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Overview

Timeline:

PCA (Karl Pearson, 1901)

Manifold Learning(Isomap by Tenenbaum et al., LLE by Roweis and
Saul,... 2000)

The following topics will be covered in today’s presentation:

SNE (Hinton and Roweis, 2002)

t-SNE (van der Maaten and Hinton, 2008)

Accelerate t-SNE. (van der Maaten, 2014)

First step towards theoretical guarantee for t-SNE. (Linderman and
Steinerberger, 2017)

Accelerate t-SNE more.(Linderman et al., 2017)

Theoretical guarantee for t-SNE. (Arora et al., 2018)

Generalization of t-SNE to manifold (Verma et al. preprint)
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Preliminaries and Notation Part1

Matrix Norm:

||A||p = supx 6=0
||Ax ||p
||x ||p

.

||A||2 =
√
λmax(A∗A) = σmax(A)

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

Diam(S) denotes that diameter of a bounded set S ⊂ Rs ,i.e.,
Diam(S) := supx ,y∈S||x − y ||2.
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Preliminaries and Notation Part2

In a clustering setting, π : [n]→ [k] denotes function that maps data index
i ∈ [n] to cluster index k. i ∼ j means π(i) = π(j)
KL-divergence:
A measure of how unsimilar two distributions are.
Let p and q be two joint probability over i , j ,
KL(p||q) =

∑
i

∑
j pij log

pij
qij
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Problem Formulation(A sketch)

Given a collection of points X = {x1, ..., xn} ⊂ Rd , find a collection of
points Y = {y1, ..., yn} ⊂ Rd ′ , where d ′ � d , such that the lower
dimension embedding preserves the relationship among different points in
the original space.
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What is a good visualization? Illustration

Intuitive idea: Help to explore the inherent structure of the dataset(e.g.
discover natural clusters, find linear relationship)
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What is a good visualization for embedding? Technical
Requirement

Technical requirements:

Visualizability: (usually 2D or 3D).

Fidelity: Relationship among points are preserved(i.e. similar points
remain distinct; distinct points remain distinct).

Scalability: Can deal with large, high-dimensional data sets.
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Motivation for a better visualization algorithm

For many real-world dataset with non-linear inherent structures(e.g.
MNIST), both linear methods like PCA and classical manifold learning
algorithms like Isomap and LLE fail.
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SNE

G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. NIPS2002
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SNE Summary

Compute an N x N similarity matrix in the high-dimensional input
space.

Define an N x N similarity matrix in the low-dimensional embedding
space.

Define cost function - sum of KL divergence between the two
probability distributions at each point.

Iteratively learn low-dimensional embedding by minimizing the cost
function using gradient descent.
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SNE

Similarity matrix at high dimension:

pj |i =
exp(−||xi − xj ||2/2τ2i )∑
k 6=i exp(−||xi − xk ||2/2τ2i )

where τ2i is the variance for the Gaussian distribution centered around xi .
Similarity matrix at low dimension(τ2i is set to 1

2 for all i):

qj |i =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk ||2)

The cost function is defined as:

C =
∑
i

KL(Pi ||Qi ) =
∑
i

∑
j

pj |i log
pj |i
qj |i

SNE focuses on local structure(Small pij → Small penalty. Large pij →
Large penalty)
It has gradient: dC

dyi
= 2

∑
j(yi − yj)(pj |i − qj |i + pi |j − qi |j)
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How to choose variance τi? Reference

τi is the variance of the Gaussian that is centered around each
high-dimensional datapoint xi . In dense region, small τi is more
appropriate.
SNE performs a binary search for the value of τi that produces a Pi with a
fixed perplexity that is specified by the user. The perplexity can be
interpreted as a smooth measure of the effective number of neighbors.
The perplexity is defined as:

Perp(Pi ) = 2H(Pi )

where H(Pi ) is the Shannon entropy of Pi measured in bits:

H(Pi ) = −
∑
j

pj |i log2 pj |i
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Result

The result of running the SNE algorithm on 3000 256-dimensional
grayscale images of handwritten digits(Not all points are shown).
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Problem with SNE: ”crowding problem”

SNE suffers from the ”crowding problem”: The area of the 2D map that is
available to accommodate moderately distant data points will not be large
enough compared with the area available to accommodate nearby data
points.
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t-SNE

L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional
Data Using t-SNE. JMLR2008

A symmetrized version of the SNE cost function with simpler
gradients.

A Student-t distribution rather than a Gaussian to compute the
similarity in the low-dimensional space to alleviate the crowding
problem and the optimization problems of SNE.
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t-SNE: Make similarity symmetric

pj |i =
exp(−||xi − xj ||2/2τ2i )∑
k 6=i exp(−||xi − xk ||2/2τ2i )

We may tend to define the similarity function in the symmetric similarity
matrix on high dimension as:

pij =
exp(−||xi − xj ||2/2τ2i )∑
k 6=l exp(−||xk − xl ||2/2τ2)

However, outlier xi on high-dimensional space can cause problem by
making pij very small for all j . Instead, define pij by symmetrizing two
conditional probabilities as follows:

pij =
pj |i + pi |j

2n

In this way,
∑

j pij >
1
2n for all data points xi . As a result, each xi makes a

significant contribution to the cost function. The main advantage of the
symmetric form is mainly simpler gradient(will be shown later).
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t-SNE: Fix crowding, Illustration
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t-SNE: Fix crowding

Define

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl ||2)−1

The cost function of t-SNE is now defined as:

