invariance 

If ali distances computed during the execution of the 0-1 two-way joining algorithm 
are different, then the final clusters will not depend on the originai input order of 
rows or columns. It is not uncommon to have several different pairs of rows or columns 
corresponding to the same minimum distance. The pair selected to be joined may 
depend on the initial input order and may effect the final clustering. It is therefore 
necessary to develop a procedure for settling tied minimum distances—a difficuit task. 

First suppose a number of differcnt pairs of rows are involved, with no row common 
to the different pairs. Then ali these pairs of rows are joined before any other pairs of 
rows or columns are considered. 
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Next suppose there is a row which is closest to several other rows. All rows are 
joined in one step, by using the modal values for the new row and creating blocks 
wherever a value differs from the modal value. 

Finally, if a pair of rows and a pair of columns are of minimum distance, join them 
simultaneously. One value in the new array will be derived from four original values, 
where the new row and column coincide. It will be the mode of these values. 

Any set of pairs of rows and pairs of columns may be handled by generalizations 
of the above procedures. 

PROGRAMS 

JOIN2 joins rows or columns, identifying disparate elements as blocks. 
RDIST computes distances between rows. 
CDIST computes distances between columns. 
PMUT permutes array to be consistent with clusters found in JOIN2. 



SUBROUTINE JOIN2(AtMeN,N8pKeeKA,NR.NC,RD,CD,THI 
r... 	 20 MAY 1973 
C.... SUCCESSIYELY JOINS ROWS ANO COLUMNS,WHICHEYER CLOSEST 
C 	CONSTRUCTS BLOCKS FROM PAIRS OF ELEMENTS NO? IN THRESHOLD. 
C 	USES ROIST.COIST 
C.... M = NUMBER OF ROWS 
C.... N a NUMBER OF COLUMNS 
C.... A = M 8Y N BDRDERED ARRAY .DESTROYED BY CRUEL MANIPULATION 
C.... NB = 4 BY KC 6LOCK ARRAY 
C.... KC 	UPPER BOUND ON NUMBER OF BLOCKS, M*N IS ALWAYS SAFE 
C.... KA = ACTUAL NUMBER OF BLOCKS 
C.... NR = 1 BY 	ARRAY', NR(Ii= OLD INDE% OF ITH ROW IN REORDEPED MATRIX 
C.... NC = I BY N ARRAY, NCIII= OLD INDEX DF ITH COLUMN IN REORDERED ARRAY 
C.... GO . I BY N SCRATCH ARRAY 
C.... RD = 1 BY M SCRATCH ARRAY 
C.... TH THRESHOLD,IF EXCEEDED, MAKES BLOCKS 
C • • • 

DIMENSION AIMeNItN8(4,KChNRIM/INC(Nk 
DIMENSION CD(NbRDIM/ 
KB.KC 
XM=99998. 
DO 10 1=1,N 

10 A(1.1)=I 
DO 11 J=1,N 

11 AllgJi=J 
KA=0 
MM=M-1 
NN=M-1 

C.... FINO CLOSEST ROWS AND COLUMNS 
DO 22 1=2,14 

22 CALL RDISTIA,M,NeI,NR(11,ROCII,NN,THI 
DO 32 J=2,N 

32 CALL CDISTIApM,N,J,NCIJ),CDIJI,MM,TH) 
70 CONTINUE 

C.... FINO CLOSEST ROWS 
DR=10.**10 
11=2 
12=2 
DO 20 I=2,M 
IFIAII,11.17.04 GO TO 20 
IFIDR.LE.RDIII) GO TO 20 
DR=RD(15 
Il=1 
I2=NRIII 

20 CONTINUE 
C.... FINO CLOSEST COLUMNS 

DC.DR 
J1=2 
J2=2 
DO 30 J=24N 
IFIA(1,JI.LT.01 GO TO 30 
IF(DC.LE.CD(J)j GO TO 30 
DC=CDIJI 
J1=J 
J2=NCIJ/ 

30 CONTINUE 
IF112.GE.111 GO TO 21 
K=I2 
12.11 
11=K 

21 CONTINUE 
IFIJ2.GE.J1) GO TO 31 
K=J2 
J2=J1 
J1=K 

31 CONTINUE 
IFIDC.LT.DR/ GO TO 60 

C.... AMALGAMATE ROWS 
IF112.EQ.2) GO TO 80 

C.... FINO CLOSEST ROW TO 11 AND 12 
AlI1,1)=—A(11gli 
CALL KOIST(A,M,N,1211NRII2ipRO(12).NN,TH3 
Al12,1)=—A(12,1) 
A111.1)=—AII1p11 
CALL RDIST(ApMeNeIloNR(11),RDI11).NNoTHI 
II=NRI12) 
IFIRD(11).LE.RDII2)/ II=NR(11/ 
LlaA111.1) 
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L2=—A(12.11 
LL=A(11,11 
A(11,1)=L2 
A(I2,11=—L1 
MM=MM-1 

C.... AMALGAMATE VALUES AND CREATE BLOCKS 
DO 40 J=2,N 
IFIKA.GE.KB-21 GO TO 80 
IFIAIl.JI.LT .Oi GO TO 40 
K=A(19J) 
IFIAMAXLIAII-1,KI,AIL2,KW ■AMINlIAI11,J/gA(12,JII.LE.Td/ GO TO 43 
21=AMAXIIA(L1,KleAILL,K11—AMINLIAIII,JhAIII,J11 

IF(II.EQ.2( L2=10.**2 
IF(II.E0.2) 21=10.**10 
IFIZi.LE.THI A(L2,K)=AIL1,K) 
IF(L2.LE.TM1 AII1,J)=AII2eJ1 
IFIL1.GT.TH.AND.22.GT.TH1 
IFIZ1.GT.TH.AND.U.GT.TH/ AIL2,K1=AILLIK/ 
IF(Z1.LE.THI GO TO 41 
KA=KA+1 
NBI111KA1=I1 
NII(2,KA)=L1 
NB(3,KAI=J 
N614,KAI=AI1eJ/ 

41 IFIZ2.LE.TH ) GO TO 40 
KA=KA+1 
N8(1pKA)=I2 
NBI2.KAI=A(I1,11 
N8I3,KA)=J 
N8(4,KAI=AI11J1 
GO TO 40 

43 CONTINUE 
Z=A(L1,KI 
IFIAII1e.D.GE.A(121J/IAII1,J1=AII2,J/ 
IF(Z.6E.A(L2,MAIL2pK1=2 

40 CONTINUE 
C.... UPDATE CLOSEST ROWS 

DO 45 I=2,M 
IFIA11,1).LT.0) GO TO 45 
IFINRIII.NE.11.AND.NRII/AE.12.AND.I.NE.11/ GO TO 45 
CALL RDISTIApMeNgl,NRIINRDIII,NN,THI 
J=NRIII 
IFII.NE.11.0R.RD(1).GE.RD(J)1 GO TO 45 
NR(J1=I 
RD(J)=RD(Ià 

45 CONTINUE 
DO 46 J=2,N 
IFIA(11J/.LT.01 GO TO 46 
CALL CDISTIA,M,N,J,NCIJJ,CDIJ),MMeTHI 

46 CONTINUE 
GO TO 70 

60 CONTINUE 
C.... AMALGAMATE COLUMNS 
C.... FINO CLOSEST COLUMN TO J1 OR J2 

A(11,J11= —Men) 
CALL COISTIA,M4NIIJ2eNC(J2),CDIJ21,MM,TH1 
A(1,J21=—A(1,J21 
A(1,J1I= 
CALL CDIST(A.M.N.J1pNC(J11.CDIJ1),MM,TH) 
JJ=NCIJ2/ 
IFICDIJII.LE.CDIJ2I/ JJ=NC(J1I 
11=A11,J11 
L2=,AI1,J21 
LL=All,JJ1 
A(I,J1)=L2 
All,J21=•Ll 
NN=NN-1 

C.... AMALGAMATE VALUES AND CREATE BLOCKS 
DO 50 I=2,M 
IFIKA.GE.KB-21 GO TO BO 
IFIAII,1/.LT.0/ GO TO 50 
K=AII,11 
IFIAMAXIIAIKpL1),AIK,L2/!—AMINUAII,J1I,AII,J2II.LE.TH ) GO TO 53 

G2=AMAXIIAIK,L2/gAIK,LL//—AMIN1IAIIeJ21 , AII,JJ1/ 
IFIJJ.EU.21 Z2=10.**10 
IF(JJ.EQ.21 21=10.**10 
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IFIZI.LE.THi A(1(.1.21..AIK,L1/ 
IF(22.LE.TH/ AII,J1PKAII.J2/ 
IF(ZI.GT.TH.AND.22.67.TH/A(1,J1P.A(1.JJ) 
IF(ZI.GT.TH.AND.22.GT.TH/1  A(Kg1.21KA(K,LL/ 
IF(Z1.LE.TH/ GO TO 51 
KA*KA*1 
N8(1.KA)=1 
N8120(A)=A(11,1/ 
NB(3.KA/=.11 
N8(4,KAIKL1 

51 IF(22.LE.TH1 GO TO 50 
KA.KAal 
N8(1,KAP.1 
NB(2,1(41=A(1,1) 
NB(3,KAIKJ2 
NE1(4,KAI=L2 
GO TO 50 

53 CONTINUE 
ZmA(K.1.1) 
IF(ACI.J1).GE.A(Ie.12)1 A(I,J11KA(1,J21 
IF(Z.GE.A1K.L2/1 A(1(.1.2/.2 

50 CONTINUE 
C.... UPDATE CLOSEST COLUMNS 

DO 55 .5.2A 
IF(A(1.A.LT.01 GO TO 55 
IF(NC(.0.NE.J1.AND.NC(J).NE.J2.AND.J.NE.J1/ GO TO 55 
CALI CDIST(A,M.N.JpNC(JI,CD(J1.MM,TH/ 

IF(J.NE.J1.0R.CD(.1/.GE.00(1/1 60 TO 55 
NC(I1KJ 
CD(I1..001.0 

55 CONTINUE 
DO 56 1.2,M 
IF(A(1.1/.LT.0) GO TO 56 
CALL RDIST(A.M.N,I,NR(11,R0(1/AN.THI 

56 CONTINUE 
GO TO 70 

C.... COMPUTE NEN DRDERING OF ROMS AND COLUMN5 *EXPRESS 81.0:K BOJNDARIES 
eo CONTINUE 

IF(KA.GE.K11-.21 MRITE(6,11 
1 FORMAT(36H 700 MANY 8LOCKS, INCREASE THRESHOLD I 

IFIIKA.EQ.13/ MRITE16.21 
2 FORMAT(30H NO BLOCKS. DECREASE THRESHOLD 

IFIKA.E0.0.0R.KA.GE .K8..-21 RETURN 
C.... F1ND ROM ORDER 

J.A(251/ 
00 84 1.2,M 

NR(IM1KJ 
84 JK—A(Jell 

C.... FINO COLUMN ORDER 
J=A(1,2/ 
DO 87 I...2,N 
1NKN-1+2 
NCIIN)KJ 

87 Jm—A(1..0 
DO 89 1...2,M 
JKNR(II 

89 AlJel1KI 
DO 91 .12pN 
I=NC(J) 

51 All'I/K.1 

C.... ADJUST 8LOCKS 
DO 90 K.1,KA 
11.NB(IrKI 
12.N8(2.K1 
J1..N8(3.Ki 
J2=N8(4,10 
11KA(11,11 
12.A(12,1/ 
J1=A(1..11/ 
J2•A(102/ 
NB(1p10.11 
N8(21,10.12 
N8(3,KF.J1 
NB(4.K.I.J2 

90 CONTINUE 
KA.KA+1 
M1.10.2 
NB(2.10.14 
N8(3.10•2 
NB(4pK).N 
RETURN 
END 
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SUBROUTINE RDIST(A,M,N,1,11,0R,NN,THI 
C..4  	 20 M&Y 1973 
C.... USED IN JO1N2 
C.... FIND CLOSEST ROW TO ROW I 
C.... A * M BY N BORDERED ARRAY 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... I * TARGET ROW 
C.... II 	ROW CLOSEST TO I 
C.... DR 	DISTANCE OF II TO I 
C.... NN = NUMBER OF COLUMNS NOT AMALGAMATED 
C.... TH = THRESHOLD 
C•• • 

DIMENSION AlMoN) 
TT=TH 
IF(TT.EQ.0) TT*1 
DR=10.**10 
11=2 
LL=A(1,1) 
IF(LL.LT.0) RETURN 
DO 20 J=2,14 
IFIJ.EQ.11 GO TO 20 
L=A(J,1) 
IFIL.L7.0) GO TO 20 

C.... COMPUTE THRESHOLD DISTANCE 
DN=0 
DD*0 
DO 21 K=2,N 
IF(A(1,KI.LT.Oh GO TO 21 
KK=A(lfk) 
DIF*AMAX1IA(LeMpA(LL,KKJI—AMINIAAII,KigAlJeKI) 
DN=DN+1 
IF(D1F.GT.THI DIF=TT 
DO=DD+DIF 
IFIDD.GE.DR*NN) GO TO 20 

21 L0NTINUE 
IFlON.NE.0) DD=DD/DN 
IFIDN.EQ.0) DD=TH 
IF(DD.GE.DR) GO TO 20 
DR=DD 
II=J 

20 CONTINUE 
RETURN 
END 
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SUBROUTINE COIST(ApM,NeIgJJ.DCIMM,TH) 
C.. 	  
C.... FINO CLOSEST COLUMN TO I 
C.... USED AN JOIN2 
C.... A = M BY N BORDERED ARRAY 
C.... M = NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... I = TARGET COLUMN 
C.... JJ • CLOSEST COLUMN TO I 
C.... DC = OISTANCE OF I TO JJ 
C.... MM = NUMBER OF ROWS NOT AMALGAMTED 
C.... TH = THRESHOLD 
C 	  

DIMENSION ARMA) 
DC=10.**10 
TT=TH 
IFITT.EQ.0) TTol 
JJ=2 
L014111,0 
IFILL.LT.01 RETURN 
DO 30 J=2.N 
IF(I.EQ.J) GO TO 30 

IF(L.LT.01 GO TO 30 
C.... COMPUTE THRESHOLD DISTANCE 

DN=0 
DO=0 
DO 31 K=2104 
IFIA(Kt11.LT.01 GO TO 31 
ICK=A(Kpl) 
ON=ON+1 
DIF=AMAX1(AIKK.U.A(KX.LL11—AMINIAAIK,11,A(K.J1) 
IF(DIF.GT.THI DIF=TT 
OD■ D04.DIF 
IFADO.GE.DC*MMI GO TO 30 

31 CONTINUE 
IFION.NE.01 00=DD/DN 
IF(DN.EQ.0) DD=TH 
IFIDD.GE.DC4 GO TO 30 
DC=00 
JJ=J 

30 CONTINUE 
RETURN 
END 

20 MAY 1973 

SUBROUTINE PMUTCB,A,MAN,NR,NCA 
C... 	 20 MAY 1973 
C.... PERMUTES AN ARRAY A ACCORDING TO NR AND NC INTO AN ARRAY B. 
C.... M . NUMBER OF ROWS 
C.... N = NUMBER OF COLUMNS 
C.... A = M BY N BORDERED ARRAY 
C.... LI • M BY N BORDERED ARRAY. OBTAINED FROM A BY PERMUTATION 
C.... NR • 1 BY M ARRAY.NR(I)=OLD INDEX IN ITH ROW POSITION IN NEW ARRAY 
C.... NC • 1 Bit N ARRAY, NCII)=OLO INDEX IN ITH COLUMN POSITION IN NEW ARRAY 
C 	  

DIMENSION AAM.NA.BINNAgNR(M),NUNA 
DO 20 I=2.M 
K=NR(I) 
DO 20 J=1,N 

20 11(1,J)=AIK.J1 
DO 40 J ■ 104 
DO 40 1=2,M 

40 AII.Ji=13(1,0 
DO 30 J=2,N 

DO 30 I=1,M 
30 B(110)=AlIpK) 

RETURN. 
END 
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CHAPTER t 6 

Simultaneous Clustering and Scaling 

16.1 INTRODUCTION 

In the usual case when the data consist of a number of variables measured in different 
scales, it is neccssary to express the variables in a common scale before distances 
between cases may be computed. A typical ad hoc rescaling requires all variables to 
have variance one or, more generally, requires every variable to make the same 
average contribution to the distance. 

If the variables are V(1), V(2), . . . , V(N), then a scale V will be such that V(/) = 
T(V, I), where T(V, I) is a transformation of the common scale V to the variable 
V(/). The transformation T will be linear for interval scale variables and monotonic 
for ordered variables. The variance standardizing transformation would be 

V(/) = A(I)V + B(I), 

where A(I) is the standard deviation of V(/) and B(I) is the mean. In Table 16.1, 
relationships between the votes on various questions in the U.N. General Assembly 
(1969-1970) are tabulated. These show the necessity of various monotonic trans-
formations to represent the responses on a common scale. For example, the relation-
ship between VI and V3 is essentially that the large yes vote on V1 has fragmented 
into yes, abstain, and no votes, in about equal proportions, for V3. A suitable common 
scale would take five values, 1, 2, 3, 4, 5, with 

T(1, 1) = T(2, 1) = T(3, 1) = I , 	T(4, I) = 2, 	T(5,1) = 3 
and 

T(1, 2) = l, 	T(2, 2) --= 2, 	T(3, 2) = T(4, 2) = T(5, 2) = 3. 

In other words, the five values on the common scale correspond to values of (VI, V3), 
successively: (1, 1), (1, 2), (1, 3), (2, 3), (3, 3). 

Returning to the case of interval variables, there are serious defects with the method 
of equalizing variances. The principal one is that the variance calculation is very much 
affected by the presencc of outliers or other clusters in the data. What is necessary is 
to continue rescaling as cluster information is exposed and to use standardizing tech-
niques, such as equalizing interquartile ranges, that are not too sensitive to outliers 
or other clusters. 

There follows a number of algorithms, of the joining type, for simultaneously 
clustering cases and variables while rescaling variables. These algorithms are different 
according to the type of variable being rescaled. The more difficult and intricate pro-
cedures necessary for combining different types of variables have been neglected. 
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Table 16.1 Relationship Between Votes on Various U.N. Questions (1969-1970) 
V1 

1 	2 	3 

27 	2 

23 	3 

23 	o 	44» 

SHLFT OF V1 'YES TOWARD V4 NO . 

V2 

1 	2 	3 

2 	6 	22 

7 	io 	1 o 

54 	13 	O 

REVERSAL V2 YES TO V4 NO . 

V3 2 

3 

V3 2 

3 

	

V4 
	

V4 

1 	2 
	

3 
	

2 
	

3 

1DENTICAL QUESTIONS. 	 WEAK REIATIONSHIPS. 

1, yes; 2, abstain; 3, no. V1, declare the China admission question an important 
question; V2, to make the study commission on China admission "important"; 
V3, to form a study commission on China admission; V4, replace last paragraphs of 
preamble, on South Africa expulsion from UNCTAD, by Hungarian amendment; 
V5, adopt the Hungarian amendment of paragraph 1 and 2 on South Africa expulsion. 

16.2 SCAL1NG ORDERED VARIABLES 

Preliminaries. Given two ordered variables X and Y taking values {X(/), Y(/), 
1 / M} on M cases, it is desired to find a scale Z, an ordered variable taking 
values {Z(/), I / M}, and monotonic transformations T(Z, 1) and T(Z, 2) of 
Z, such that X(/) = T[Z(I), 1] and Y(1) = T[Z(I), 2] with maximum frequency. 

Let the values taken by X be the integers I , 2, . . , N1, let the values taken by Y 
be the integers 1, 2, . . . , N2, and let N(I, J) denote the number of cases with values 
X = / and Y = J. The variable Z will take values [/(1), 	, [I(K), J(K)], 
where /(1) 	/(2) 	• • • 	l(K) and J(I) J(2) 	• 	J(K) or J(1) J(2) 	• • • 

J(K), and N[1(1), J(1)] N[I(2), J(2)] + • • • + N[I(K), J(K)] is a maximum. 
[The transformations are T[I(L), J(L), 1] = I(L), and T[I(L), J(L), 2] = J(L).] The 
algorithm uses a maximization technique similar to dynamic programming. Let 
NMAX(/, J) denote the maximum value of N[I(1), J(1)] N[I(2), J(2)] + • • 

N[I(K), J(K)] subject to the constraints 1 	/(1) /(2) 	• • 	l(K) I and 
1 J(1) J(2) • • J. Then NMAX(/, J) = N(I, J) max [NMAX(/, J — 1), 
NMAX(/ — 1, J)]. In this way, an optimal sequence increasing in / and J, connecting 
(1, 1) to (Ni, N2), is discovered. Similarly, discover an optimal sequence increasing 
in / but decreasing in J. 

STEP 1. Compute N(I,J), the number of times variable X takes value /and variable 
Y takes value J. Set 

NMAX(0, J) = NMAX(/, O) = O 	(1 	N1, I 	N2). 
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STEP 2. For each J (1 s J s N2), compute for each /(1 S I S N1) N MAX(/, J) 
N(I, J) + max [NMAX(I, J - 1), NMAX(/ - 1,1)1 

STEP 3. Set L = N1 + N2 - 1, I(L) = N1, J(L) = N2. 

STEP 4. By definition, 

NMAX[I(L), J(L)] = N[I(L), J(L)] + NMAX[I(L), J(L) - 1] 
or 

NMAX[/(4,401=1V[1(l),J(L)]-1- NMAX[I(L) -- 1, J(L)]. 

In the first case 1(L - 1) = 1(L), J(L -- 1)=1(4 -- 1, and in the second case 
I(L - 1) = 1(L) - 1, J(L -- 1)=J(4.1fL = 2, go to step 5. Otherwise, decrease 
L by I and repeat this step. 

STEP 5. Define a new variable U by U = 1412--.1-1- l when /'==./. Discover the 
optimal monotonic relationship between )( and U, follomdng Steps 1-4. If 

l'alga 16.2 Sealing Components of Mammal's Milk 
Reversed Protein 

ANIMAL 	WATER % PROTEIN % NMAX JMAX NMAX 	JMAX 

1. Dolphin 	44.9 	10.6 	I 	- 	I 	 - 

2. Seni 	46.4 	9.7 	1 	- 	2 	 1 

3. Reindeer- - - - 	64.8 	10.7 	2 	2 	2 	 4 

4. Whale 	64.8 	11.1 	3 	3 	1 	 - 

5. Deer 	65.9 	10.4 	2 	2 	3 	 3 

6. Elephant 	70.7 	3.6 	1 	 4 	 5 

7. Rabbit 	71.3 	12.3 	4 	4 	i 	 - 

8. Rat 	72.5 	9.2 	2 	6 	4 	 5 

9. Dog 	76.3 	9.3 	3 	8 	4 	 5 

lo. Cat 	81.6 	10.1 	4 	9 	4 	 5 

11.Fox 	81.6 	6.6 	2 	6 	5 	 9 

12. Guinea Pig 	81.9 	7.4 	3 	11 	5 	 9 

13. Sheep 	82.0 	5.6 	2 	6 	6 	 12 

14. Buffalo 	82.1 	5.9 	3 	13 	6 	12 

15. Pig 	82.8 	7.1 	4 	14 	6 	12 

16. Zebra 	86.2 	3.0 	1 	- 	7 	 15 

17. Llama 	86.5 	3.9 	2 	16 	7 	15 

18. Bison 	86.9 	4.8 	3 	17 	7 	15 

19. Camel 	87.7 	3.5 	,2 	16 	8 	18 

20. Monkey 	88.4 	2.2 	1 	- 	9 	19 

21. orangutan 	88.5 	1.4 	1 	- 	10 	20 

22. Mule 	90.0 	2.0 	2 	21 	10 	20 

23. Morse 	90.1 	2.6 	3 	22 	9 	19 

24. Donkey 	90.3 	1.7 	2 	21 	11 	22 

Data ordered by water percentage. 
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NMAX(N1, N2) is larger for U and X than for Y and X, the optimal relationship 
overall is increasing in X and decreasing in Y. 

NarE If the ordered variables X and Y take a very large number of different 
values, the contingency table N(I, J) will mostly consist of O's and l's and will be rather 
expensive to store and manipulate. Suppose that the variables X and Y take the values 
{X(I), Y(I)} N(I) times. Assume the data ordered so that x(r) X(J) if / J, and 
Y(I) < Y(J)if X(/) = X(J) and / < J. The quantity NMAX(/) is the maximum value 
of N[/(1)] i- • • • -I- MAK)] subject to 

X[/(1)] X[I(2)] 	• • • 	X[I(K)] --= X(I) 
and 

Y[/(1)] 	11/(2)] 	• • • 	Y[I(K)] = Y(I). 

Compute NMAX(/) iteratively (1 / M), setting 

NMAX(/) = max j [NMAX(J)] + N(/), 

where X(J) X(I) and Y(J) Y(/) and / O J. The quantity JMAX(/) is the value of 
J which maximizes NMAX(J) under the above constraint. The sequence of Z values 
is /(1), maximizing NMAX(/), then /(2) = JMAX(/(1)], /(3) = JMAX[/(2)], and 
so on. 

This algorithm is applied to mammal's milk components in Table 16.2. A scale is 
computed with water and protein both increasing and also with water increasing and 
protein decreasing. The second relationship is preferred since 11 of 24 points are 
covered in the fitting curve. The curve is graphed in Figure 16.1. 

16.3 SCALING ORDERED VARIABLFS APPLIED TO 
U.N. QUESTIONS 

The questions to be scaled are V2 and V3 as given in Table 16.1, two questions on a 
study commission on the China admission question. 

100 

90 

80 

21 
el 70 
3 

so 

50 

4D 
O 	2 	4 	6 

	a 	10 
	12 

Protein 

Figure 16.1 Monotonic scale for mammals' milk. 
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STEP 1. In the terminology of the algorithm, X = V3 and Y = V2. Then N(1, 1) = 
2, N(1, 2) = 6, N(1, 3) = 22, N(2, 1) = 7, N(2, 2) = 10, N(2, 3) = 10, N(3, 1) = 
54, /V(3, 2) = 13, N(3, 3) = 0. NMAX(0, 1) = NMAX(0, 2) = NMAX(0, 3) = 0, 
NMAX(1, 0) = NMAX(2, 0) = NMAX(3, 0) = 0. 

STEP 2 First NMAX(1, 1) = 2, then 

NMAX(2, 1) = N(2, 1) + max fNMAX(1, 1), NMAX(2, 0)] 
= 7 + 2 = 9. 

NMAX(3, 1) = 63, NMAX(1, 2) = 8, NMAX(2, 2) = 19, NMAX(3, 2) = 76, 
NMAX(1, 3) = 30, NMAX(2, 3) = 40, NMAX(3, 3) = 76. 

sTEP 3. Set L = 5, 1(5) = 3, J(5) = 3. 

STEP 4. Since NMAX(3, 3) = O NMAX(3, 2), /(4) = 3, J(4) = 2. Decrease 
L to 4, since NMAX(3, 2) = N(3, 2) + NMAX(3, 1). Therefore /(3) = 3, J(3) = 1. 
Similarly, /(2) = 2, J(2) = I and /(1) = 1, J(1) = 1. The final optimal increasing 
sequence is thus (1, 1), (2, 1), (3, 1), (3, 2), (3, 3). 

STEP 5. Define the variable U: U = 1 if V2 = 3, U = 2 if V2 = 2, U = 3 if 
V2 = 1. Repeating Steps 1-4, discover the sequence (1, 3), (1, 2), (2, 2), (3, 2), (3, 1), 
which covers 109 points. This sequence is thus preferred to the sequence increasing in 
I and J. The final scale is Z = (1, 3), (1, 2), (2, 2), (3, 2), (3, 1) with T[(I, J), 2] = J. 
The function T(Z , 1) is increasing; the function T(Z, 2) is decreasing. 

A number of such scales, which can be computed very quickly by hand for ordered 
variables taking just a few values, are given in Table 16.4. 

16,4 JOINER SCALER 

Preliminaries. The data matrix {A(1, 1), 1 < J S  M, 1 5  J 	is a collection of 
N ordered variables measured on different scales. During the algorithm's execution, 
pairs of the variables are joined to form new variables, pairs of cases are joined to 
form new cases, and a common scale for all variables is constructed. 

The output consists of data clusters within which all values are equal when ex-
pressed in the common underlying scale. The data clusters 1, 2, ... , KD are deter-
mined by the corresponding row and column clusters IR(/), IC(1) for the Ith clusters. 
The tree structure of the row clusters 1, 2, . . . , KR is determined by the function 
JR(/) which is the smallest row cluster properly including cluster I. The tree structure 
of the column clusters 1, 2, . . . , KC is determined by the function JC(I), which is the 
smallest column cluster properly including cluster 1. 

sTEP 1. Set KR = M, KC = N, JR(1) = 0 (1 < I < M), and JC(I) = O 
(1 < 1 5 N). 

STEP 2. Compute distances between all pairs of row clusters I, J [1 1, J < KR, 
JR(I) = JR(J) = 0] as the proportion of columns in which A(I, K) A(J , K), 
among columns for which A(1, K) and A (J , K) are both defined and in which JC(K) = 
0. Let the smallest distance be DROW and the corresponding rows be IROW, JROW. 
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Table 16.3 Mammars Milk 

WATZR 	PROTZIR 	FAT 	LAOTOSZ 	ABB 

Morse 	90.1 	2.6 	1.o 	6.9 	0.35 

Orangutan 	88.5 	 1.4 	3.5 	6.0 	0.24 

Monkey 	88.4 	2.2 	2.7 	6.4 	0.18 

Zenkey 	90.3 	1.7 	1.4 	6.2 	0.40 

Hippo 	 90.4 	 0.6 	4.5 	 4.4 	0.10 

Cammei 	87.7 	3.5 	3.4 	4.8 	0.71 

Bieon 	86.9 	4.8 	1.7 	5.7 	0.90 

Buttalo 	$2.1 	5.9 	7.9 	4.7 	0.78 

Ouinea Pig 	81.9 	7.4 	7.2 	2.7 	o.es 
Cat 	 81.6 	io.i 	6.3 	 4.4 	0.75 

Fox 	 81.6 	 6.6 	5.9 	4.9 	0.93 

Llama 	86.5 	3.9 	3.2 	5.6 	0.80 

Mule 	 90.0 	 2.0 	1.e 	5.5 	0.47 

Pig 	 82.8 	7.1 	5.1 	3.7 	1.10 

Zebra 	86.2 	3.0 	4.8 	5.3 	0.70 

Sheep 	82.0 	5.6 	6.4 	4.7 	0.91 

Dog 	 76.9 	9.3 	9.5 	3.0 	1.2° 

Elephant 	70.7 	3.6 	17.6 	5.6 	0.63 

Rabbit 	71.3 	12.3 	13.1 	1.9 	2.30 

Rat 	 72.5 	9.2 	i2.6 	3.3 	1.40 

Deer 	 65.9 	10.4 	19.7 	2.6 	1.40 

Reindeer 	64.8 	10.7 	20.3 	2.5 	1.40 

Whale 	64.8 	11.1 	21.2 	1.6 	1.70 

Seal 	 46.4 	9.7 	42.o 	 - 	o.es 

Dolphin 	44.9 	10.6 	34.9 	0.9 	0.53 

From Handbook of Biological Data (1956), William S. Spector, ed., Saunders. 

STEP 3. Compute distances between each pair of columns by finding the monotonic 
scale which covers most rows, as in the algorithm for scaling ordered variables. (Look 
only at columns I, J for which JC(/) = JC(J) = O, and look only at rows K for which 
JR(K) = O and for which A(I, K) and A(J, K) are both defined.) The distance between 
/ and J is the number of rows not covered by the monotonic scale, divided by the total 
number of rows considered less 2. (The reason for the 2 is that two rows will always be 
covered.) Let the smallest distance be DCOL and the corresponding columns be ICOL, 
JCOL. 

sTEP 4. (If the minimum of DCOL and DROW is 1, go to Step 6.) If DCOL < 
DROW, go to Step 5. Otherwise increase KR by 1, JR(IROW) = JR(JROW) = KR, 
JR(KR) = O. For each column K [l K KC, JC(K) = O], set A (KR, K) 
A(IROW, K) if A (IROW, K) A(JROW, K). If A(IROW, K) is undefined, set 
A (KR, K) = A(JROW, K). If A(IROW, K) AOROW, K), leave A(KR, K) un-
defined and define data clusters KD I and KD + 2 by IR(KD + 1) = IROW, 
IC(KD + 1) = K, IR(KD + 2) = JROW, IC(KD + 2) = K. Increase KD by 2 
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and go to the next column cluster K. If all column clusters have been adjusted, return 
to Step 2. 

gru 5. Increase KC by 1, define JC(ICOL) = JC(JCOL) = JC, JC(KC) = O. 
For each row cluster K [1 S  K  S  KR, JR(KR) = O] define A(K, KC) to be the 
value in the new scale corresponding to A(K, JCOL) and A(K, JCOL)) if this value 
is uniquely defined. ,Otherwise, define data clusters KD + I and KD + 2 by 
IR(KD + 1) = K, IC(KD + 1) = ICOL, IR(KC + 2) = K,JC(KD + 2) = JCOL, 
and increase KD by 2. Return to Step 2. 

sTEP 6. A single underlying scale has been constructed with monotonic functions 
from this scale to each original variable. Within each data cluster, consider the data 
values that are not included in some smaller cluster. Each such data value corresponds 
to a range of scale values. The intersection of these ranges is always nonempty, and 
this intersection range is recorded for each data cluster. 

Beginning with the largest clusters and moving toward the smaller, eliminate a 
cluster I if the smallest cluster containing it has an intersection range which includes. 
the intersection range for I. Otherwise, change the intersection range for I to be the 
smallest value in the range. 

Table 16.4 Scaling U.N. Questions 
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Blocks are different values of constructed scale. 

16.5 APPLICATION OF JOINER-SCALER ALGORITHM 
TO U.N. VOTES 

It is natural to apply a two-way clustering algorithm to the U.N. votes (Table 16.5) 
because there are blocs of countries such as Bulgaria, Romania, and the USSR that 
vote similarly, and blocs of questions that arise from the same issue, such as "China 
admission," "importance of China admission," "study China admission," "im-
portance of studying China admission." 
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Table 16.5 Seleeted Votes in the United Nations (1969-1970) 
Y . IBS 	 N . NO 	 A . ABSTAIN 

i 	2 	3 	4 	5 	6 	7 	8 	9 	io 

t. CANADA 	 X 	A 	Y 	A 	N 	A 	A 	Y 	Y 	Y 

2. CUBA 	 Y 	A 	N 	Y 	Y 	N 	Y 	A 	N 	N 

5. MEXICO 	 n 	Y 	Y 	X 	N 	Y 	Y 	A 	A 	Y 

4. UNITED IMODMI N 	X 	Y 	Y 	X 	A 	N 	A 	Y 	t 
5. NSTRERLANDS 	X 	X 	Y 	A 	X 	Y 	A 	A 	Y 	Y 

6. PRA= 	 N 	A 	N 	Y 	A 	N 	A 	A 	Y 	Y 

7. Unti 	 X 	A 	Y 	X 	T 	Y 	A 	A 	A 	Y 

S. PORTUGAL 	A 	X 	A 	A 	A 	A 	N 	N 	Y 	Y 
9. POLAND 	 r 	Y 	X 	Y 	A 	X 	T 	Y 	A 	A 

i o. AUSTRIA 	 N 	A 	A 	A 	A 	A 	A 	Y 	T 	Y 
il. ~GARY 	 Y 	Y 	X 	Y 	T 	N 	T 	Y 	A 	A 
12. CZECHUSLOVAlaA Y 	T 	N 	T 	A 	X 	T 	Y 	A 	A 
i 3. ITALY 	 X 	A 	Y 	N 	N 	T 	A 	A 	Y 	7 
i 4. 711WARIA 	y 	Y 	X 	y 	y 	N 	Y 	Y 	A 	A 
15. RCININIA 	 Y 	Y 	N 	Y 	Y 	N 	Y 	Y 	A 	A 
16. USSR 	 T 	T 	X 	Y 	A 	N 	Y 	Y 	A 	A 
17 . MIRO 	 A 	A 	N 	T A 	N 	A 	Y T 	Y 
18. GAMBIA 	 X 	A 	T 	X 	A 	N 	A 	A 	A 	A 
15. MALI 	 A 	Y 	N 	T 	Y 	N 	A 	Y 	N 	N 
20. SENSGAL 	 A 	Y 	Y 	A 	A 	A 	Y 	Y 	N 	N 
21. DARMI' 	 A 	Y 	Y 	N 	Y 	N 	Y 	Y 	N 	rt 
22. mann 	X 	Y 	Y 	I T 	N 	Y 	Y N 	N 
23. IVORY COAST 	w 	r 	r 	X 	I 	X 	r 	Y 	A 	A 

Y/11/A 	 7/11/5 12/3/8 ii/to/2 i1/7/5 9/5/9 4/14/5 12/2/9 110/8 8/5/10 10/5/e 

Columns: 1, to adopt USSR proposal to delete item on Korea untfication; 2, to call 
upon the UK to use force against Rhodesia; 3, declare the China admission question 
an important question; 4, recognize mainland China and expel Formosa; 5, to make 
study commission on China admission important; 6, to form a study commission on 
China admission; 7, convention on no statutory limits on war crimes; 8, condemn 
Portuguese colonialism; 9, defer consideration of South Africa expulsion; 10, South 
Africa expulsion is important question. 

Also, the questions must be rescaled. For example, "importance of China ad-
mission" and "study China admission" are similar questions translated on an under-
lying scale, so that some of the yes votes on "importance" become abstains on 
"study." The otber two China questions are very similar in producing opposite votes 
from almost every country. 

sTEP 1. To initialize, set KR = 23, KC = 10, JR(I) = O (1 I 23), and 
JC(/) = O (1 / 10). 

STEP 2. Compute the distance between all pairs of rows. For example, row 1 and 
row 2 match in just one vote, so the distance between Canada and Cuba is -#. The 
smallest row distance (there are several, and one is chosen arbitrarily) is DROW --,--- O, 
IROW = 12 (Czeehoslovakia), JROW = 16 (USSR). 
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STEP 3. Find the monotonic scale for columns I and 2 that covers most rows. 
This is done by using the previous algorithm of Section 16.2. The optimal scale has 
five values, YY, AY, NY, YA, NN, which cover 18 of 23 rows. The distance between 
columns 1 and 2 is therefore 1 - -§§r. (Note that 2 is subtracted from the 23, because a 
monotonic scale always covers two points for free. This becomes important in the 
later stages of the algorithm when just a few rows and columns remain.) Examining 
all pairs of columns, digcover DCOL = O for ICOL = 9, JCOL = 10. 

srEP 4. Increase KR to 24, define JR(12) = 24, JR(16) = 24, JR(24) = O. Since 
rows 12 and 16 are identical, row 24 is the same as row 12. Return to Step 2, and 
amalgamate rows 24 and 9 to be row 25, rows 14 and 15 to be row 26, and rows 11 and 
26 to be row 27. On the next return to Step 2, columns 9 and 10 are closer than any 
pair of rows, and Step 5 is taken. 

STEP 5. Increase KC to 11, JC(9) = JC(10) = 11, JC(11) = O. The monotonic 
scale takes values 1, 2, 3, 4, corresponding to the pairs (Y, Y), (A, Y), (A, A), 
(N, N). Note that this sequence is monotonic in both variables. All pairs of votes 
fall in one of these four categories, so no data clusters are formed. 

STEP 4 REPEATED. The next closest pair of row or column clusters are rows 21 and 
22.. Set KR = 28, JR(21) = JR(22) = 28, JR(28) = 0. Define A(28, K) = A(21, K) 
except for K = 1, since A(21, 1) # A(22, 1). Define two data clusters by IR(1) = 21, 
IR(2) = 22, 1C(1) = 1, IC(2) = 1, and increase KD to 2. The algorithm continues 
in this way until a single column remains and several row clusters which are a distance 
of 1 from each other. The data clusters at this stage are given in Table 16.6. Also all 
original variables are monotonic functions of the scale of the column cluster which 
replaced them. These column clusters are joined, pairwise, with other column clusters 
till a single column cluster remains. All original variables will be monotonic functions 
of the scale of this final column cluster, given in Table 16.7. 

STEP 6. Each data cluster generates a range of scale values, the intersection of the 
ranges of scale values over all values in the cluster. Consider, for example, the data 
cluster corresponding to rows 1 and 17 and columns 3, 4, 6, 1, 2, 5. The data values 
which are not included in smaller clusters are A, N, A, N for row 17 and columns 
6, 1, 2, 5. From Table 16.7, these correspond to ranges of final scale values, 5-8, 
6-E, 4-7, 7-E. The intersection of these ranges is the value 7. Such a value is associated 
with every data cluster. 

For some data clusters, the intersection range includes that of the next largest 
cluster, and the data cluster is deleted. For example, the data cluster rows 21, 22, 23 
by columns 7, 8, 9, 10 has intersection range C-E which includes that of the next 
largest• cluster, rows 3-23 by columns 3-10, intersection range C. This data cluster is 
deleted. 

Beginning with the largest clusters, every cluster is either deleted or has its inter-
section range replaced by the smallest value in it. A single scale value is thus associated 
with each remaining cluster, as in Table 16.8. The original data is recoverable from 
this representation in 41 data clusters, using the scale-to-variable transformations in 
Table 16.7. 

The clusters of countries are {Senegal}, {African bloc}, {Netherlands, Italy}, 
{Soviet bloc}, {fringe neutrals}, {Portugal}, and {United Kingdom}. The clusters of 
questions are {China questions}, {African questions}. 
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Table 16.6 Prelbninary Data austers in Applying Joiner-Scaler Algorithm to U.N. 
Data 

3 	4 	6 	1 	2 	5 
	

7 	8 	9 	io 

16.6 THINGS TO DO 

16.6.1 Runniing the Joiner Seder 

The algorithm assumes that given variables are obtained by monotonic transforma- 
tion from some underlying scale to be discovered in the course of the algorithm. lt 
thus produces results invariant under monotonic transformation of the variables. 
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Table 16.7 Common Scale for All U.N. Questions, Output of Joiner-Scaler 

SCAIE. 	1 	2 	3 4 	5 6 7 8 9 BCDE 

I 	
1 
i  

QUESTIONI. Y[ A A A A N N N N N N NN  

2. Y Y YIA A A A I N N N  NN N 

3. N N A A A AIYYY Y Y Y Y 

4..Y Y A A A A AINNNNNN 

Y Y A A A AINNNNNN 11 

N NNNIA A A A Y YYYY 

N NNNNNNN A AIYYY 

N NN11 NA A A AIYYYY 

Y Y Y Y Y Y Y Y Y Y A A N 

Y Y Y Y Y Y Y Y Y YYIA N 

It is expensive to use if each variable takes many different values. The time is pro-
portional to M2K2N2 , where K is the number of different values taken by each variable; 
averaged over different variables. In using it with continuous variables, it is suggested 
that you reduce the number of different values taken by each variable to between 
5 and 10. 

16.6.2 Monotonie Subsequences 

For any sequence of length n, show that there is an increasing subsequence of length 
r and a decreasing subsequence of length s, such that rs Z  n. Thus for any n points in 
two dimensiona, there is a monotone curve passing through at least N/71. 

16.6.3 Category Data 

If each variable is a category variable, the results should be invariant under arbitrary 
one-to-one transformations of each variable. Therefore there will be an underlying 
scale of block values, a category scale, from which the given variables must be ob-
tained by transformation. 

In the joining algorithm, the basic problem is always the distance, the amalgamation 
rule, and block construction for pairs of rows or columns. The rows will be handled 
as usual by using matching distances and constructing blocks at the mismatches. The 
variables require new treatment. One simple procedure measures the distance between 
two variables as K(I, .1)[K(1, J) — 1]I M(M — 1), where K(I, J) counts the number 
of times, in M cases, that the first variable takes the value I and the second variable 
takes the value J. The new variable just takes the set of values (I, J) which. actually 
occur, and no blocks are constructed when variables are joined. 

16.6.4* Continuous Data 

In both the monotonic data and category data approaches, the final blocks have the 
property that every variable within a block is constant over cases within a block. 
This property is not realistic in the continuous data case. It is plausible to consider 
either monotonic transformation or linear transformations from the block-value scale, 
but it is necessary that a threshold be given for each variable, such that the variable 
ranges within the threshold over the cases in a block. 

5.  

6.  

7.  

8.  

9.  

lo. 
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Table 16.8 Finsi Data Clusters in Applying Joiner Scaler to U.N. Votes 

3 	4 	6 	1 	2 	5 7 	8 	9 	io 
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SENEGAL-------- 

MEXICO---- 

FRANCE 	 

GAMBIA 	 

DAHOMEY 	 

NIGERIA 	 

IVCRY COAST 	 

NETHERLANDS 	 

ITALY 	 

MALI 	 

CUBA 	 

HUNGARY 	 

BUIDARIA 	 

ROMANIA 	 

POLAND 	 

CZECHOSWITAKTA- 

USSR 	  

AUSTRIA 	 

FINLAND 	 

CANADA 

l E 
121 

9 

9 
	

D 

C 
	

LI 

E D 

5 
	

1E1 

5 PORTUGAL 

UNITED KINGDOM- 8 E 

To translate this table, look at ~leo on Question 3, taking the 

value C . From 16.7, the value C on Question 3 is Y . Thus 

Mexico votes Yes on Question 3. 

Original data are recovered by relating scale values to questions (Table 16.7). 

310 
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In considering the linear case, pairs of cases are treated as in the range algorithm 
in Chapter 15, but pairs of variables must be considered freshly. Suppose that X and Y 
are variables taking values [X(I), Y(I)] with thresholds TX and T Y . A new variable Z 
will be constructed, connected to X and Y by 

X = A(1)Z + A(2) 
and 

Y = B(1)Z + B(2). 

There will be a threshold TZ for Z that is the minimum of TX/A(1) and TY/B(1). For 
each case I, there is a difference between the Z values D(I) = I [X(I) — A (2)]/A(1) —
[ Y(/) — B(2)I B(1)]i Define 

DD(I) = D(I)/TZ , if D(I) < TZ, 

DD(/) = I 	 if 	D(I) TZ. 

Then {1 < I < M} DD(/) measures the distane between X and Y for the par-
ticular choice of scale parameters A(1) and A(2), B(1) and B(2). Of course, these 
must be chosen to minimize DD(/). You see instantly that B(1) = 1, B(2) = O without 
loss. It is true also that the optimal choice of A(1) and A(2) is such that D(I) = O for 
two cases I. Thus the optimal values of A(1) and A(2) are obtained by searching over 
all the lines through pairs of points. (The time for a complete join of all rows and 
columns is thus proportional to APN 2.) Blocks are constructed, as in the homogeneous 
case, whenever a value is out of threshold with the value it is being joined to and is out 
of threshold with the value it is likely to be joined to nem. 

Complications anse later on in the algorithm, when each value becomes a range of 
values. For a pair of variables, the range is a rectangle with four corners. The optimal 
scale choice passes through corners for two cases, and so the same search procedure 
finds the optimal scaling. 

16.6.5 Greater Generality 

To handle data in which different variables are on entirely different scales, such as 
continuous, ordered, or category scales, it is supposed that there is an underlying 
block scale. All values in a block take a single block value z. For a variable I, there is 
a transformation T(I, z) which specifies the value of variable I when the block value 
is z. 

Thus T(I, z) might be a linear transformation of z, or a monotonic transformation, 
or an arbitrary transformation, according to the type of variable. The problem of 
combining different types of variables to produce such a scale remains to be solved. 

16.6.6 Median Regression 

If X, Y are variables taking values X(I), Y(I), a median regression line of Y on X 
is the line y = q + bx, where a, b are chosen to minimize 

{1 <I < M} Y(I) — a — bX(I)I. 

Show that there is a median regression line for which Y(I) = a + bX(I) for two values 
of I. Suppose that cases I, J are such that Y(/) = a + bX(/), Y(J) = a bX(J). 
Suppose that for every K the lines through I, K and J, K have larger sums of absolute 
deviations than the line through I , J. Then the line through I, J is a median regression 
line. 
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CHAPTER 17 

Factor Analysis 

17.1 INTRODUCTION 

Consider the correlations between physical measurements listed in Table 17.1. The 
correlations are relatively high within the groups head length, head breadth, face 
breadth, and foot, forearm, height, finger length, and somewhat smaller between 
the groups. An explanation for such a pattern is that all variables contain a "dimen-
sion factor," that the first group contains a "head factor," and the second group a 
"height factor." The generai technique of representing variables as weighted sums of 
hypothetical factors is known as factor analysis. The principal developers and users 
of this technique have been psychologists, although it has been applied to every type 
of data. 

Denote the variables to be investigated by V(1), V(2), . . . , V(N), and denote the 
factors by F(1), F(2), . . . , F(K). Then 

V(/) = {1 J K} B(I , J)F(J). 

Thus each variable lies in the vector space spanned by the factors F(1), F(2), . . . , 
F(K). To be concrete, suppose the variables to be measured are the results of the 
following: V(1), arithmetic; V(2), geometry; V(3), drawing; V(4), spelling; V(5), 
writing tests. Let the factors be the following: F(I), intelligence; F(2), mathematical 
ability; F(3), spatial perception; F(4), verbal ability. The equations might be 

V(1) = 0.5F(1) 0.3F(2), 

V(2) = 0.4F(1) 0.2F(2) 0.3F(3), 
V(3) 0.3F(1) 	0.1F(2) 	0.4F(3), 

V(4) = 0.4F(1) 0.2F(4), 
V(5) = 0.6F(I) 0.3F(4). 

In particular, if an individual had intelligence 20 and mathematical ability 10, the 
arithmetic score would be 0.5 x 20 -I- 0.3 x 10 = 13. The matrix of coefficients 
{B(I , J), 1 I N , 1 J < K} is called the loading matrix, and the particular 
coefficient B(I, J) is the loading of the variable V(/) on the factor F(J). 

Basic operations in factor analysis are determination of the factors {F(I), 1 I K} 
and of the loading matrix {B(I , J)}. The factors are usually interpreted by examination 
of the loadings of the given variables { V(/), 1 / N} on them. is apparent that 
the factors and loading matrix will not be uniquely determined. There are many 

313 



314 	Factor Analysis 

Table 17.1 Correlations Between Physical Measurements 

	

HL 	HB 	FB 	FT 	FM 	HT 	FL 

HL Head Length---- 	1.000 	.402 	.395 	.339 	.305 	.34o 	.301 

HB Head Breadth--- 	.402 	1.000 	.618 	.206 	.135 	.183 	.I50 

FA Face Breadth--- 	.395 	.618 	1.000 	.363 	.289 	.34 5 	.321 

FT Foot 	.339 	.206 	.363 	1,000 	.797 	.736 	.759 

FM Forearm 	.305 	.135 	.289 	.797 	1.000 	.80o 	.8116 

HT Height 	.34o 	.183 	.345 	.736 	.800 	1.000 	.661 

FL Finger Length 	.301 	.I50 	.321 	.759 	.846 	.661 	1.000 

(From K. Pearson (1901). On lines and planes of closest fit to points 

in space. Philosphical Magazine  559-572) 

factor-analytic representations of a given set of data, and this plethora of solutions 
is a permanent embarrassment to the keen factor analyst. In particular, if the factors 
are transformed to some other set of factors by a linear transformation, the inverse 
transformation operates on the loading matrix, and exactly the same variables are 
represented by the new factors and loadings. 

One way of reducing ambiguity assumes the factors have a unit covariance matrix, 
so that the covariance matrix {C(I, J), 1 	J < N} of the variables may be written 
as 	 C(I, J) 	{1 < L < K} B(I, L)B(J, L). 

The loading matrix is said to be a root of the given covariance matrix. This root 
remains undetermined up to a rotation of factors (since such a rotation does not 
change the unit covariance matrix of the factors). To determine the root, further con-
straints are necessary, such as orthogonality of the vectors {13(1, L), 1 < I < N} for 
different L, or simple structure, which requires that many of the entries in the loading 
matrix be nearly zero. The simple structure requirement is formalized in a number of 
algorithms, which have names such as QUARTIMAX or VARIMAX. 

A clustering mode! for the loading matrix associates each factor with a cluster of 
variables, the variables with nonzero loadings on the factor. This model thus re-
quires many zeroes in the loading matrix and is a special type of simple structure model 
which permits interpretation of the final factors as clusters of variables. 

The requirement of zero correlation between factors makes a simple model for the 
variable covariance matrix, but it is not a compelling assumption. It is necessary, in 
view of the factor-loading matrix nonuniqueness, to have even more stringent assump-
tions on the loading matrix if no assumptions are made about the factors. A simple 
clustering model of this type is that all entries in the loading matrix are O or 1, with 
each factor corresponding to a cluster of variables with unit loadings. 

17.2 SPARSE ROOT ALGORITHM 

	

Preliminaries. A covariance matrix {C(/,./), 1 	J < N} is to be approximated 
by the product of B and its transpose, where B contains many zeroes. The matrix B 
is assessed by two properties: 

(I) the sum of squares SS(B) = {1 < I < N, 1 < L < K} B(I, L)2. 
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(ii) the number of zeroes Z(B), which equals the number of times B(I, L) = O. 

During the maximization, it is required that the residual matrix 

R(I, J) = C(I,J) — I {1 L K} B(I, L)B(J, L) 

remain nonnegative definite. Thus 

I {1 / N} R(I, I) = I {1 I N} C(I, I) — SS(B) 

decreases as SS(B) increases, and, if SS(B) is dose enough to I (1 / N} C(I, I), 
the diagonal residuals will be negligible. Because R is nonnegative definite, the off-
diagonal term R(I, J) is less than [R(I, DR(J, JA112. 

The fitting proceeds stepwise. The first (trial) column of B is chosen to maximize 
I e / N} B(I, 1)2. This column is the first eigenvector of C, and SS(B) is the 
first eigenvalue. The row IMIN minimizes a {1 / N} B(I, DC(IMIN, /)]2 x 
[SS(B)C(IMIN, IMIN)]-1. This quantity is the square of the correlation of the 
1MINth variable with the weighted average of the original variables, weighted by the 
coefficients {B(I, 1)}. If B(IMIN, 1) is constrained to be zero, the quantity SS(B) 
will be reduced by an amount proportional to this squared correlation. 

The row IMIN is "removed" from the matrix C by replacing all correlations by 
the partial correlation with IMIN fixed and by setting all correlations involving IMIN 
equal to zero. A new eigenvector is computed on this adjusted matrix, a new IMIN is 
found least correlated with the weighted average of variables, and this variable is 
removed from the matrix. In this way, an eigenvector is obtained for N, N — 1, 
N — 2, .. . , 1 variables. That eigenvector is chosen to fit C for which eigenvaluel 
(number of nonzero values) is a maximum. 

The residual matrix R is computed, as follows: 

R(I, J) = C(I, J) — B(I,1)B(J, 1), 	1 	I, J N, 

and the above steps are repeated on R. Eventually C is approximated by a loading 
matrix in which SS(B) is high and the number of zeroes is also high. 

	

gru 1. Set L = 1. Initially, set R(I, J) = C(I, J) (1 	I N, 1 J N). Set 
IP = N. 

STEP 2. Let {X(/), 1 J N} be the eigenvector with largest eigenvalue of the 
matrix C. Set F(IP) = [I {1 / N} X(/)2linumber of values X(/) O Ori. 

sup 3. Choose 1MIN to minimize [I{1 / N} B(41) C(1M1N, I)}] [C(IMIN, 
IMIN)ri, with X(IMIN) O O. 

STEP 4. Compute the partial correlation matrix of C with IMIN "removed"; that 
is, change C(J, K) to C(J, K) — C(IMIN, J)C(IMIN, K)/COMIN, IMIN), (1 J, 
K N), and finally set C(IMIN, J) = C(J, IMIN) = O (1 J N). Set IP = IP — 
1, and, if IP remains greater than zero, return to Step 2. 

STEP 5. Let IP = IMAX maximize {F(IP), 1 IP N). Set B(I, L) = X(I) 
(1 I < N), where [X(/)} is the eigenvector corresponding to F(IP). Change R(I,J) 
to R(I, J) — B(I, L)B(J, L) (1 I, J N). Define C(I, J) = R(I,J), increase L by I , 
and return to Step 2, unless L = K. 
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17.3 SPARSE ROOT ALGORITHM APPLIED TO FACE 
MEASUREMENTS 

The variables used are head length (HL), face length (FL), and face breadth (FB) 
with correlations between them as given in Table 17.1. 

STEP 1. Initialization sets the column to be estimated, L = 1, remembers the 
covariance matrix C in R, R(I, J) = C(I , J), 1 s I, J 5 3 (since C is destroyed in the 
next few steps), and sets IP = 3. 

STEP 2. The first eigenvector of C is (0.712, 0.852, 0.848). F(I P) = F(3) = 
(0.7122  + 0.8522  + 0.8482)/3 = 0.651. 

STEP 3. The squared correlation of the first variable with the linear combination 
of variables corresponding to the first eigenvector is 

(0.712 x 1.000 + 0.852 x 0.402 + 0.848 x 0.395) 2  	  — 0.506. 
1.95 2  

The other two variables have a higher squared correlation] so IMIN = 1. 

STEP 4. Remove IMIN = I from the covariance matrix. Then 

C(1, 1) = C(2, 1) = C(3, 1) = C(1, 2) = C(1, 3) = 0, 
C(2, 3) = 0.618 — 0.395 x 0.402 = 0.459, 

C(2, 2) = 0.838, and C(3, 3) = 0.844. 

Set 1P = 2, and return to Step 2. 

STEP 2 REPEATED. The first eigenvector of C, with variable 1 removed, is (O, 0.804, 
0.809). Then F(2) = (0.804 2  + 0.8092)/2 = 0.650. 

STEP 3 REPEATED. The second variable is least correlated with the new eigenvector 
so IMIN = 2. 

STEP 4 REPEATED. On removing IMIN = 2 from C, all entries are zero except 
C(3, 3) = 0.592. Return to Step 2. 

STEP 2 REPEATED. The first eigenvector of C with variables I and 2 removed is 
(0, 0, 0.770). Thus F(3) = 0.592. 

STEP 5. The maximum value of F(I) occurs at I = 3, F(I) = 0.651. The first column 
of 13 is B(1, 1) = 0.712, B(2, 1) = 0.852, B(3, 1) = 0.848. Change the residual 
matrix R(I, J) (1 s I, J S  3); for example, R(1, 2) = R(1, 2) — B(1, 1)B(2, 1) = 
0.402 — 0.712 x 0.852 = — 0.204. Define C = R, set L = 2, and return to Step 2. 

The sequence of values of C, R, and B are given in Table 17.2. There are not many 
zeroes, which indicates, perhaps, that there is not much clustering. 

17.4 REMARKS ON THE SPARSE ROOT ALGORITHM 

The sparse root algorithm is applied to the 7 x 7 physical measurements matrix in 
Table 17.3. The first three columns are rather satisfactory. First, the "bone length" 
cluster of four variables, foot, forearm, height, and finger length, appears, then the 
face and head breadth cluster, and then a generai cluster containing all variables. 
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Table 17.2 Sparse Root Moralista Applicò to Head Measurements 

( ) INITIAL 	IZAD MiGTH 	HL 	11.000 	.402 	. 39 5 

CORRELATIONS HEAD BREADTH 	HB 	.402 	1.000 	.618 

FACE BREADTH 	FB 	. 39 5 	61 8 	1.000_ 

( 2 ) FIRST EIGENVE,CTOR 	 E .712 	.852 	.84 8 

( 3 ) COR_RELATIONS 	 HL 	[ o 	o 	o 

WITH HL 	 BB 	o 	8 38 	.459 

REMOVED 	 FB 	o 	.14 5 9 	844 

(14) EIGENVECTOR OF REDUCED MATRIX 	 [ o 	8 o4 	8 o 9 ] 

( 5 ) CORRKLATIONS 	 HL 	[ o 	o 	o i 

wrrff HL , HB 	 BB 	o 	o 	o 

REMOVED 	 FB 	o 	o 	.592 

( 	EIGENVECTOR OF REDUCED MATRIX 	 o 	o 	.770 ] 

I 7 ) RES IDUAL MATRIX 	 .14 9 3 	-.2 o4 	-.2 091 

AFTELR FIRST COLMI 	 HB 	1.7204 	.274 	- .104 

FITTED 	 FB 	- .209 	- .104 	.280 

( 8 ) FIRST EIGENVECTOR 
	 .7o2 	-.286 	-.3o3 ] 

I 9 ) EIGENVECTOR, HB REMOVED 	 . 5 814 	o 	-.490 ] 

( i o ) RESIDUAL MATRIX 	 .1 52 	-.2 o4 	o 78 

AFTLR SECOND COLUMN 	 HB 	 .274 	-.1o4 

FB 	.078 	- .104 	.040 

( i i ) RESIDUAL MATRIX 	 HL 	[ o 	o 	o 

AFTER THIRD COLUNN 	 HB 	o 	o 	o 

FB 	o 	o 	o 

( 2 ) LOADING 

MATRIX 

HL 	1.712 	.584 	- . 39 o 1 

HB 	.852 	o 	5 24 

FB 	. 84 8 	.4 9 o 	-.199_i 

The later columns reveal two problems: First, the cluster of variables in the fourth 
column overlaps with that in the first. This happens because it is not forbidden by 
the algorithm, and perhaps it should be. Second, some rather small entries appear in 
the later columns, such as 0.055 for head breadth in column four. These make only a 
trivial difference in the fit but cannot be replaced by zero because the residual matrix 
would then be no longer nonnegative definite. 
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Table 17.3 Sparse Root of Physical Measurements Data 

BEAD LENGTH 	 0 	o 	.857 -.504 	o 	.109 	o 
HIÀ D BREADTH 	 0 	.898 	.431 	-.055 	o 	.041 	o 

PACE BREADTH 	 o 	.356 	.774 	.506 	.027 	-.123 	. 0 39 

FOOT 	 .799 	o 	.438 	.145 	o 	.339 	-.175 

FORUM 	 .877 	o 	.356 	o 	o 	o 	.322 

HEIGHT 	 .770 	0 	.426 	0 	-.408 	.235 	-.074 

FINGER LENGTH 	 .814 	0 	.373 	0 	.409 	-.171 	o 

VARIANCE 	 2.664 	.932 	2.160 	.534 	.335 	.227 	.142 

CUMULATIVE VARIANCE 2.664 	3.596 	5.756 	6.290 	6.625 	6.852 	6.994 

(MAXIMUM SUM - 7) 

On the other hand, a substantial amount of variance is explained in the first three 
columns, 82 %, and these have many zeroes. The later columns can be ignored in this 
case. 

17.5* ROTATION TO SIMPLE STRUCTURE 

A difficulty with the "sparse root" method is the requirement of nonnegative definite-
ness on the residuai matrix. This requirement is necessary so that the method can be 
applied stepwise, at each stage operating on the residuai matrix from the previous 
stage. 

An alternative constraint on the fitted loading matrix B* is that there exists a root 
B such that B*(1, J) = B(I, J) whenever B*(I, J) O. This condition is always met 
by the "sparse root" computed as above. The relaxed condition is justified as follows. 
Consider the data matrix J). 

Let A(I, J) = {1 S  L s K} F(I, L)B*(J, L) + E(I, J). Fit F and B* with some 
values of B* constrained to be zero, to minimize {1 S I M, 1 S  J  S  N} E(I, J)2. 
The columns {F(I, L), 1 S  I  S  M} are assumed orthogonal. For K N, A(I, J) = 

{1 s L s K} F(I, L)B(J, L), where {F(I, L), 1 s I S M} are orthogonal and B 
is a root of the covariance matrix with (I, J)th element C(I, J) {1 5 L S  M} 
A(L, DA (L, J). Thus the equation involving B* may be written, for a particular F, as 

A(I, J) 	{1 S L S K} F(I, L)B(J, L) 
= (l S  L  S  K} F(I, L)B*(J, L) + 	J), 

which implies that E(I, J) = {1 S L S  K} F(I, L)[B(J, L) - B*(J, L)]. To mini-
mize {1 S I  S  M, 1 s J S  N} E(I, J)2 , for a particular F, set B*(J, L) = B(J, L) 
whenever B*(J, L) is not constrained to be zero. 

Thus, if a loading matrix B* is constrained a priori to have certain elements zero, 
the optimal B* (in the sense of a least sum of squared errors on the original data) is 
obtained by finding a root B of C and setting the constrained elements equal to zero. 
Each root B will be evaluated by the sum of its squared elements over those elements 
to be set zero; the optimal B* is obtained when this sum is minimized or, equivalently, 
when {1 S I S N, 1 S  L s K} B*(I, K) 2  is maximized. The family of roots of C 
must be searched. Any two of these are related by an orthogonal matrix T operating 
on the columns. Thus, if B1 and B2 are roots, 

B1 (I, J) 	{1 5 L S  K} B2(I, L)T(L, J). 
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These orthogonal matrices correspond to the orthogonal factors F, which disappear 
when the covariance matrix is used rather than the originai data. The search thus 
proceeds by beginning with an arbitrary root of C and rotating it to maximize 

{1 / N, 1 L K}B*(I, K)2. Stationary points occur at roots B for which 

{1 / N) B(I,J)B*(I, L) -= {1 I N} B(I, L)B*(I,J), 

where B*(I, J) --= B(I, J) whenever B*(I, J) O. There may be many such points 
corresponding to many local optima. 

Now consider the gendal problem of specifying the zeroes in the loading matrix. 
As before, all roots will be searched. Each root can be rendered sparse by setting 
elements equal to zero, and the error is the sum of the squares of these elements. The 
value of a root B is the maximum number of elements which may be set zero, with 
their sum of squares less than some threshold TH. Or, the value of a root B is the 
number of elements less in absolute value than some threshold TH. 

A particular search pattern to minimize the number of elements exceeding threshold 
begins with an arbitrary root, rotates that pair of columns whose rotation most de-
creases the number of elements exceeding threshold, and continues until no pair of 
columns can be improved by rotation. 

To optimize the rotation of each pair of columns, consider the pair of elements x, y 

in a particular row. Rotations with angle O (between O and ir) will transform these to 
x cos O y sin O, —x sin O y cos O. The possible values of O will be divided into 
intervals in which O, 1, or 2 elements are less than threshold. This is done for each 
row. An interval (or intervals) of O values may now be discovered maximizing the 
number of elements within threshold. In generai, the maximizing rotation will not be 
unique, and the smallest rotation that will achieve the maximum number of elements 
within threshold is chosen. 

17.6 JOINING ALGORITHM FOR FACTOR ANALYSIS 

Preliminaries. A covariance matrix 1C(I, J), 1 N, 1 J N} is to be 
approximated by a product of loading matrices B, in which B has simple tree strueture. 
This means that every column of B has constant nonzero elements (perhaps a different 
constant for different columns) and that the clusters of variables defined by the nonzero 
elements in each column form a tree. A covariance matrix C is exactly equal to a 
product of loading matrices of this type if and only if —C is an ultrametric, that is, 
if and only if for every three variables J, K, C(I, J)> min [C(I, K), C(J, K)]. 
Note that, if —C is an ultrametric for one scaling of the variables, it might not be for 
another, so that careful scaling of the variables could improve the fit of this model. 

The algorithm proceeds by finding the two variables with the largest covariance and 
joining them to construct a new factor whose covariance with each other variable is 
the weighted average of the covariances of the joined variables with that variable. 
The next highest covariance then indicates the next pair to be joined. This is no 
different from the standard distance and amalgamation procedure. 

During the algorithm, clusters (or factors) {1, 2, . . . , 2N — l) will be constructed. 
The first N dusters are the originai variables. The cluster structure is recorded by the 
vector JT, where JT(/) is the cluster constructed by joining / to some other cluster. If 
clusters / and J are joined to form cluster K, then the loading in the Ith column of the 
loading matrix is 

{C(/, /) — min [C(I, l),C(J, J),C(I,J)1}112. 
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STEP 1. Set K, the number of clusters, equal to N. For each / (1 	N) define 
WT(/) = 1, JT(/) O. Define B(I, I) = 1 (1 I N) and B(I, J) = O for all other 

STEP 2. Find that pair / J with JT(/) =JT(J) O, such that C(I, J) is a maxi-
mum. 

STEP 3. Increase K by 1. Define JT(/) K, JT(J) = K, C(K, K) = min [C(/, I), 
C(J,J),C(I,J)],WT(K) WT(I) WT(J). Define B[L, I) = [C(I, I) — C(K, K)]1/2 
whenever B(L, l) = l (1 L N). Define B(L, J) = [C(J, J) — C(K, K)P12 
wherever B(L, J) = 1 (1 L N). Define B(L, K) = l whenever B(L, I) or B(L, J) 
are nonzero (1 L N). Define JT(K) = O. 

sTEP 4. For each L, JT(L) O, define C(L, K) =C(K, L) =[WT(I) C(I, L) + 
WT(J)C(J, L)]IWT(K). If K < 2N — l, return to Step 2. 

NOTE 1. There will be 2N — l clusters, or factors, after the calculations. (Some of 
these may have only zero loadings and may be dropped.) The loading matrix may be 
reduced to an N x N matrix as follows. Begin with the smallest clusters and move to 
the largest. If / and J are joined to form cluster K, suppose that DI, DJ, DK are the 
corresponding nonzero loadings. Whenever B(I, L) O, set B(I, L) = D12I 
(DI2 DJ2)ii2. Whenever B(J, L) O, set B(I, L) = —DJ21(DI2 DJ2)1/2. Elim-
inate entirely the column {B(J, L), 1 L N). Replace B(K, L) O by B(K, L) = 
[DK2 DI2DPRDI2 DJ2)1". During this procedure, N — 1 columns are elimin-
ated. The base for the elimination is the collinearity of the I, J, K columns when / 
and J are joined to form K. 

NOTE 2. This algorithm may be set up as an average joining algorithm by using 
euclidean distances when the variances are all unity. If J) is the correlation 
between variables / and J, D(I, J) --= [1 — p(I, JAI2M is the square of the euclidean 
distance between the standardized variables. The distance between clusters of variables 
is defined as the average distance over pairs of variables, one from each cluster. Then 
exactly the same sequence of joins will be obtained on the distances, as in the above 
algorithm. 

The covariance between any two clusters is the average covariance between the 
variables in the two clusters. It is natural to associate a factor with each cluster equal 
to the average of all variables in the cluster, since the covariance between clusters is 
the covariance of these two factors. Of course, these factors will he oblique. Another 
convenient set of factors for a binary tree is obtained by associating a factor with each 
split into two clusters—the difference of the averages of the variables in the two 
clusters. These factors are oblique also, whereas the columns of the loading matrix 
are orthogonal. 

17.7 APPLICATION OF JOINING ALGORITHM TO PHYSICAL 
MFASUREMENTS DATA 

The correlation matrix in Table 17.1 has approximately the ultrametric structure 
required. For example, all the correlations in the block head length, head breadth, 
face breadth by forearm, finger, foot, height are approximately equal. The operations 
on the correlation matrix are given in Table 17.4, and the final loading matrices and 
correlation matrix are given in Table 17.5. 
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Table 17.4 Application of Joining Algoritbm to Measurements Data 

1. EL 	1000 

2. M 	402 1001 

3. re 	395 	618 1000 

4. TM 	305 	135 	289 1000 

5. 177 	301 	150 	321 	846 1000 

6. ?1 	339 	206. 363 	797 	759 1000 

7. RT 	340 	183 	345 	Coo 	661 	736 loop 

STEP 1. JOIN FR TO FM 

loco 

402 1000 

713 	 395 	618 1000 

FMF3 	303 	142 	345 	846 

2T 	339 	206 	363 	773 1000 

HT 	340 	183 	345 	730 	736 1000 

STEP 3. JOIN FMFRFT TO HT 

1000 

BB 	402 1000 

FB 	395 	618 1000 

nen= 321 168 328 732 

STEP 5. JOIN HBFB TO HL 

HLFBIL3 	398 

TMEIFTHT 270 732  

STEP 2. JOIN FMFR TO FT 

EL 	 1000 

HB 	 402 1000 

FB 	 395 	618 l000 

FlESIFT 	315 	163 	32' 	778 
BT 	 340 	183 	345 732 1000 

STEP 4. JOIN HB TO FB 

RL 	 1000 

FER3 	398 618 

FMMUPEHT 	321 248 732 

STEP 6. JOIN IILFBILB TO FMFILTTET 

ELFBHanCIFTHT 270 

TREE IS 

See Table 17.5 for loading matrix. 

The pair with highest covariance are joined. New covariances are weighted averages 
of the old. 

grEP 1. Set K, the number of clusters, equal to 7. Define WT(I) = 1, JT(I) = 0, 
and B(I, I) = 1 for 1 S / s 7 and B(I, J) = O for other I, J (1 S I S 7, 1 S J S 13). 

STEP 2. The pair FM and FR have the highest covariance, so I = 4, J = 5. 

STEP 3. Increase K to 8. Define JT(4) = JT(5) = 8, C(8, 8) = 0.846 [since 
C(4, 5) = 0.846 is less than C(4, 4) or C(5, 5)], WT(8) = 2. Define B(4, 4) = 
(1 — 0.846)1 /2  = 0.392, B(5, 5) = (1 — 0.846)1 /2  = 0.392, B(4, 8) = B(5, 8) = 1. 
Define JT(8) = 0. 

STEP 4. Define 

C(1, 8) = ì[C(1, 4) + C(2, 4)] = j(0.305 + 0.301) = 0.303. 

Similarly, other covariances with the new cluster or factor are defined by averaging 
the old. Since K < 13, retum to Step 2. And so on. 
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Table 17.5 Loading Mafrix and Residua' Correlation Matrix Obtained by Joining 
Algorithm 

[I] LOADING MATRIX (SQUARED COEFFICIENTS, MULTIPLIED BY 1000) 

HL 	0 	o 	o 	o 	o 	o 	o 	o 	o 	128 	0 	27o 

le 	o 	o 	o 	o 	o 	o 	382 	O 	220 128 	o 	270 

FB 	o 	o 	O 	O 	o 	o 	o 	382 	220 128 	O 	270 

FM 154 	o 	68 	O 	1+ 6 	o 	o 	o 	o 	o 	462 	27o 

FR 	o 	154 	68 	o 	46 	o 	o 	o 	o 	0 	462 	270 

FT 	o 	o 	o 	222 	46 	o 	o 	o 	o 	o 	462 	270 

HT 	O 	O 	O 	O 	O 	268 	o 	o 	o 	0 	462 	270 

(All rows sum to 1) 

[2] REDUCED LOADING MATRIX (COEFFICIENTS MULTTPLTED By l000) 

HL 	o 	o 	o 	o 	598 	391 	7oo 

BB 	O 	o 	o 	437 -4o9 	391 	7oo 

FB 	o 	o 	0 	-437 -4o9 	391 	7oo 

FM 278 240 	181 	O 	o 	-565 	700 

FA -278 	240 	181 	O 	o 	-565 	700 

FT 	o 	-365 	I 81 	0 	o 	-565 	7oo 

HT 	0 	o -434 	o 	o -565 	7oo 

[3] BESIDUAL CORRELATION MATRIX (MULTIPLIED BY 1000) 
nralues in blooks. averne to zero) 

o 
o 	o 
19 	19 	0 

68 - 71 	 O 

Consider also the construction of oblique factors from the binary tree. One such 
set of factors is the differences between the averages of the variables in pairs of clusters 
joined during the algorithm. Thus, 

F(8) = [ V(4) — V (5)b , 

F(9) = [W (4) + gf.1 (5) — V (6)]-4 , 

F(10)--= [1V (4) + ìV (5) + W(6) — V (7)]./I, 

F(11)= [V(2) — V(3)A, 

F(12) = H.V(2) grV(3) — V(1)].%/1, 

F(13) = R(.1/(1) + V(2) + V(3» — V(4) + V (5) + V(6) + V (7))]. , 

F(14) = [V(1) + V(2) V(3) + V(4) + V(5) + V(6) + V(7)].147-. 

HL 

HA 

FH 

FM 

FR 

FT 

Hr 

O 

	

- 3 	o 

	

4 	o 

O 

	

35 -135 	19 

	

31 -120 	51 

	

69 - 64 	93 

	

7o - 88 	75 



17.8 Thing,s to Do 	323 

The multiplicative constants N4, etc., ensure that the sum of the squares of the coeffi-
cients is unity. The method of definition guarantees orthogonality between coefficients 
for different factors. The coefficient matrix is thus easily inverted to 

V(1)= 	F(12) + WV2- F(13) + 4 F(14), 

V(2)= s F(11) +f F(12) + A/V- F(13) + Na F(14), 

V(3) = — 	F(11) -E: -k.N/i F(12) + N/7,22. F(13) + V!; F(14), 

V(4) = F(8) + h/i F(9) + 	F(I0) — h/V- F(13) + -4 F(14), 

V(5) = —‘11 F(8) + :A F(9) + h/ì F(10) — iN/V F(13) + -4 F(14), 

V(6) = 	F(9) + 	Foo - h/V F(13) 4 F(14), 

V(7) = 	F(10) — /V F(13) -I- ,/,71- F(14). 

This representation is similar to the reduccd loading matrix in Table 17.5, but it is the 
columns of the loading matrix, rather than the factors, that are orthogonal. The factors 
will be oblique in generai, even if the simple tree strutture model holds. 

If the factors obtained above are orthogonal and are normalized to have a variance 
of unity, then the loading matrix is a root of the covariance matrix with orthogonal 
columns, so that the columns of the loading matrix are just the eigenvectors of the 
covariance matrix. A possible use of these factors, then, is as a first approximation 
to the eigenvectors of a matrix. The suggested procedure would be to construct a 
tree, transform to the oblique factors F(1), . , F(I4) by using the above rotation, 
then use a standard technique on the covariance matrix of the F's that would hopefully 
be substantially more nearly diagonal. 

A similar use of these factors occurs in regression. It is desired to predict a variable 
Y from the variables V(I), . , V(N). The standard stepwise technique finds the 
variable V(I) that best predicts Y, a second variable V(J) such that V(I) and V(J) 
best predict Y, and so on. A difficulty of this approach is that, if there are three or 
four variables highly correlated with V(/), they will not appcar in the regression 
formulas although they are nearly as good predictors as V(/). Suppose, instead, that 
the factors F(I) are used in the stepwise fitting. Any variables that are highly corrclated 
will be grouped together in the factors and so will appcar simultaneously, as averages, 
in the regression equations. 

• 17.8 THINGS TO DO 

17.8.1 Running the Factor Analysis Algorithms 

All the algorithms operate on a covariance matrix and are aimed at discovering 
clusters of variables rather than clusters of cases. The techniques are not appropriate 
if there is a substantial clustering of cases, since this will not be visible in the covariance 
matrix. For 1000 cases and 50 variables, preliminary analyses on the covariance 
matrix may reveal, say, 10 significant factors, and a more detailed analysis may then 
be performed on the 1000 cases by 10 factors. 

Any tree on the variables generates a loading matrix in which each factor corresponds 
to a cluster of variables. A binary tree on N variables generates a loading matrix on 
N factors, in which each factor corresponds to the split at cach node into two clusters 
of variables. (See Table 17.6, Indian caste measurements, for a trial data set.) 
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Table 17.6 Indian Caste Measurements 

SH 	ND 	NH 	 FB 	BB 	HD 	NB 

STATUIRE 	 5849 	1774 	1974 	2698 	2173 	2891 	1412 	21o3 

SITTING HEIGHT 	2094 217o 2651 	3012 	2995 	2069 1182 

NASAL DEPTH 	 2910 1537 	1243 1575 	13o8 1139 

NASAL HEIGHT 	 1758 1139 1852 1735 o438 

HEAD IENGTH 	 227o 2792 	1982 193o 

FRONTAL BREADTH 	 493o 4461 1831 

BIZYGOMETIC BREADTH 	 54o7 2729 

HEAD BREADTH 	 1413 

NASAL BREADIE 	 

[From C. R. Rao (1948), The utilization of multiple measurements ín problems of 
biologica] classification, J. Roy. Stat. Soc. B10, 159-193.] The correlations (by 10,000) 
are computed within 22 caste groups containing between 67 and 196 individuals. 

17.8.2 Direct Factoring of a Data Matrix 

Consider the representations 
A = FB, 

where A is an M x N data matrix, F is an M x K factor matrix, and B is an N x K 
loading matrix. The arrays F and B are row and column factors of A. Many factor 
analyses ignore or assume away structure in F in order to concentrate on the more 
malleable loading matrix B. For example, if the columns of F are assumed uncor-
related, then B is a root of the covariance matrix of A. 

Since important interactions between the clustering of variables and the clustering 
of cases are gladly expected, it is necessary to have factor analysis models that will 
reveal two-way clustering. Let the Kth cluster be a submatrix of A or a block. Define 
F[ K] = 1 if case (row) / is in the Kth cluster, and define F(I, K) O otherwise. 
Define B(J, K) S(J, K) if variable (column) J is in the Kth cluster, and define 
B(J, K) = O otherwise. The values of F and B are not defined analogously because it 
is anticipated that variables will be constant within a cluster, but not necessarily cases, 
since the variables may be measured on different scales. 

Then A = FB = {1 K L} C(K), where C(K), the Kth cluster, is zero 
except on a submatrix within which the variables are constant. For example, 

Note that there are no overlapp ng constraints, which may make the blocks difficult 
to understand in large arrays. (A similar decomposition is available if all values within 
a block are equal.) 

The model may be fitted in stepwise fashion. At each stage, an optimal block is 
fitted to the residual matrix. Given the rows of this block, any variable is placed in 
the block for which the square of the mean by the number of rows exceeds a given 

r 6 2 61 [1 3 O 01 r O O 0] [0 O O 61 [2 3 2 01 
31132=1300+0512+0000+2320. 

2 832 	0000 	0512 	0000 	2320 
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threshold. Given the variables in a block, each row is added or deleted from the block 
(as in K means) according to its distances from the block mean and the nonblock mean. 

REFERENCES 

HARMAN, H. H. (1967). Modern Factor Analysis, University of Chicago Press, 
Chicago. This is a really excellent book, very clearly written. One method which 
discovers clusters (in a backhand way) is the centroid method (p. 171). The first factor 
is F(1) = —1/N {1 / N} V(I). The second factor is 

F(2) = —1/N (l / N} E(I)[V(I) — cc(I)F(1)), 

where V(/) — oc(I)F(1) is orthogonal to F(1) and E(I) is a pattern of plus and minus 
ones chosen, in an ad hoc way, to maximize the variance of F(2). The third factor is 
an average of residua] variables orthogonal to F(1) and F(2), and so on. 

The patterns of plus and minus ones, at least for the first few factors, often conform 
to clusters obtained by other methods. 

A second method involving clusters is the multiple-group method, which partitions 
the variables and defines factors equa] to the averages of the variables in each group. 
A method of constructing the clusters is discussed on p. 119—the two variables with 
highest correlation are grouped together, then the variable with highest average cor-
relation to these two is added to the group, and so on, until the average correlation 
has "a sharp drop" with the addition of a new variable. Then a new group is begun, 
and the process continues until all the variables are grouped. 
HORST, P. (1965). Factor Analysis of Data Matrices, Holt, Rinehart and Winston, 
New York. This is a generai text which may be used as a guide to the extremely ex-
tensive literature. This particular book has many algorithms explicitly described and 
an array of supporting Fortran subroutines. Some quotes will be used to show the 
relation between factor analysis and classification. On p. viii, "Factor analysis has 
had its most popular appeal as a device for generating plausible and acceptable 
taxonomies in disciplines where these have been confused and unsatisfactory . . . . 
Labels seem to play a fundamental role in providing emotional security for all human 
beings, including scientists, and therefore the taxonomic function of factor analysis 
procedures probably needs no justification. However, it is in parsimonious description 
of natura! phenomena that factor analysis has more fundamental and universal 
significance." 

In the "group centroid" method, discussed on p. 148, a loading matrix is specified, 
and then the factors are computed by regression on the originai variables. The loading 
matrix "consists of binary vectors each of which serves to group the variables into 
subsets according to unit elements in the vector . . . . It is not necessary that the unit 
elements in the vectors of the binary matrix be mutually exclusive Harman, H. 
H. (1960) ("Factor Analysis" in Mathematical Methods for Digital Computers, H. S. 
Wilf and A. Ralston (eds.), Wiley, New York) has suggested that a preliminary 
cluster analysis of the correlation matrix rnay provide a basis for the grouping of the 
variables. However, since cluster analysis procedures are, in generai, not objective, 
it is perhaps better to depend on some a priori or even arbitrary hypothesis concerning 
the way variables should be grouped in setting up the binary matrix." 

In order to approximate a given loading matrix by one with a given pattern of 
zeroes, Horst assumes that the fitted loading matrix will be constant or zero in the 
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columns and seeks that orthogonal transformation of the originai matrix which most 
closely approximates a loading matrix of this form (p. 415). 
TRYON, R. C., and BAILEY, D. E. (1970). Cluster Analysis, McGraw-Hili, New 
York. This book was published shortly after the death of R. C. Tryon, a pioneer in 
clustering from the factor analysis side. (Tryon wrote a monograph "Cluster Analysis" 
in 1939.) In the foreword Charles Wrigley states: "Tryon spent a sabbatical year at 
the University of Chicago in the later 1930's. He grasped the point, as many others at 
Chicago must have done, that similar tests would have high correlations between them 
and that clusters of related tests could therefore be identified, without the labour of a 
centroid factor analysis, by direct search of the correlations. Thus cluster analysis, as 
originally conceived by Tryon, was a poor man's factor analysis." 

Part of the purpose of this book is to describe a large package of computer programs 
called the BCTRY system. Tryon's generai approach to clustering begins with a 
factor analysis of the variables identifying similar groups of variables and then con-
tinues by clustering cases, using new variables, each representing a group of the old. 

Two types of clustering take place—clustering of variables, and then clustering of 
cases. The clustering of variables proceeds as follows : To construct the first cluster, a 
pivot variable is found maximizing the "index of pivotness," the variance of the 
squares of the correlation coefficients of all variables with this variable. A measure of 
similarity between variables is defined, the "proportionality index": 

P(I, J) = (I {1 S  K S N} p(I, K)p(J, K)) 2  

x (1 { 1 S  K S N} p 2 [I, IC]I {1 S  K  S  N} p 2(J, 

where p(I, K) is the correlation between variables I and K. The variable with largest 
proportionality to the pivot variable is added to the cluster. The variable with the 
highest mean proportionality to the two already added is added provided its pro-
portionality with the first two exceeds 0.40. Similarly, for the fourth variable. For more 
than four variables, additional variables are added "if their mean index of propor-
tionality is within twice the range of the indexes of proportionality among the four 
first-selected variables, and if all of the indexes of proportionality of the variable and 
the previously selected variables are greater than 0.81." 

The clustering of cases proceeds principally through a K-means-type algorithm in 
which initial cluster means are guessed, each object is assigned to whichever mean it 
is ciosest to, then all means are recomputed, then the objects are reassigned, and so on. 

PROGRAMS 

SPARSE finds root of covariance matrix containing many zeroes. 
FIRST 	finds first eigenvector. 
FIND 	finds eigenvector with many zeroes. 
REMOVE computes partial covariances. 



SUBROUTINE SPARSE1CeReNebBIKK/ 
C..  20 MAY 1973 
C.... APPROXIMATES C BY ROOT 8 WH1CH HAS MANY ZEROES. USES FIRSTpREMOVE,FIND,OUT 
C.... C . N 6V N EIORDtRED COVARIANCE MATRIX, DESTROVED. 
C.... N . NUMBER OF ROWS 
C.... KK = NUMBER OF FACTORS, TRY KK = N 
C.... X = 1 BY N SCRATGH ARRAY 
C.... R = N BY N RES1DUAL MATRIX,C-8111. 
C.... 8 m N BY KK LOADING MATRIX 

DIMENSION CiNtNieR(N,NifX(N1p6(NpKX) 
DIMENSION S(100/ 
OATA XL/4HLOAD/ 
6(1.1).XL 
WRITEL6e1) 

1 FORMATI18H COVARIANCE MATRIX 
CALL OUT(CIRN,N1 
SS.0 
DO 50 J.2,N 
RIJp1).C(110 

RI110›.C(110/ 
50 55.554401.bn 

DO 20 KR=2*KK 
8(1,KR1=0 
DO 30 1.21N 
DO 30 J.2pN 

30 R114J/.COg.1/ 
CALL FIND(C.NeXe611,KR/à 
DO 31 1.2qN 
DO 31 J=2,N 

31 ClIgA.R(I,JP..6(1,KR1*BIJ,KR/ 
20 CONTINUE 

WRITE(6,3) 
3 FORMATO6H RESIDUAL MATRIX! 

CALL OUTIR,N,N) 
WRITE(6,2/ 

2 FORMATOMI SPARSE ROOT OF COVARIANCE MATRIX/ 
CALL OUTIBIRNO(K1 
DO 60 Km2IFKK 
SIK/.0 
DO 61 J=2,N 

61 5110=S(K)+BIJ,K1**2 
60 CONTINUE 

WRITE1614/ SS,(SIK/eK=2,KK) 
4 FORMAT(29H VARIANCES, MAL AND FACTORS/ 
.6G10.4,2X,5G10.4/(10X,5G10.412X,5G10.4)/ 
SI11.0 
DO 62 K.2~ 

62 SlIO.S(X/I.S1K-1) 
DO 63 K=2,KK 

63 Sii0=100.*SIKUSS 
WRITE(6,5/ISMIK.2,KK/ 

5 FORMATO1H PERCENTAGE CUMULATIVE VAPIANCE/(10X,5G10.4,2X,5310.4à) 
RETURN 
END 
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SUBROUTINE FIRSTICIN,X1 
C... 	 20 MrtY 1973 
C.... COMPUTES FIRST EIGENVECTOR OF SUBMATRIX OF C OVER ROWS I WHERE XII).NE.0 
C.... C = POSITIVE DEFINITE ARRAY 
C.... N = NUMBER OF ROWS 
C.... X = N BY 1 INDICATOR VARIARLE ON INPUT, EIGENVECT3R ON OUTPUT 
C 	  

DIMENSION CIN.WIRXIN! 
DIMENSION Y11001 
TH=.0005 
ICNT=0 
SN=0 
DO 20 1=1.N 
IFICII,II.GT.THI GO TO 22 
DO 21 J=1.1.4 

21 C(J,1)=0. 
22 CONTINUE 

IF (X11).NE.0.1 XIIi=CII.I1**0.5 
20 CONTINUE 
10 CONTINUE 

SN=0. 
DO 50 1=1.N 

50 SN=SN+XIII**2 
SN=SN**0.5 
DO 51 I=1.N 

51 IFISN.NE.Oi X(1)=X(1)/SN 
SYY=0. 
SXY=0. 
DO 30 I=1,N 
YIII=0. 
IFIXII1.EQ.0.1 GO TO 30 
DO 40 .1=1.N 
IF IXIA.EQ.0.1 GO TO 40 
Y(1)=Y(I)+CII,J)*X(J1 

40 CONTINUE 
SXY=SXY+XII)*YIII 
SYY=SYY+Y(II**2 

30 CONTINUE 
IFISXY.LT.0./ SXY=0. 
E=SXY**0.5 
SYY=SYY**0.5 
ERR=0. 
DO 60 I=1.N 
IFISYY.NE.01 VII)=YIIMYY 
ERR=ERR+IX(II-.Y(I)1**2 

60 XII)=E*(1.2*Y(11-0.2*XIII1 
ICNT=ICNT41 
IF (ICNT.GT.201 RETURN 
IF IERR.GT.TH**21 GO TO 10 
RETURN 
END 



SUBROUTINE FINDIC.N.X.V) 
C•••  	 20 NAV 1973 

FINDS BEST EIGENVECTOR FITTING TO C. MINIMI2ING EIGENVALUE/NOW-2E20 VALUE 
C.... C = N BV N BORDERED COVARIANCE 
C.... N = NUMBER OF ROMS 
C.... X = SCRATCH VARIABLE 
C.... 	= N BV 1 FITTED VARIABLE 
C••• 	  

DIMENSION C(N.W.X(N1.Y(N/ 
DO 20 I=1,N 

20 XII1=1. 
XI1)=0 
CMAX=0. 

50 CALL FIRSTIC.N,X/ 
XS=0. 
SS=0. 
DO 30 I=1.N 
IF IXID.EQ.0./ GO TO 30 
XS=XS+1. 
2=X(1)**2 
SS=SS4.1 
CONTINUE 
XMIN=10.**10 
00 31 J=1.N 
IFIX(J).EQ.0.) GO TO 31 
XX=0. 
DO 32 I=1,N 

32 XX=XX+X(11*C(1.J/ 
XX=XX**2/(SS**2*CIJ,J/1 
IF (XX.GT.XMINJ GO TO 31 
XMIN=XX 
IMIN=J 

31 CONTINUE 
IFIXS.NE.0) CC=SS/XS 
IFICC.LE•CMAX1 GO TO 33 
CMAX=CC 
DO 40 I=1.N 

40 Y(I)=X(II 
33 CONTINUE 

CALL REMOVEIC.N.X.IMIN) 
XIIMIN)=0. 
IF IXS.GT.1.1 GO TO 50 
RETURN 
END 

SUBROUTINE REMOVE(C.N.S.11 
C.WOO 	 20 MAV 1973 
C.... COMPUTES PARTIAL CORRELATIONS ON ARRAYC. REMOVING VARIABLE I. 
C.... C N BV N BORDERED COVARIANCE MATRIX 
C.... N 	NUMBER OF VARIABLES 
C.... S 0. INDICATOR VARIABLE.ONLV NON-aERO ROMS CONSIDERED 
C.... I m INDEX OF VARIARLE TO BE REMOVED. 
CO• 	 .. 

DIMENSION CIN.N1.SIN/. 
TN=.0005 
IF 1011.D.LT.TH ) GO TO 50 
IF 1511/.EQ.0.1 RETURN 
DO 20 J=1.1.4 
IF 'NADA/ GO TO 20 
IP ISIJI.E0.0.! GO TO 20 
DO 30 K=1.N 
IF IS(10.EQ.0.1 GO TO 30 
CIJp$0=C(J.K/-C11.a*CII~ClIa/ 

30 CONTINUE 
20 CONTINUE 
50 CONTINUE 

DO 40 J=1.N 

40 C1101=0. 
RETURN 
END 
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CHAPTER r8 

Prediction 

18.1 INTRODUCTION 

A base data matrix {A(I, J), 1 5 I s M, 1 5 J S N} is assumed. A new variable 
{A(1, O), 1 S I S  M} is observed on the given cases. A new case {A(0, J), 1 S J S  N} 
is observed on the given variables. How can the missing value A(O, O) be estimated ? 

The standard regression approach would predict A(I, O) as a linear function 
{1 S J  S  N} C(J)A(I, J) of the base variables. This linear function is then applied 

to the new case to predict the value A(O, O) by {l 5 I s M} C(J)A(O, J). Of 
course, if the new case is quite different from the base cases, the prediction may be 
quite wrong (and the error estimate much too small), so that an underlying similarity 
between the new case and the base set is necessary for the extension to be valid. A 
typical assumption is that all {A(I, J), 1 S J S N} for O S  I  S  M are randomly 
sampled from an M-dimensional multivariate normal. In piecewise fitting, the set of 
all possible cases is partitioned into clusters, and a different predicting function is 
used within each of the clusters. Essentially the clusters are used as a means of general-
izing the fitting function. For example, suppose that a variable Y(I) is to be fitted by 
a linear function of X(I) (1 S I S M). The usual least-squares fit is 

where 	 y = a + bx, 

a = Y — b 

b = {1 S I S M} Y(I)[X(I) — kin (i S I S  M} [X(I) — 

= {1 m} xm(I)  , 

and 

= {1 I M} Y)  . 

This fit could be computed separately for X(I) S O and X(/) > O. The fitting equation 
would be y = a(1) b(1)x, 	x S  O 

y = a(2) + b (2)x , 	x > 0 

where a(1) and b(1) are computed from those {X(I), Y(I)} with X(/) S O, and a(2) 
and b(2) are computed from those {X(I), Y(I)} with X(/) > O. Notice that not only 
the given cases are clustered but the set of all possible cases is clustered, so that new 
cases can be inserted in the fitting equations. 

330 
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The clustering used in piecewise fitting is chosen to optimize some measure of the 
fit within each of the clusters. For example, in the above line fitting problem, suppose 
that the possible clusters were x c and x > c. For each c, there will be a sum of 
squared deviations of Y(I) from its predicted value. As c increases, this residual sum 
of squares will change only as c passes through X(/). So c X(/) (1 / M) are 
the only values which need be tried. 

For N variables, therì are two types of approaches to piecewise fitting—the first 
via mixtures, and the second via the automatic interaction detection (AID) technique 
of Sonquist and Morgan. 

First, as in discriminant analysis, suppose the variable to be predicted is an integer 
variable {A(I, O), 1 I M}. When A(I, O) = L, {A(I, J), 1 J N} is ran-
domly sampled from a multivariate normal with mean {E(L, J), 1 J N} and 
covariance matrix E. A new case {A(0 , 1 J N} is used to predict A(0 , O). 
Let the probability be P(L) that the new case is from the Lth multivariate normal. 
The minimum expected number of misclassifications occurs if A(0 , O) = L is pre-
dicted, where L maximizes 

—ì[A(0 , I) — E(L, I)]E-1 (I, J)[A(0 , J) — E(L, J)] log P(L). 

Thus N-dimensional space is divided into a number of convex polytopes in each of 
which a different prediction of A(0 , O) is made. In practice, E, E, and P must be 
estimated from the data matrix {A(I, J), 1 I M , 1 J N}; for example, 
E(L, J) is the average of A (I, J) over those c,ases for which A(I, O) = L. 

For {A(I, O), 1 I M} continuous, assume that each vector of length N + 1, 
(21(1, O), {A(I, J), 1 J N}) is a sample from a mixture of K multivariate normals, 
where the Lth has mean [E(L, 0), E(L,1), , E(L, N)] and variance E and sample 
/ comes from the Lth with probability P(L). The expected value of A(I, O), given 
{A(I, J), 1 J N} and that the /th sample lies in the Lth population, is F(L) 

{1 J N} C(J)A(I, J). Note that the coefficients C(J) depend on E but not on L, 
since the covariance matrix does not change between clusters. Given {A(0 , J), 
1 J N} , let P(L, O) be the probability that the Oth sample lies in the Lth cluster. 
If the sample were always assigned to the cluster of highest probability, the sample 
space would be divided into polytopes as in the discriminant analysis case. But for 
predicting a continuous variable, the correct prediction is the expectation of A(0 , O), 

{1 L K} P(L, 0)F(L) + 1{1 J N} A(0 , J)C(J). The quantities E, E, 
and P are estimated, as in the mixtures algorithm, by maximum likelihood. 

The difference in the prediction of A(0, O), due to the clustering, is carried in the 
constant terms F(L) in the various predicting equations within the various clusters. 
In particular, if the F(L) do not much differ, it will not much matter what cluster the 
Oth observation lies in. 

The other approach to multivariate prediction is the AID technique of Sonquist 
and Morgan (see the references in Chapter 14). This constructs clusters of cases by 
splitting, using the variables one at a time. At each split a cluster is divided into two 
clusters of cases, according as A(I, J)> C or A(I, J) C. That variable J and that 
constant C are chosen which minimize the sum of squared deviations within clusters 
of the variable to be predicted. Thus the final AID clusters are of especially simple 
form—parallelipipeds consisting of all cases (i i D(J) < A(I, J) C(J), 1 J N}. 
These clusters are easy to interpret and compute. Because of its simple, one-at-a-time 
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treatment of variables, the AID technique can also accommodate ordered or category 
variables. An ordered variable generates a split into {I I A(I, J) < C} and 
{I i A(I, J) > C}. A category variable is temporarily converted into an ordered 
variable by ordering its categories according to the mean value of A(I, O) within 
each of the categories. 

A possible drawback of the AID approach is the simplicity of the final clusters. It 
may be that convex shapes other than parallellepipeds are appropriate. A generaliza-
tion has a first split according to {1 < J < N} B(J)A(I, J) not greater than, or 
greater than, C. Later splits will also be according to some linear combination of the 
variables rather than a single variable. Each set of coefficients {B(J)} and constant C 
is evaluated according to the sum of squared deviations of {A (I, O)} from cluster 
means generated by the split. Determining the optimal {B(J)} is not a simple pro-
cedure (especially when compared to the AID technique), and "local optimization" 
approximations are necessary. 

In a third approach, it is assumed that a tree of convex clusters has already been 
computed by using the data matrix {A(I, J), 1 < I < M, 1 < J < N}. By using 
analysis of variance techniques, clusters in the tree are eliminated if the cluster mean 
of {A(I, O)) does not differ significantly from the mean of the next including cluster. 
The tree is thus reduced to a smaller tree from which predictions are made. The ad-
vantage of this approach is that the originai clustering may be applied to a number of 
different variables to be predicted. 

18.2 VARIANCE COMPONENTS ALGORITHM 

Preliminaries. A tree of clusters 1, 2, ... , K is given with its strutture specified 
by an ancestor function F, which for each cluster I (I < K) specifies F(I) > I, the 
smallest cluster containing I. For the largest cluster K, F(K) = K. 

A variable X takes values {X(I), 1 < I < M} on the objects at the ends of the trees. 
It is fitted to the tree by using a variance components model. A random variable X(/) 
is associated with each cluster I (1 < I < K), such that the X(I) — X[F(l)] for I 
(1 < I < K) are independent normal variables with mean O and variance V[F(I)]. The 
quantity X(/) is a "mean value" associated with cluster I, and the quantity V(I) is a 
variance component associated with cluster I (M < I < K). The variance of the value 
at the Ith object is the sum of the variance components corresponding to clusters 
including the Ith object. If a new object is classified into the tree, into cluster I, its X 
value is estimated by X(I). The variance components are a guide in reducing the tree, 
with the cluster I eliminated if V[F(I)] is sufficiently small. 

A threshold T is used that is injected into the probability model by assuming a 
uniform prior distribution of V and X and a threshold observation X(I) — X[F(1)] =- 
NIT for each F(I). The log posterior density of X and V is given by 

{X(/) — X[F(/)1} 2  
LPD = C — {1 I < K} 

V [F(I)] 

T — j1{M <I .TC} [N(I) 1)logV(1)— ìl{M <I 	 . 
V(/) 

The maximum posterior density values of X and V are determined iteratively, first by 



18.3 Muoriti= Applied to Prediction of Leukenda Mortality Rates 	333 

getting optimal V's for a given X and then by getting optimal X's for given V's. The 
posterior density is surely increased at every step. 

s-rnP 1. Initialization. Let NC(/) be the number of L with F(L) = L Let X(/) be the 
average of X(L) over L with F(L) defined successively for M < / K. Let 
V(/) = T (M < I K). 

sul. 2. Update X. The value of X(/) which maximizes the log posterior density is, 
for M < / < K in turn, 

X(L) X(J)\ NC(I) _,_ 1 
X(I) = 	{F(L) 

5 V (I) nnlk no -T- nig 
where J = F(I). Thus X(/)is a weighted average of X values on the adjoining clusters. 

X(L)  Set X(K) = {F(L) = K} 
NC(K). 

STEP 3. Update V. Change V(/) (M < / K)to 

V(1) = 	{F(L) = I} [X(I) — X(L)]R) TliN(1) iri. 

STEP 4. Compite log posterior density by LPD = — ì-1{M < / K) [NC(I) 
l] log V(/). If the increase from its previous value is less than 0.01, stop. Otherwise, 
return to Step 2. 

Non. To eliminate clusters, remove all clusters / with Y[F(I)) < T, and repeat the 
algorithm on the reduced tree. 

18.3 VARIANCE COMPONENTS ALGORITHM APPLIED TO 
PREDICTION OF LEUKEMIA MORTALITY RATES 

Consider the leukemia mortality data in Table 18.1. Suppose the 1967 rate for 
Switzerland were unknown. The regression approach to its prediction would find a 
linear function of, say, the three rates in 1964, 1965, 1966 that best predicts the 1967 
rate for countries other than Switzerland. This formula would be then extended to 
Switzerland. 

The clustering approach constructs a tree of countries by their rates in 1964, 1965, 
1966. The 1967 rates and variance components are then computed for every cluster in 
the tree. Switzerland is classified into the tree according to its 1964, 1965, 1966 rates, 
and its 1967 rate is predicted from the estimated rate for the smallest cluster containing 
it. 

The tree, given in Table 18.2, is constructed by using the adding algorithm. Switzer-
land, if added to the tree, forms a new cluster of two countries with Belgium. 

STEP 1. First NC(/) = O (1 / M = 16). Then, NC(17) = 2 because cluster 
17 contains 2 objects. Because the tree is a binary tree, NC(/) = 2 for every cluster / 
(17 / 31). The initial X(17) is the average of X(1) = 34 and X(2) = 29, so 
X(17) = 31.5. Then cluster 18 has 17 and 3 as its maximal clusters, so X(18) = 
(31.5 + 33)/2 = 32.25, and so on. The initial threshold is T = 1, the smallest variance 
component which is judged noticeable. 
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Table 18.1 Mortality Rates per Million from Leukemia Among andrei' Aged 0-14 
Years, Various Countries, 1956-1967 

From Spiers (1972). "Relationship at age of death to calendar year of estimated 
maximum leukemia mortality rate." HSMHA Health Rep. 87, 61-70. 

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 

AUSTRALIA 	34 	33 	43 	44 	38 	38 	39 	34 	36 	35 	37 	34 

AUSTRIA 	 27 	35 	40 	45 	39 	34 	37 	39 	35 	39 	37 	29 

BELGIUM 	 41 	29 	31 	40 	39 	39 	47 	40 	34 	29 	34 	30 

CANADA 	 36 	35 	32 	42 	35 	35 	35 	38 	36 	37 	33 	33 

DERMARK 	 33 	44 	46 	45 	35 	48 	43 	49 	56 	39 	39 	38 
FINLAND 	 43 	41 	34 	32 	37 	28 	28 	42 	43 	38 	32 	41 

FRANCE 	 44 	41 	41 	42 	40 	36 	40 	36 	36 	34 	34 	31 

GERMAN FED. REP. 	35 	33 	35 	36 	35 	35 	34 	38 	36 	38 	34 	39 

AUNGARY 	 28 	26 	31 	31 	29 	27 	27 	34 	36 	35 	29 	35 

ISRAEL 	 38 	44 	45 	28 	61 	33 	32 	28 	29 	36 	3o 	30 

JAPAN 	 26 	25 	29 	28 	30 	29 	32 	32 	31 	33 	33 	31 

NETHERLANDS 	32 	37 	39 	39 	39 	31 	41 	37 	4o 	42 	36 	33 

NORTHERN IRELAND 17 	25 	27 	39 	29 	27 	22 	31 	33 	26 	30 	32 

NORWAY 	 45 	44 	36 	31 	44 	44 	56 	31 	36 	37 	so 	40 

PORTUGAL 	 20 	28 	21 	34 	30 	30 	30 	29 	35 	37 	40 	36 

SCOTLAND 	 27 	31 	32 	30 	35 	30 	31 	26 	29 	28 	29 	25 

SWEDEN 	 33 	45 	46 	45 	44 	37 	44 	31 	39 	35 	37 	38 

SWITZERLAND 	42 	46 	44 	47 	38 	35 	45 	42 	33 	31 	36 	31 

STEP 2. The updating of X(17) is based on the X values for clusters 1, 2, 18, which 
immediately adjoin it; that is, F(1) = F(2) = 17, F(17) = 18. Thus, 

X(17) — 34 + 29 + 32.25  — 31.75. 
3 

Other X values are updated similarly, except for the largest cluster X(31) 
[X(16) + X(30)]/2 = (38 + 37.35)/2 = 37.67. 

STEP 3. Change V(17) to 

V(17) — 
(34 — 31.75)2  + (29 — 31.75) 2  + 1  

— 4.54 
2 + 1 

[X(1) — X(17)] 2  + [X(2) — X(17)] 2  + T)  
NC(17) + 1 

Similarly adjust other variance estimates. 

sTEP 4. Compute log posterior density by 	x 3 x log 4.54 — i x 3 x log 
1.15 — • • • =-- —18.534. Return to Step 2, and continue updating X and V. At each 
stage increase the log posterior density. When this increase is less than 0.01, the 
algorithm stops. The optimum log posterior density is —13.053. 

The final estimates of X and V are given in Table 18.3. Notice that several clusters 
have very small variance components, which justifies the reduction of the tree. For 
example, the largest cluster, 31, has a variance component of 0.2 because there is very 
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Table 18.2 Tree Ushig Adding Aigorithm, with Endidean Distances, on the Variables 
1964, 1965, 1967, Leakemia Mortality Data (Table 10.1) 

COUNTRY 
	

19 67 RATE 

1 . AUSTRALIA 	 / I I I I I I I 	34 

2. AUSTRIA 	  / / I I I I I I 	29 

3 . CANADA 	 / 	/ I I I I I 	3 3 

4 . SWEDEN 	  / 	 / I I / I 	3 8 

5 . NETHERLANDS 	 / I 	 I I I I 	3 3 

6. FINLAND 	  / / 	 / I I I 	4 t 

7 . BELGIUM 	 / 	I 	I I I I 
	

30 

8 . NORTHERN IRELAND 	/ - I I 	I I I I 
	

32 

9 . SCOTLAND 	 / / / 	I I I I 
	

25 

to. FRANCE 	  / I I I I I I I 	31 

1 1 . GERMANY 	  / / I I I I I I 	39 

12 . HUNGARY 	  / 	/ I I I I I 	35 

1 3 . JAPAN 	  / I 	I I I I I 	31 

14. ISRAEL 	  / / 	/ / / I I 	3 o 

1 5 . NORWAY 	  / 	  / I 	4 o 

1 6 . DENMARK 	  / 	  / 	3 8 

TREE STRUCTURE FOR 31 CLUSTERS 

I 	FII) 	I 	F(I) I 	FI 	 I 	P ( I l 

1 	t 7 	 9 	22 	 17 	18 	 25 	27 

2 	17 	 10 	24 	 18 	19 	 26 	2.i' 

3 	t 8 	 11 	24 	 19 	21 	 27 	28 
4 	19 	 12 	25 	 20 	21 	 28 	29 

5 	20 	 13 	2 6 	 21 	29 	 29 	30 

6 	20 	 14 	26 	 22 	23 	 30 	31 

7 	-23 	 15 	30 	 23 	28 	 31 	31 

8 	22 	 1 6 	31 	 24 	25 

little difference between its subcluster means 37.9 and 38. These subclusters should 
therefore be eliminated. The algorithm is repeated on the reduced tree, which elimin-
ates all subclusters where the variance component is less than T 1. The reduction 
step is again performed, and the final reduced tree is given in Table 18.4. 

If Switzerland was classified into this tree, it falls with Belgium into the large 
cluster Belgium—Israel with relatively low rates. The predicted value for Switzerland 
in 1967 would be 32.1 with a variance of 1.8. The actual value is 31. 

The final reduced tree has only a few clusters in it, which may be briefly summarized. 
The first division is into four clusters: Australia—Finland, Belgium—Israel, Norway, 



Table 18.3 Maximum Posterior Density Estimates of Means and Variances by 
Applying Variance Components Algorithm to Leukemia Mortality 

The first value in each block is the mean; the second value is the variance. 

OBJECT 	X VALVE 

	

1 	34 	132.9133.0135.4135.4134.4137.9137.91 

	

2 	29 	I 2.91  0.21 2.21 0.21 1.61 2.81 .21 

	

3 	33 	I 	I 	I 	I 	I 	I 	I 

	

4 	38 	 I 	I 	I 	I 	I 	I 

	

5 	33 	135.5 	I 	I 	I 	I 	I 

	

6 	41 	I 6.3 	I 	I 	I 	I 	I 

	

7 	30 	 130.4 	131.71 	I 	I 	I 

	

8 	32 	130.21 0.2 	I .51 	I 	I 	I 

	

9 	25 	I 5.31 	I 	I 	I 	I 	I 

	

10 	31 	134.7134.7132.011111 

	

11 	39 	I 5.51  .21 1.711111 

	

12 	35 	I 	I 	I 	I 	I 	I 	I 

	

13 	31 	130.6 	I 	I 	I 	I 	I 	I 

	

14 	30 	I .3 	I 	I 	I 	I 	I 	I 

	

15 	40 	 I 	I 	I 

	

16 	38 	 I 	I 

Table 18.4 Reduced Tree, Small Variance Components Eliminated 

1967 RATE 

1. AUSTRALIA 	34 	132.7136.3136.61 

2. AUSTRIA 	29 	I 1.51 2.61 1.91 

3. CANADA 	33 	I 	I 	I 	I 
4. SWEDEN 	38 	I 	I 	I 

5. NETHERLANDS 	33 	I 	I 	I 

6. FINLAND 	41 	 I 	I 	I 

7. BELGIUM 	30 	132.1 	I 	I 

8. NORTBERN IRELAND 	32 	I 1 . 8 	I 	I 

9. SCOTLAND 	25 	I 	I 	I 

lo. FRANCE 	31 	I 	I 	I 

	

n. GERMANY 	39 	I 	I 	I 
12. iluNGARy 	35 	I 	I 	I 

13. JAPAN 	31 	I 	I 	I 

14. ISRAEL 	3o 	I 	I 	I 

15. NORWAY 	4o 	 I 	I 

16. DENMARX 	38 	 I 	I 

336 
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Denmark. The last two have high death rates. The Belgium-Israel cluster has a low 
rate, and within Australia-Finland, Australia-Canada has a relatively low rate. 

18.4 ALTERNATIVES TO VARIANCE COMPONENTS 
ALGORITHM 

There are two sepapable problems in the variance components approach--estimation 
of the means and estimation of the variance components. The technique used for 
estimating the means given the variances is just the least-squares fit of the model, 
X(/) — X[F(I)], uncorrelated with variance V[F(I)]. The normality assumption is not 
necessary to justify this procedure. 

The variance components themselves are more difficult to estimate. Another method 
of estimating these is to use the raw cluster variances 

{F(L) I}[X(L) X(I)12 
N(I) — 1 

where X(/) is the mean of X(L) with F(L) -= defined recursively for / increasing 
(M < / K). The expectation of this quantity is V(/)plus other variance components 
of clusters contained in /, and thus an unbiased estimate of V(/) is available. This pro-
cedure was not used, principally because of the problem of negative estimates of 
variance components, but it seems plausible and is certainly simpler than the iterative 
procedure. 

18.5 AUTOMATIC INTERACTION DETECTION 

Preliminaries. There is a base data set {A(/, .4, 1 / M, 1 J N} and 
a variable to be predicted {A(I, O), 1 < I M} . The variables are all assumed real 
valued, but an extension to category-valued variables will be discussed later. 

The algorithm considers splits of the M cases into two clusters defined by the 
variable J, such that the first cluster consists of those cases / with A(I,J) C and the 
second cluster consists of those cases / in which A(I, J) > C. The variable J and the 
constant C are chosen to minimize the sum of the squared deviations of {A(I , O), 
1 I M} from the cluster means. 

During the algorithm, the clusters are numbered I , 2, . . . , KC. The cluster K 
splits into two clusters LI (K) and L2(K), where L2(K)> Ll(K)> K. The number of 
cases in cluster K is NC(K). The average value of A(I, O) over cases in cluster K is 
AVE(K). The between-cluster sum of squares at cluster K is 

{AVE[L2(K)] — AVE[Ll(K)112  
SSQ(K) — 

1/NC[L2(K)] 1/NCEL1 (K)] 

At each stage, whichever cluster has the smallest value of SSQ(K) is split, and the 
two subclusters Ll (K) and L2(K) become available for further splitting. 

The splitting will continue until KC clusters are obtained. If KC is chosen some-
what larger than the number of clusters expected, the later splits may be rejected after 
examination of the tree, for example, by using the variance components algorithm. 

STEP 1. Let NP(/) denote the cluster into which object / is assigned. Initially 
NP(/) = 1 (1 / M). Set LL = 1, KK = 1. 
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STEP 2. Find the optimal split of cluster LL. For cluster LL and for variable J 
(1 S  J  S  N), define /(1), /(2), ... , I(L) to be the cases with NP(I) = LL reordered 
so that A [I(1), A[I(2), • • A [I(L), J]. 

Find the maximum value for I S K < L of ST(J) [B(K) — B(L)PLK I (L — K), 
where B(L) {1 S  K  S  L} AU(K), 611 L. Let D(J) = A [I(K), .1] if K maximizes 
ST(J). 

The maximum value of ST(J) over J (1 S  J  S  N) is SSQ(LL), the reduction in the 
sum of the squared deviations of {A(I, O), 1 S  I  S  M} due to splitting cluster LL 
optimally. Correspondingly, J(LL) is the maximizing J, and C(LL) is the split point 
D(J). 

STEP 3. Find the maximum value of SSQ(K) over all clusters K with NP(I) = K 
for at least one I. If cluster K has maximum SSQ, set Ll (K) = KK 1, L2(K) = 
KK -I- 2, and increase KK by 2. For each / [I S / S M ,NP(I) = K], define NP(I) = 
LI (K) if A[I, J(K)] 5 C(K), and NP(/) = L2(K) if A[I, J(K)] > C(K). If I KK 
KC, stop. 

STEP 4. Perform Step 2 for LL = Ll(K), then for LL = L2(K), and then return 
to Step 3. 

18.6. APPLICATION OF AID ALGORITHM TO LEUKEMIA 
MORTALITY 

The problem is again a regression problem: to predict the 1967 death rate from the 
rates in 1964, 1965, 1966. The AID algorithm operates similar to a stepwise regression, 
except that the base variables are converted to 0-1 variables before being used for 
prediction. 

STEP 1. Initially, there is only one cluster, ICK. = 1. Set NP(/) = 1 (1 S I  S  16) 
LL = 1. 

STEP 2. This step finds the best split of a given cluster. If J = 1, the cases /(1), 
/(2), . , /(16) are 10 (Israel), 15 (Scotland), 11 (Japan), , 5 (Denmark). This is 
the ordering of the cases by the first variable 1964. Thus the death rate for Israel in 
1964 is 36, the minimum, and the death rate for Denmark is 56, the maximum. 

The quantity [B(K) — B(L)] 5LK/(L — K) is to be computed for each K 
(1 S K < L); B(L) is the average over all 16 countries, 33.4, and B(1) is the average 
over the first country, B(1) = 30. Thus, for K = 1, 

ST(J) (30 — 33.4)216 x 	= 14.5. 
Similarly, 

B(2) = 27.5, 	ST(J) (33.4 — 27.5)216 x -/-2z  = 87.5. 

The maximum value of 168.3 is achieved at K = 6, D(1) = 35. The split is thus ac-
cording as the 1964 rate is less than or equal to 35, or greater than 35. 

The other variables attain a maximum reduction of 109.9 and 64.5, respectively, so 
the best split is ./(1) = I with C(1) = 35. The reduction is SSQ(1) = 168.3. 

STEP 3. The only cluster K with NP(/) = K for some I is K = 1. Thus cluster I is 
split, L1(1) = 2, L2(1) = 3, KK = 3. If / = 1, set NP(/) = 1, and, since A(1, 1) = 
36 > C(1) = 35, NP(/) = 3. If / = 2, NP(/) = 1, and since A(2, 1) = 35 S  C(1) =- 
35, NP(/) = 2. In this way, all cases will be assigned to one or other of clusters 2 and 3. 
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STEP 4. Find the optimal split for cluster 2 by returning to Step 2. 

srEP 2 REPEATED. With LL = 2, J = 1, there are only six cases with NP(/) = 2. 
Ordered by the first variable, 1964 rate, these are 10, 15, 11, 13, 3, 2. The value of 
ST(1) is then 12.5. The best split occurs for the third variable, so SSQ(2) = 24.3, 
J(2) = 3, and C(2) -= 29. 

Continuing with Step 2, LL = 3, the best split occurs with variable 2, SSQ(3) = 
30.0, J(3) = 2, and C(3) = 34. 

sTEP 3. The only clusters that need be examined are 2 and 3. For these, K --= 3 
minimizes SSQ. Set L1(3) = 4, L2(3) --= 5, increase KK to 5. Cases with NP(/) = 3 
are changed to NP(/) 5, except for case 7, where A(7, 2) = 34, so NP(I) = 4. 

The splitting is stopped after seven clusters are obtained, with the next split being 
of cluster 2, variable 3. The splits and cluster averages are given in Table 18.5. It will 
be seen that the first split gives a rather satisfactory division into high and low rates. 

Table 18.5 Aid Algorithm Applied to Leukenda Mortsdity 

1, 1964 rate; 2, 1965 rate; 3, 1966 rate. 

1967 RATES 	ESTIMATES (MEANS) 

SCOTLAND 	 I3<29Il<35I 	25 	 25.o 

AUSTRIA 	 I3>29I 	I 	29 	 30.4 

BELGIUM 	 I 	I 	I 	30 	 30.4 

ISRAEL 	  I 	I 	I 	30 	 30.4 

JAPAN 	  I 	I - I 	31 	 30.4 

NORTHERN IRELAND - -I 	II 	32 	 30.4 

FRANCE 	  12<34I1>35I 	31 	 31.0 
....  

AUSTRALIA 	 12>341 	I 	34 	 37.o 

CANADA 	  I 	I 	I 	33 	 37.0 

DENMARK 	 I 	I 	I 	38 	 37.0 

FINLAND 	 I 	I 	I 	41 	 37.0 

GMRMANY 	 I 	I 	I 	39 	 37.0 

HUNGARY 	 I 	I 	I 	35 	 37.o 

NETHERLANDS 	 I 	I 	I 	33 	 37.0 

NORWAY 	  I 	I 	I 	4o 	 37.0 

SWEDEN 	  I 	I 	I 	38 	 37.o 

A new state--say, Switzerland—is classified according to its rates in 1964, 1965, 
1966. Since Switzerland in 1964 has a rate of 33, it is classified into the low group. 
Next, in looking to 1966, it is classified high. Thus the predicted value for Switzerland 
is 30.4. The real value is 31. 

Portugal would be classified into the same group—predicted value 30.4, real value 
36. The reliability of the method (as with many clustering methods) should be assessed 
cautiously by the within-cluster sum of squares, since this has been minimized in the 
algorithm. 
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18.7 REMARKS ON THE AID ALGOR1THM 

The A1D algorithm offers a simple clustering alternative to linear regression. The 
algorithm may be used with discrete or continuous base variables. 

Suppose the base variables {A(I, J), 1 I M , 1 J N} are 0-1 variables. 
Two clusters are associated with the Jth variable--the cluster of cases where the variable 
is zero and the cluster where the variable is one. That variable is first chosen which 
maximizes the between-cluster su m ofsquares (or equivalently, the correlation squared) 
for the predicted variable {A(I, O), 1 I M}. Suppose this variable is the Jth. A 
number of new variables are now defined, based on the first one fitted, just as in step-
wise regression. The Kth variable becomes two new category variables. The first of 
these—say, X—is defined as 

(i) X(/) O 	if 	A(I, J) O, A(I, K) = O, 
(ii) X (I) = 1 	if 	A(I, J) = O, A(I, K) = 1, 

(iii) X (I) = 2 	if 	A(I, J) = 1. 
The second of these Y, is defined as 

	

(i) Y(1) = 2 	if 	A(I, J) = O, 

	

Y (I) = O 	if 	A(I, J) = 1, A (I , K) = O, 

	

Y (l) = 1 	if 	A(I , J) 1, A(I, K) = 1. 
Each variable divides the cases into three clusters, and that variable is found which has 
the largest between-cluster sum of squares. A number of new variables are now 
defined, each with four categories, obtained by dividing one of the three present case 
clusters according to whether or not one of the originai variables is zero or one. 

The technique used then is to construct a finer and finer partition, at each stage 
having a number of variables available which generate partitions even finer than the 
present partition. The best of these trial partitions is the next partition of cases. 

The technique can obviously be generalized to category variables taking more than 
two values. lf the category variables take very many values, any one variable may use 
up too many degrees of freedom. A way out of this is to construct 0-1 variables from 
the category variables at each stage. The best 0-1 variabies (ones generating best 
between-cluster sums of squares) are obtained by ordering the categories according 
to the mean of A (I , O) within each category, and then generating N —1 0-1 variables 
by splitting consistent with this order, where N is the number of categories. 

For continuous base variables these also are converted to 0-1 variables by con-
sidering a number of 0-1 variables of the type 

Z(/) = O 	if 	A(I, J) C, 
Z(I) = 1 	if 	A(I,J)> C. 

One of the defects of the AID algorithm is that it considers a single variable at a 
time. This makes the results easy to interpret, but, if several variables cluster about 
equally well, only one of these may define the split and the others may never appear. 
There is a similar "arbitrary selection" problem in stepwise regression. A possible 
cure is to consider more generai ways of constructing 0-1 variables, to be used in the 
fit, from many variables. For example, for two variables define 

X(/) = O 	if 	A(I,J)B(J) A(I, K)B(K) C 

X(I) = 1 	if 	A(I,J)B(J) + A (I , K)B(K)> C. 
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The number of 0-1 variables of this type is M(M — 1)/2 + 1, versus M — I for the 
0-1 variables based on a single continuous variable. So this approach certainly com-
plicates the computing. 

To handle many variables, it is suggested that an initial splitting variable be found, 
then find one which combines with it to split well, then find one which combines with 
the new variable (a linear combination of the first two), and so on, until no significant 
improvement takes placa. Then begin over within the two clusters obtained in the first 
step. 

The AID algorithm takes 0(M log MNK) calculations (where M is the number of 
cases, N is the number of variables, and K is the number of clusters) for continuous 
variables. For 0-1 variables, by clever sorting, the calculations are O(MN). The 
technique is thus appropriate for very large data sets. 

The above procedure for handling many variables is 0(M 2N2), which is much more 
expensive. Approximate optimization of the K-means type will reduce the computation 
time. 

The AID algorithm is remarkable in its ability to handle continuous and category 
variables, but it should be noted that the method is to reduce all variables to 0-1 
variables. The method operates somewhat differently on the continuous than on the 
category variables. In particular, a category variable taking many possible values is 
more likely to be chosen early in the fitting than a 0-1 or continuous variable, because 
the many-valued category variable generates many 0-1 variables. 

18.8 THINGS TO DO 

18.8.1 Running Prediction Algorithms 

The AID algorithm is to be used in somewhat the same circumstances as stepwise 
regression; it is much more able to cope with clusters in the cases and with non-
linear relationships between variables. lt generates a simple interpretable prediction 
rule for new observations. (Use the city crime data in Table 18.6.) 

The variance components algorithm fits a continuous variable to a given tree and is 
just a generalization of standard variance components fitting for partitions. The 
analogous procedure for category data is the minimum-mutation method. Thus this 
algorithm miht be used to summarize a number of variables in terms of their average 
values at a few nodes of the tree. Predictions of missing values are made from these 
fitted average values. 

18.8.2 By Rows or Columns 

The matrix r

1 

 1 1 

has a missing value denoted by an asterisk. Show that the following procedures are 
equivalent : 

(i) Using the first two rows, predict the third column as a linear combination of 
the first two. Extend this prediction to the third row. 

6 

2 5 

2 * 
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Table 18.6 City Crime 
[From The Statistica' Abstract of the United States (1971), Bureau of the Census, 
U.S. Department of Commerce, Grossett and Dunlap, New York.] Each variable, 
except if specified otherwise, is per 100,000. 

CITY 	120PN %WRITE CRANGE, BIACK MURDER RAFE ROBBERY ASSAUIT SURGLARY AUTO 
(10oolo) 	INNER CITY 	(1000'5) 	 MFT 

2960-1970 

MESSE 	 1420 	50.8 	 39 

BALTIMORE 	2071 	-21.4 	 501 

BOSTON 	 2754 	.16.5 	 151 

IMITALO 	 1349 	-20.7 	 xI8 

CHICAGO 	 6979 	-18.6 	1306 

CINCINATTI 	1385 	-17.2 	 156 

CIEVELAND 	zo64 	.26.5 	 343 

DALLAS 	 1556 	14.R 	 261 

DETROIT 	 4200 	-29.1 	 78o 

HOUSTON 	 1905 	25.5 	 399 

108 ANGELES 	7032 	4.7 	1026 

M1AMI 	 1268 	13.5 	 196 

MIDWAUKEE 	14o4 	-1o.4 	 116 

3010MAPOLIS 	1814 	- 7.9 	 5o 

NEW YoRK 	11529 	- 9.3 	2080 

NEWARK 	 1857 	-36.7 	 363 

PA1ERSON 	1359 	- 9.1 	 83 

IIIIIADELPHIA 	4818 	12.9 	 873 

PITTSBURGE 	2401 	-18.0 	 176 

ST. WUIS 	2363 	-31.8 	 388 

SAN FRANCISCO 	3110 	-17.2 	 535 

SAN DIEGO 	1358 	17.2 	 lo6 

SEMI= 	 1422 	- 8.5 	 85 

WASBINGTON 	2861 	-39.4 	 737 

2.7 	21.9 	94 

13.2 	34.9 	564 

4.4 	14.8 	136 

5.7 	13.7 	149 

12.9 	25.k 	3g3 

6.4 	16.8 	120 

14.5 	18.7 	288 

18.4 	41.o 	206 

14.7 	31.1 	649 

16.9 	27.1 	335 

9.4 	50.0 	307 

15.6 	17.o 	427 

3.8 	8.3 	53 

2.6 	16.8 	179 

10.5 	19.9 	665 

9.5 	20.5 	339 

2.6 	5.7 	99 

9.3 	15.2 	27, 

4.4 	14.0 	145 

14.8 	34.4 	280 

8.3 42.9 	348 

4.1 	19.4 	93 

4.k 23.8 	164 

11.4 	23.0 	504 

	

103 	16o7 	377 

	

396 	1351 	701 

	

95 	1854 	984 

	

211 	862 	448 

	

233 	830 	708 

	

107 	912 	348 

	

132 	826 	1208 

	

338 	1581 	577 

	

223 	:986 	758 

	

183 	1532 	741 

	

371 	1981 	945 

	

421 	1858 	781 

	

63 	499 	405 

	

89 	1198 	gi9 

	

286 	1821 	947 

	

182 	1315 	667 

	

63 	815 	491 

	

754 	534 

	

108 	696 	537 

	

203 	1458 	840 

	

226 	2164 	957 

	

106 	loti. 	428 

	

114 	1976 	547 

	

232 	1433 	767 

(li) Repeat (i) with rows and columns interchanged. 
(M) Estimate the missing value by requiring zero determinant. 

18.8.3 Block Models 
If any array contains a number of blocks and all values within a block have a specified 
range, a missing value will be predicted to lie in the range of the block containing it. 
For a large block it might be reasonable to assume the missing value has the same 
distribution as the distribution of values in the block. 

This technique works well for filling in missing values, but it is less compelling as a 
prediction technique because a new case must be fitted into the blocks of the array 
before predictions can be made. These predictions are like the AID predictions-- 
if 0.3 < VI < 0.5 and 0.2 < V2 < 0.7 and 0.5 < V3 < 0.9, then predict 0.3 < 
V4 < 0.6. 

18.8.4 Median Fits 
In fitting a continuous variable to the nodes of a tree, it is plausible to minimize 
!XV) - X[T(I)]] summed over all nodes of the tree, where T(I) is the ancestor of 
node L The values of X at the ends of the tree are assumed given. The algorithm given 
in Section 13.8.6 computes this median fit exactly. 



PROGRAMS 
VARCO variance components model fitted to a given tree. 
AID 	splits data to best predict a target variable, basing each split on a pre- 

dicting variable. 
AIDOUT outputting program for AID. 
REL 	splits data to best predict a given variable, with split based on another 

variable. 
SUBROUTINE VARCOIMgKeNT,THRX.XNeV,XLL.Y) 

C • • •  	 23 MAY 1973 
C.... 	GIVEN A TREE, AND A SET OF VALUES ON ITS ENDS,THIS PR0RAM FIN35 
C 	VARIANCE COMPONENTS AND MEANS ASSOCIATED WITH EACH NODE. THE PROBABIL/TY 
C 	MODEL ASSUMES THAT XILI—XIKI IS NORMAL WITH MEAN ZERO AND VARIANCE VILI 
C 	WHERE K IS ANY CLUSTER AND L IS THE SMALLEST ONE INCLUDING 1T. 
C.... M = NUMBER OF OBJECTS AT END OF TREE, PLUS ONE FOR DUMMY FIRST OBJECT. 
C.... K = NUMBER OF CLUSTERS OR NODES OF TREE, K.GT.M. 
C.... NT = I BY K VECTOR, NTII).GT.I IS ANCESTOR OF I, EXCEPT FOR ROOT KINTIK)=K 
C.... TH = THRESHOLD,PRIOR EXPECTATION 3F IX(L)—X(K1I**2 
C.... X = K EY I VECTOR, FOR I.LE M, 	INPUT VALUE AT END OF TREE 
C 	 FOR I.GT.M, XII) = ESTIMATED MEAN AT NODE 1. 
C.... XN = K 8V 1 VECTOR, XN(I) = NUMBER OF NODES WITH ANCESTOR I. 
C.... V = I BY K VECTOR,V(II = VARIANCE COMPONENT AT I. 
C.... XLL = LOG LIKELIHHOD AT EACH STEP 
C.... Y = K BY 1 SCRATCH VECTOR 
e•• • 

DIMENSION NTIK).XIK/.V(K/gXNIKI.V(K) 
MN=M+I 
KK=K-1 

C.... INITIALIZE MEANS.VARIANCEMOUNTS AT EACH NODE 
DO 10 I=MM,K 
XIII=0. 

10 VII)=TH 
DO 11 1=2.K 

11 XNII1=0. 
DO 12 I=2.KK 
J=NT(I) 
IFII.GT.M/ 

12 XNIJ)=XN(J)1.1. 
XIKI=XIKMNIKi 
WRITE(6,11 

1 FORMATI22H108JECT ANCESTOR VALUE I 
WRITE(6.2)IIINTII)eXIII,I=2.M/ 

2 FORMATI215.5X.G12.51 
ITER=20 
XLLm-10.**10 
00 40 IT=IgITER 
WRITE(6,31 XLL 

3 FORMATI14HOLOGLIKELIH00D ,G12.5) 
NRITE(6,4) 

4 FORMATI44H NODE ANCESTOR COUNT 	MEAN 	VARIANCE I 
NRITEINSI 

5 FORMAT(215,G12.2,2G12.5) 
C.... UPDATE MEANS 

DO 20 1=MMg1( 
20 V(1)=0. 

DO 21 I=2,KK 
J=NTI1i 
IF II.GT.M) 

21 VIJI=Y(JI+XII/ 
XIK)=Y(K)/XN(K) 

C.... UPDATE VARIANCES 
DO 30 I=MM,K 

30 VI1)=0. 
DO 31 I=2,KK 
J=NT(I) 

31 VIJI=VIJI+~—XIIII**2/XN(J) 
C.... COMPUTE LOG LIKELIHOOD 

XOLD=XLL 
XLL=0. 
DO 32 I=MMIK 
VIII=(VII)+TH)/(1.+XNIIII 

32 XLL=—(1.+XN(I))*0.5*ALOGIVIIII.XLL 
IFIXLL.LT.XOLD+.000011 RETURN 

40 CONTINUE 
RETURN 
END 
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SUBROUTINE AID(AeMeNeKrTH,NB,SPIFKA,JP1 
C•• • 	 20 MAY 1973 
C.... SPLITS DATA TO BEST PREDICT COLUMN JP,BASING EACH SPLIT ON SOME OT4ER COL. 
C.... USES AIDOUTIFREL 
C.... A = M BY N BORDERED ARRAY 
C.... M = NUMBER OF ROWS 
C.... N . NUMBER OF COLUMNS 
C.... JP = VARIABLE TO BE PREDICTED 
C.... K = MAXIMUM NUMBER OF CLUSTERS 
C.... TH = THRESHOLD, STOP SPLITTING WHEN THRESHOLD EXCEEDS SSQ REDUCTIOM 
C.... N8 . 4 BY K ARRAY DEFINING BLOCKS 
C 	 N1311,K1 	FIRST ROW IN CLUSTER 
C 	 N812,0 	LAST ROM OF CLUSTER 
C 	 NUM/ = VARIABLE USED IN SPLIT 
C 	 NB(4,K) = VARIABLE IN SPLIT 
C 	 S5 = 5 8Y K ARRAY DEFINING FOR EACH CLUSTER THE SPLITTING VARIABLE, THE 
C 	 SPLITT/NG CONSTANT, THE CLUSTER MEAN, THE SSQ DUE TO SPLIT 
C.... KA = ACTUAL NUMBER OF CLUSTERS 

DIMENSION AIMEN),N81144K/eSPI6,K1 
C.... INITIALIZE BLOCK ARRAY 

KA.0 
IL.2 
IU=M 
JM=JP 
15=1 

80 IFIKA.GT.K-21 GO, TO 90 
C.... DEFINE BLOCKS 

KA=KA+1 
N811,KA)=IL 
N6(2,KA)=IS 
NBI3,KAI.JM 
NB(4,KAI=JM 
KA=KA+1 
NB11,KAI=IS+1 
NB(2,KA1.1U 
NB(3,KA).JM 
NBI4FKA1=JM 

C.... DEFINE SPLITTING PARAMETERS FOR NEM BLOCKS 
KL.KA-1 
DO 43 KK=KL,KA 
LL=IL 
LU=15 
IFIKK.512.KAI LL=IS+1 
IFlKK.EQ.KA) LU.IU 
IFILL.C.T.LU/ GO TO 43 
SP13,KK)=0 
DO 40 J=2,N 
IF(J.EQ.JP) GO TO 40 
NN=LU—LL+1 
CALL RELlA(LL,JP/eAILLeJ1,NN,C,S5QI 
IF(SSQ.LT.SP(3,K10) GO TO 40 
SPIleKKI=J 
SP(2pKKJ=C 
SP(3gKKI.SSQ 

40 CONTINUE 
50.0 
51=0 
S2.0 
DO 42 I.LLFLU 
50=50+1 
51=51+A(1,JP) 

42 52=S2+AII,JP/**2 
SP(4,KK)=50 
SP(5,KK)=51/50 
SP(6,KK)=S2/50—(51/501**2 

43 CONTINUE 
C.... FINO ['EST BLOCK TO SPLIT 

SM*0 
DO 10 KK=2,KA 
IFISP(3,KK).LE.SM) GO TO 10 
KM=KK 
SM=SP13,KKI 

10 CONTINUE 
IF(SM.LT.THI GO TO 90 

C.... REORDER DATA ACCORDING TO BEST SPLIT 
IL=NBIleKM/ 
IU=NB(2,KMI 
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JM.SP(1,KM) 
DO 20 1.IL,Id 
00 20 II.1.1U 
IFIA(19JMI.LE.A(11,JM)1 GO TO 20 
DO 21 4=1.N 
C.ACI,J1 
A(I,J)=A(II,J) 

21 A(II,JI*C 
20 CONTINUE 

SPI3.KM).-SPI3,KMI 
DO 31 1=11.11IU 
IFIAII,JNI.GT.SPU.KMII GO TO 32 

31 CONTINUE 
32 15=1-1 

GO TU 80 
90 CONTINUE 

CALL AIDOUTIA.M.N.NB,SP,KA,TH,JPi 
RETURN 
END 

SUBROUTINE AIDOUTIAgMeNeNB,SP,KA,TH,JP1 
C..  	 20 MAY 1973 
C....PRINTS OUTPUT OF SUBROUTINE A10. SEE AID FOR ARGUMENTS. 
Ce• • 	  

DIMENSION NBI4,KAI,SP(6,KAI,A(M,N) 
WRITE(6,11 JP,TH 

1 FORMATI51HLCLUSTERS OBTAINED IN SPLITTING TO PREOICT VARIABLE.IBe 
*116H USING THRESHOLO ,G12.61 
WRITE16,31 

3 FORMATI 
*79H FIRST 	LAST SPLIT 	SPLIT 	SSO 	COUNT 
*MEAN 	VARIANCE 	il, 
*45H OBJECT OBJECT VARIABLE POINT 	REDUCTION 
DO 20 K=2,KA 

IL=NBII,K) 
IU=NBI2.10 

22 WRITE(6,21 A(ILel/FAIIUg1),AI1eJSNISPII,KI,Ing61 
2 FORMATI3(2X,A53.5Xe5G12.51 
20 CONTINUE 

RETURN 
END 

345 



SUBROUTINE REL(U.YeN,C,SSOI 
Co.  	 20 MAY 1973 
C.... USED IN AID FOR PREDICTING A VAR1ABLE U BY SPLATTING ON A VARIABLE V. 
Co... U . N BY 1 ARRAY, TO BE PREDICTED 
C.... V . N bY i ARRAYoUSED IN PREDICTION 
C.... N = NUMBER OF ELEMENTS OF ARRAY 
C.... C . SPLIT POINT 
C.... SSC/ . SUM OF SQUARES IN U AFTER (MIT 
C... *** 	  

DIMENSION UtNi,V(N) 
DIMENSION X(500irY(500à 
DO 10 1.1,N 
XIII)..UtIl 

10 Y111.1/(1) 
C— — — — — — — — REORDER X AND Y VECTORS BY Y VECTOR 

DO 20 I.1,14 
DO 20 J.IoN 
IF IY(IbLE.Y(J)I GO TO 20 
C.X(1) 
XlIP.X(J) 
XlJi.0 
C.Y(Ià 
YlIk=Y(J) 
Y(J).0 

20 GONTINUE 
C.... — — — — — — -- FINO BEST SPLIT 

SSQ=0. 
AVE.O. 
DO 30 1.1,N 

30 AVDNIVE+X(I) 
XN.N 
AVE.AVE/XN 
A=0. 
DC 31 1.1oN 
IF (I.EQ.N) GO TO 31 
A.A+X(1/ 
XI.I 
b=CAVE—A/XI)**2*XN*XI/IXN—Xlà 
IF (Y(Ii.EQ.Y(14.1)1 GO TO 31 
IF(B.LE.SSQ) GO TO 31 
SSQ*5 
C=Y(I) 

31 CONTINUE 
RETURN 
END 



Index 

Abell, G. O., gabudes, 6, 25 
Adding technique, algorithm, 222 

definition, 12 
Antalgamation rules, 216 
Analysis of variance, for evaluating clusters, 13 

for IC-means clusters, 89 
variance componente, 332 

Ant, 2 
clasdfication of, 16 
eyes of, 9 

Anthropology, 5, 24 
Archaeology, 5, 24 
Automatic interaction detection, 337 
Average linkage, on batteria, 20 

on finn, 27 
as a joining algorithm, 222, 227 
on skulls, 5, 24 
on atone toola, 24 
superior, 4 

Batteria, 4, 21 
Bailey, D. C., clustering variables and cases, 251, 

269 
factor analysis, 326 
profiles, 40 

Barlow, R. E., monotone fitting, 204, 212 
Bacon, D. N., classification of liver discese, 17 
Bartholomew, D. J., monotone fitting, 204, 212 
Barton, W. E., clasdfication in psychiatry, 23 
Bassett, I. J., classification of pollen, 3, 17 
Bayes techrdques, in K-means, 93 

in mixt= model, 115, 123 
Bellman, R. E., dynamic programming, 132, 140 
Bertin, J., beautiful graphs, 164 

drawing trees, 162 
Bilines, need work, 39 
Bimodality, measure of, 99 

test for, 98  

Blackwelder, R. A., taxonomy, 1, 14 
weighing necessary, 67 

Block clusters, 288, 324, 342 
definition, 11 
histogram, 40 

Blood, 4 
Boorman, K. E., blood group serology, 4, 17 
Borradaile, L. A., classification of ante, 2, 16 
Bostordans, stealing care, 33 
Bouckaert, A., goiters, 4, 18 
Boundaries of clusters, 191 
Boyce, A. J., akulls, 5, 24 
Bremner, J. M., monotone fitting, 204, 212 
Brunk, H. D., monotone fitting, 204, 212 
Burbank, F., epidemiology of cancer, 4, 18 

Camin, J. H., evolutionary trees, 233, 245 
Cases, 9 
Category variables, distances for, 64 
Cattell, R. B., coefficient of pattern 

67 
Cavalli-Sforza, L L., evolutionary tree models, 

245 
Chakraverty, P., viruses, 4, 18 
Chernoff, H., facce displaying shellfish, 40 
Cirrhosis, 3, 4 
Clark, P. J., packing distances, 5, 25 
Clustering, diameters, 157 

estimating missIng values, 9 
functlons of, 6 
interpretation, 12 
multivariate histograms, 9 
names for, 1, 156 
stability, 14 

Cole, J. O., classification in psychiatry, 23 
Cole, J. W. L, linguistica, 26 
Complete linkage, on goitess, 18 

subjective partitions, 27 

347 



348 	Index 

Contiguity, 156 	 moats, 202, 212 
Conveadty, joinhig algorithm, 212 	 Euclide,an distance, 58, 60 

K-means cluster', 94 	 disfributions of, 66 
Cormack, R. M., discussion after, 8 	 generalized, 63 

survey paper, 1 	 plotted to detect clusters, 65 
waste of time, 15 	 weighted, 60 

Correlation, as euclidean distance, 64, 191 	European languages, 243 
Cox, D. R., optimal classification of a normal 	Evans, F. C., packing distances, 5, 25 

distribution, 95, 105 	 Everitt, B. S., classification in psychiatry, 5, 22 
Crimea in U.S. Mica, 28, 342 	 Evolutionary tree constniction, 237 

linearly optimal profiles, 36 
rescaled data, 32 	 Faces, 39 

Crompton, C. W., classification of pollen, 3, 17 	Factor analysis, algorithms, 313 
Cronbach, L J., assessing similarity, 67 	 in block clustering, 290, 324 

Mahalanobis distance, 63 	 on cliabetes, 20 
oblique factors, 320 

Dalenius, T., optimal stratification, 95, 106 	in psychiatry, 5, 22 
Darlington, P. J., 3 	 in psychology, 6 

abandonment of reality, 17 	 Ferri', J. S., link distance to ultrametrics, 162 
Darwin's evolutionary theory, 2 	 Wagner trees, 246 
Data structures, 9 	 Feinstein, A. R., classification of discese, 3, 19 
Dendrograms, 164 	 Fisher, L., evaluation of K-means, 93, 106 
Dentition of manunals, 170 	 Fisher, W. D., clustering in economica, 5, 26, 
Diabete' mellitus, 3 	 268 
Dickerson, R. E., cytochrome-c, 240 	 Fisher's algorithm, applied to Olympic data, 
Discriminant analysis, for evaluating clusters, 	 137 

13 	 exact optimization, 130 
in prediction, 331 	 time and space re,quirements, 137 
separating K-means clusters, 94 	 Fitch, W. M., minimum mutation flt, 233, 246 

Discese, 3 	 mutation distances, 209 
Distance, 9 	 Flieger, W., expectation of life, 182 

matrix, 10 	 Football prediction, 217 
separated from clustering, 191 	 Ford, T. L. E., butterflies, 150 

Ditto algoritlun, 143 	 Fnutk, R. E., market research applications, 5, 
Dodd, B. E., blood group serology, 4, 17 	 26 
Doll, R., leukemia, 20 	 Fraser, P. M., classification of liver discese, 17 
Donnelly, W., leukemia, 21 	 Frledman, H. P., stages of critically M, 19 
Dreyfus, S. E., dynamic programming, 140 	 weighting variables, 58 
Dupont, P. F., classification of yeasts using 	within-cluster covariance matrix, 63, 68 

DNA, 3, 17 	 Friedman-Rubin technique, in depression, 23 
Dyen, I., linguistics, 5, 26 

Galaxies, 6 
Econornics, 5 	 Gallimaufry cluster, 147 
Edwards, A. W. F., evolutionary tree models, 	Gap, 191 

245 	 Genghis Khan, descendants, 164 
Eigenvectors, 35 	 Gleser, G. C., assessing similarity, 67 

closest fitting piane, 39 	 Mahalanobis distance, 63 
interpreting Maltalanobia distance, 63 	 Goiter, 4 
sorting, 175 	 Goldwyn, R. M., stages of septic process, 3, 4, 
splitting into two clusters, 99 	 19 

Electrocardiograms, 4, 21 	 Good, I. J., 1 
Engelman, L., test for clusters, 97, 98, 106 	 two-way splitting, 15, 268 
Epidemiology, 4 	 Goodfellow, N., bacteria, 4, 20 
Erdos, P., random graphs, 202, 212 	 Goodman, L. A., measures of association, 13, 
Estabrooke, G. J., distances before clusters, 	 15 

191 	 Goronzy, F., business enterprises, 5, 26 
evolutionary trees, 233, 245 	 Gourlay,A.J.,classificationinpsychiatry, 22 



Enda( 	349 

Gower, J. C., minimum spanrdng trees, 191, 201, 	Kaiser, H. F., legislative districts, 5, 27 
213 	 Kant, I., clasaification of mental disordeis, 4, 23 

spirited defense, 8 	 Katz, M. M., classification in psychiatry, 4, 23 
Green, P. E., market research, 5, 26 	 Kendall, D. G., archaeology, 25 

Kendall, R. E., clasaification in psychiatry, 22 
Hall, C. T., yeast, 279 	 ICeyfitz, N., expectations of afe, 182 
Hammersley, J. M., monotone fits, 312 	 King, B. F., stocka, 5, 27 
Harman, H. H., factor analysis, 325 	 Klett, C. J., psychiatric syndromes, 23 
Hartigan, J. A., clusters given distances, 191 	Knospe, W. H., leukemia, 21 

direct splitting, 251 	 Knusman, R., diabetes, 3, 20 
minimum mutation fit, 233, 246 	 ICrusical, J. B., minimum spanning trae, 201, 213 
optimal trees, 200, 213 	 Kruskal, W. H., measures of association, 13, 15 
test for clustera, 97, 98, 106 
ultrametrics, 160, 164 	 Lance, G. N., joining of algorithms, 200, 213, 222, 

Hautaluoma, J., psychiatric syndromes, 5, 23 	230 
Hayhoe, F. G. J., leukenda, 4, 20 	 Landsteinex, 4 
Heart disease, 4 	 Leader algorithm, 75 
Hendrick, L. R., classification of yeast, using 	Legislative districts, 6, 27 

DNA, 3, 17 	 Leukeinia, 21, 334 
Hess, S. W., legislative districts, 5, 27 	 Levelt, W. J. M., triads, 184 
Hierarchical clustering, see trees 	 Lieth, H., phytosociblogy, 5, 26 
Hodson, F. R., archaeological applications, 25 	Likelihood, generaiized IC-means, 93 

tools, broaches, 5, 24 	 in mixtue models, 113-125 
Homology problem, 9, 15 	 Ling, R., reality of clustera, 202, 213 
Huizinger, J., distances in anthropology, 5, 25 	Linguistica, 5 

Linnaeus, 1 
Imms, A. D., insects cerci, 233, 246 	 Livermore, T. L., Civil War casualties, 121 
Information, association between two partitions, 	Local optimization, 84 

13 	 Lockwood, drawing trees, 162, 164 
Insect, classified by different systems, 14 	Lorr, M., psychiatric syndromes, 5, 23 

wings, 10 
MacQueen, J., K-means algorithm, 106 

James, A. T., linguistica, 26 	 Mahalanobis, P. C., 63, 68 
'ardine, C. J., distances, 191 	 Mahalanobis distance, 16 

optimally fltting trees, 200, 213 	 bad effects in weighting, 63, 67, 68 
ultrametrics, 164 	 Mammals' intik data, 6 

Jardine, N., mathematical taxonomy, 1, 15 	Manie depressive, unobservable, 4 
optimally fitting trees, 200, 213 	 Manning, R. T., heart disease, 4, 20 
ultrametrics, 160, 164 	 Manual of disease classification, 3, 20 

Jigsaw puzzle, 75 	 Margoliash, mutation distane" 209 
Johnson, S. C., complete linkage, 200, 213 	Market research, 5, 26 

single-linkage austera, 191 	 Maurer, W., profila algorithm, 32 
ultrametrics, 160, 164 	 McNair, D. M., psychiatric syndromes, 23 

Joining, aigorithms, 216 	 McQuitty, L. L., maximum joining aigorithm, 
definition, 11 	 213 
in factor analysis, 319 	 Minar, G. A., subjec1ive partitions, 6, 27 
probability models, 229 	 Minimum mutation fit, 233 
two-way algorithms, 278 	 joining aigoritlun for, 237 

probability theory for, 236 
K-means, algorlthm, 84-112 	 real variables, 244 

on axes, 25 	 Minimum spanning tree, 201 
on broaches, 25 	 Minkowsld distances, 65 
on cides, 26 	 Minor pianeta, grouped Edghtings table, 2 
convexity of clusters, 94 	 keephig track of, 1 
global optimality, 103 	 Missing values, 267 
in psychiatry, 22 	 Mbcture model, 13 
variationa on, 102 	 algorithms,113-129 



350 	Index 

related to K-means, 124 	 within-cluster covariance matrix, 63, 68 
Modes, as cluster centres, 143 

density contour clusters, 211 	 Scaling, 299 
by maximum hicellhood, 140 	 Scammon, R. M., Connecticut votes, 267 
related to single linIcage, 15 	 Schizophrenic, 5 

Moore, C. W., phytosociology, 5, 26 	 Schrek, R., leulcemia, 4, 21 
Moore, P., moons and &nets, 122 	 Sebestyen, G. S., K-means type algorithm, 107 
Morgan, AID technique, 331 	 Severity of rens' discese, 18 
Multivariate nonnal, 116 	 Shakow, D., variabilfty of psychiatric class- 

ifIcation, 4, 24 
Nosology, 1, 3 	 Sibson, R., mathematical taxonomy, 1, 15 
Numerical truconomy, 1 	 , 	optimally fitting trees, 200, 213 

examples of, 3 	 ultrametrics, 160, 164 
logically unsound, 8 	 Siegel, J. H., stages of septic process, 19 

Simllarlties, 9 
Okajima, M., electrocardlograrns, 21 	 Simple structure, 314 
Overlapping clusters, 15, 16 	 Single linkage, on airline distances, 195 

for broaches, 25 	 algorithm, 191 
on bacteria, 20 

Palmer, E. L, dentition of mammals, 170 	 beaten, 4 
Papageorge, C., yeast, 279 	 broaches, 25 
Partition, dermitlon, 11 	 on chrhods, 17, 22 

by exact opthrdzation, 130 	 continuous function of disshnilarities, 16 
models, 11 	 density contour tree, 205 
neighborhoods, 84 	 exact optimizatIon, 199, 200 
opthnal, 95 	 on golters, 18 
quick algoritiuns, 74 	 invariance under transformation, 195 

Paykel, E. S., clastlfications of depressed 	 on leulcemia, 20 
patients, 5, 23 	 partitions, 199 

Pearson, K., coefficient of racial likeness, 68 	reducing distance calculations, 212 
Peterson, S., presidential electlons, 252 	 sausage clusters, 200 
Phytosociology, 5 	 significsmce testa, 204 
Pollen, 3, 17 	 subjective partitions, 27 
Potts, F. A., classifIcation of ants, 2, 16 	 on viruses, 18 
Prediction, 330 	 Small, E., classification of pollen, 3, 17 
Prevot, A. H., bacteria, 4, 21 	 Sneatil, P. H. A., don't weight, 68 
Probability of rain, 9 	 joining, 200, 214 
ProfIles, 28-57 	 numerica' taxonomy, 1, 3, 15 

algorlthm, 29 	 single-linkage algorftlun, 191, 213 
linearly optImal, 34 	 weights, 61 
rank proflles, 32 	 Sokal, R. R., don't weight, 68 
transposed, 39 	 drawing trees, 162, 164 

Psychiatry, 4 	 evolutionary trees, 213, 245 
foundation of numerica' taxonomy, 1, 3, 16 

Quaglino, D., leukernia, 20 	 joinIng techniques, 200, 214 
single-linlcage clusters, 191 

Range, 268, 291 	 weights, 61 
Rao, C. R., Indian caste measurements, 324 	Sonnquist, J. A., splitting technique, 251, 269, 

Mahabsnobis distance, 63, 68 	 331 
Ratto measure for validity of partition, 91 	Sorting, algorithm, 78, 173 
Regtession, 323, 330 	 definition, 11 
Renal discese, 4 	 Species, 1 
Renyi, A., random graphs, 202, 212 	 Spiral search algorithm, 196 
Root of a mania, 314 	 Splitting, definition, 11 
Ross, G. J. S., single-linkage cluster', 191, 201, 	direct splitting, 251 

213 	 two-way splitthsg, 260 
Rubin, J., weighting variables, 58 	 Stark, L., 4 



Index 	351 

electrocardiograms, 4, 21 
Stearn, W. T., 3, 17 
Struhsalcer, T. T., vervet monlceys, 149 
Subsampling, in K-means, 105 
Switching, definition, 11 

Tantu, P., archaeology, 25 
Temkin, O., history of medicai cludfication, 

3, 21 
Threshold, in quick algorithm, 78 
Tied distances, 292 
Toeller, M., diabetes, 3, 20 
Tree, complete search, 185 

definition, 11, 155 
az a directed graph, 158 
drawings, 155 
leader algorithm, 169 
mixture model, 124 
models, 11 
natural trees, 164 
as txiads, 177 

Triads, algorithm using, 177 
probability model, 187 
similarity between trees, 13 
triads-leader algorithm, 181 

Tryon, R. C., clustering variables then cases, 
251, 269 

factor analysis, 326 
plance, 40 

Tumors, 4 
Two-way clustering, 10 
Tygstrup, N., cirrhosis, 3, 22 

Ultrametric, 11, 16 
definition, 160 

Van Nets, J. W., evolution of K-means, 93 
Variables, 9 
Variance-components algorithm, 332 
Vietnam combat deaths, 139 
Viruses, 4, 21, 22 
Voting, Congress, 242 

Connecticut, 267 
preddential elections, 251 
United Nations, 300 

Watson, L., heart disease, 4, 20 
Weaver, J. B., legislative districts, 5, 27 
Webb, C. D., yeast, 279 
Weights, 60 

circularity uedng within-chater variances, 62 
for food data, 84, 91 
inverse variances risky, 61 
Mahalanobis distance dangerous, 63 
in two-way joining, 292 

Weiner, J. S., distances in anthropology, 5, 25 
Whipple, G. M., electrocardiograms, 21 
Whittaker, R. H., phytosociology, 5, 26 
Wife, notices husband, 1 
Wildy, P., viruses, 4, 21 
Wiley, D. E., latent partition analysis, 6, 13, 27 
Williams, W. T.Joining algorithins, 200, 213 
Wilner, B. I., virus«, 4, 22 
%Vines, evaluatlon, 144 
Winkel, P., cirrhods, 3, 22 
Wishart, D., reducing chaining, 214 

Zubin, J., schizophrenia, 5, 24 


	Clustering Algorithms
	Preface
	Contents
	I. INTRODUCTION
	I.1. Clustering
	I.1. Examples of Clustering
	I.3. Functions of Clustering
	I.4. Statistics and Data Analysis
	I.5. Types of Data
	I.6. Clustering Structures and Models
	I.7. Algorithms
	I.8. Interpretation and Evaluation. of Clusters
	I.9. Using This Book
	References

	1. PROFILES
	1.1. Introduction
	1.2. Profiles Algorithm
	1.3. Profiles of City Crime
	1.4. Rank Profiles Algorithm
	1.5. Linearly Optimal Profiles Algorithm
	1.6. Linearly Optimal Profiles of Crime Data
	1.7. Things To Do
	References
	Programs

	2. DISTANCES
	2.1. Introduction
	2.2. Euclidean Distances
	2.3. Relations Between Variables
	2.4. Disguised Euclidean Distances
	2.5. Other Distances
	2.6. Plotting Distances To Detect Clusters
	2.7. Things To Do
	References
	Programs

	3. QUICK PARTITION ALGOR1THMS
	3.1. Introduction
	3.2. Leader Algorithm
	3.3. Leader Algorithm Applied To Jigsaw Puzzle
	3.4. Properties of Leader Algorithm
	3.5. Sorting Algorithm
	3.6. Sorting Algorithm Applied To Jigsaw Puzzle
	3.7. Properties of Sorting Algorithm
	3.8. Things To Do
	Programs

	4. THE K-MEANS ALGORITHM
	4.1. Introduction
	4.2. K-means Algorithm
	4.3. K-means Applied To Food Nutrient Data
	4.4. Analysis of Variance
	4.5. Weights
	4.6. Other Distances
	4.7. The Shape of K-means Clusters
	4.8. Significance Tests
	4.9. Things To Do
	References
	Programs

	5. MIXTURES
	5.1. Introduction
	5.2. Normal Mixture Algorithm
	5.3. Normal Mixture Algorithm Applied To New Haven School Scores
	5.4. Things To Do
	Programs

	6. PARTITION BY EXACT OPTIMIZATION
	6.1. Introduction
	6.2. Fisher Algorithm
	6.3. Fisher Algorithm Applied To Olympic Times
	6.4. Significance Testing and Stopping Rules
	6.5. Time and Space
	6.6. Things To Do
	References
	Programs

	7. THE DITTO ALGORITHM
	7.1. Introduction
	7.2. Ditto Algorithm
	7.3. Application of Ditto Algorithm To Wines
	7.4. Things To Do
	Programs

	8. DRAWING TREES
	8.1. Definition of a Tree
	8.2. Reordering To Contiguous Clusters
	8.3. Application of Reordering To Animai Clusters
	8.4. Naming Clusters
	8.5. I Representation of Clusters With Diameters
	8.6. I Representation of Animai Clusters
	8.7. Trees and Directed Graphs
	8.8. Linear Representations of Trees
	8.9. Trees and Distances
	8.10. Block Representations of Trees
	8.11. Things To Do
	References
	Programs

	9. QUICK TREE CALCULATION
	9.1. Introduction
	9.2. Leader Algorithm For Trees
	9.3. Tree-leader Algorithm Applied To Mammals' Teeth
	9.4. Things To Do
	Programs

	10. TRIADS
	10.1. Introduction
	10.2. Triads Algorithm
	10.3. Triads Algorithm Applied to Hardware
	10.4. Properties of Triads Algorithm
	10.5. Triads-leader Algorithm
	10.6. Application of Triads-leader Algorithm To Expectation of Life
	10.7. Remarks On Triads-leader Algorithm
	10.8. Things To Do
	References
	Programs

	11. SINGLE-LINKAGE TREES
	11.1. Introduction
	11.2. Single-linkage Algorithm
	11.3. Application of Single-linkage Algorithm To Airline Distances
	11.4. Computational Properties of Single Linkage
	11.5. Spiral Search Algorithm
	11.6. Application of Spiral Search Algorithm To Births and Deaths
	11.7. Single-linkage Clusters From Partitions
	11.8. Joining and Splitting
	11.9. Ultrametrics
	11.10. Strung-out Clusters
	11.11. Minimum Spanning Trees
	11.12. Reality of Clusters
	11.13. Density-contour Tree
	11.14. Densities and Connectedness, Distances Given
	11.15. Things To Do
	References
	Programs

	12. DISTANCE AND AMALGAMATION ALGORITHMS
	12.1. Introduction
	12.2. Joining Algorithm
	12.3. Joining Algorithm Applied To Ivy League Football
	12.4. Remarks On Joining Algorithm
	12.5. Adding Algorithm
	12.6. Adding Algorithm Applied To Questionnaire
	12.7. Things To Do
	References
	Programs

	13. MINIMUM MUTATION METHODS
	13.1. Introduction
	13.2. Minimum Mutation Fits
	13.3. Application of Minimum Mutation Algorithm To Cerci In Insects
	13.4. Some Probability Theory For the Number of Mutations
	13.5. Reduced Mutation Tree
	13.6. Application of Reduced Mutation Algorithm To Amino Acid Sequences
	13.7. Things To Do
	References
	Programs

	14. DIRECT SPLITTING
	14.1. Introduction
	14.2. Binary Splitting Algorithm
	14.3. Application of Binary Splitting Algorithm To Voting Data With Missing Values
	14.4. One-way Splitting Algorithm
	14.5. One-way Splitting Algorithm Applied To Republican Percentages
	14.6. Two-way Splitting Algorithm
	14.7. Two-way Splitting Algorithm Applied To Republican Vote for President
	14.8. Things To Do
	References
	Programs

	15. DIRECT JOINING
	15.1. lntroduction
	15.2. Two-way Joining Algorithm
	15.3. Applicàtion of Two-way Joining Algorithm To Candida
	15.4. Generalizations of Two-way Joining Algorithm
	15.5. Significance Tests for Outcomes of Two-way joining Algorithm
	15.6. Ditect Joining Algorithm for Variables on Different Scales
	15.7. Things To Do
	Programs

	16. SIMULTANEOUS CLUSTERING AND SCALING
	16.1. Introduction
	16.2. Scaling Ordered Variables
	16.3. Scaling Ordered Variables Applied To U.N. Questions
	16.4. Joiner-scaler
	16.5. Application of Joiner-scaler Algorithm To U.N. Votes
	16.6. Things To Do
	References

	17. FACTOR ANALYSIS
	17.1. Introduction
	17.2. Sparse Root Algorithm
	17.3. Sparse Root Algorithm Applied To Face Measurements
	17 4. Remarks on the Sparse Root Algorithm
	17.5. Rotation to Simple Structure
	17.6. Joining Algorithm for Factor Analysis
	17.7. Application of Joining Algorithm To Physical Measurements Data
	17.8. Things To Do
	References
	Programs

	18. PREDICTION
	18.1. Introduction
	18.2. Variance Components Algorithm
	18.3. Variance Components Algorithm Applied To Prediction of Leukemia Mortality Rates
	18.4. Alternatives To Variance Components Algorithm
	18.5. Automatic Interaction Detection
	18.6. Application of AID Algorithm To Leukemia Mortality
	18.7. Remarks On The AID Algorithm
	18.8. Things To Do
	Programs

	INDEX