C =
∑
i

KL(Pi ||Qi ) =
n∑

i=1

n∑
j=1

pij log
pij
qij

The heavy tails of the normalized Student-t kernel allow dissimilar input
objects xi and xj to be modeled by low-dimensional counterparts yi and yj
that are too far apart because qij is not very small for two embedded
points that are far apart.
Note: Since q is what to be learned, the outlier problem does not exist for
low-dimension.
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t-SNE: Gradient

The gradient of the cost function is:

dC

dyi
= 4

n∑
j=1,j 6=i

(pij − qij)(1 + ||yi − yj ||2)−1(yi − yj)

= 4
n∑

j=1,j 6=i

(pij − qij)qijZ (yi − yj)

= 4
(∑

j 6=i

pijqijZ (yi − yj)−
∑
j 6=i

q2ijZ (yi − yj)
)

= 4(Fattraction + Frepulsion)

where Z =
∑n

l ,s=1,l 6=s(1 + ||yl − ys ||2)−1. The derivation can be found in
the appendix of the t-SNE paper.
Exercise: There are two small errors but they cancel out so the result is
correct. Can you find the errors in their derivation?
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After Fix
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t-SNE: Physics Analogy-N body system
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t-SNE: Early exaggeration

In the initial stage, multiply pij by a coefficient α > 1. This encourages to
focus on modeling the large pij by fairly large qij . A natural result is to
form tight widely separated clusters in the map and thus makes it easier
for the clusters to move around relative to each other in order to find a
global organization.
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Result on MNIST
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Comparison on MNIST
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Caveats I

Perplexity needs to be chosen carefully.

Relative size is usually not meaningful.
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Caveats II

Global Structures are preserved only sometimes.
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Limitations

Dimensionality reduction for other problems(due to the heavy tail of
the t-distribution, it does not preserve the local structure as well if
the embedded dimension is larger, say 100).

curse of dimensionality(t-SNE employs Euclidean distances between
near neighbors so it implicitly depends on the local linearity on the
manifold).

O(N2) computational complexity(the evaluation of the joint
distributions involve N(N − 1) pairs of objects. The method is limited
to 10k points).

Perplexity number, number of iterations, the magnitude of early
exaggeration parameter have to be manually chosen.
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Accelerate t-SNE

L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.
JMLR2014

Observations: Many of the pairwise interactions between points are
very similar.

Idea: Approximate similar interactions by a single interaction using a
metric tree that has O(uN) non-zero values.

Result: Reduce complexity to O(N logN) via Barnes-Hut-SNE
(tree-based) algorithm. The method can deal with up to tens of
millions data points.
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Preliminary: Quadtree

A quadtree(2d) is defined as the following: Each node represents a
rectangular cell with a particular center, width, and height. It stores the
the number of points inside Ncell and their center-of-mass ycell . Non-leaf
node have four children that split up the cell into four smaller cells on the
current embedding. It can be constructed in O(N logN) time by inserting
the points one-by-one, splitting a leaf node whenever a second point is
inserted in its cell, and updating ycell and Ncell of all visited nodes.
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Approximate high-dimensional similarity

Compute the sparse approximation by finding 3u nearest neighbors where
u is the perplexity of the conditional distribution.

pj |i =


exp(−||xi−xj ||2/2τ2i )∑

k∈Ni
exp(−||xi−xk ||2/2τ2i )

, if j ∈ Ni

0 , otherwise

pij =
pj |i + pi |j

2n
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Problem with low-dimensional repulsion gradient

Recall the t-SNE gradient as the following:

dC

dyi
= 4(Fattraction +Frepulsion) = 4

(∑
j 6=i

pijqijZ (yi − yj)−
∑
j 6=i

q2ijZ (yi − yj)
)

where Z =
∑

k 6=l(1 + ||yk − yl ||2)−1 so qijZ = (1 + ||yi − yj ||2)−1

Problem: Fattraction can be done in O(uN) but naive of computation of
Frepulsion is O(N2).
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Barnets-Hut Approximation for low-dimensional repulsion
gradient

Solution:

construct a quadtree(2d) for the current embedding.

Traverse the quadtree using DFS.

At every node, decide whether the corresponding cell can be used as a
”summary” for the contribution to Frepulsion of all points in that cell.

Replace −q2ijZ (yi − yj) with −Ncellq
2
i ,cellZ (yi − ycell).

Z and qijZ are evaluated along the way so we can compute

Frepulsion =
q2ijZ

2

Z in ∼ O(NlogN).
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Illustration of BH-Approximation

The condition was proposed by Barnes and Hut(1986), where rcell
represents the length of the diagonal of the cell under consideration and θ
is a threshold that trades off speed and accuracy (higher values of θ lead
to faster but coarser approximations). Note that when θ = 0, all pairwise
interactions are computed(equivalent to naive t-SNE).
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Experiment Part1
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Experiment Part2
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Further speedup

Limitation: O(N logN) is still not fast enough when the dataset is very,
very large (e.g. some datasets in biology have ∼ 1, 000, 000, 000 data
points).
Efficient Algorithms for t-distributed Stochastic Neighborhood Embedding.
Linderman et al. arxiv2017.
Solution: Further approximation to achieve O(N).
Summary: Use ANNOY to search for nearest neighbors for high dimension
similarity approximation and use interpolation-based methods to
approximate low dimension similarity.
Results: more than 10x speedup on 1D and 2D visualization tasks.
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A step towards theoretical guarantee for t-SNE

”Clustering with t-SNE, provably.” George C. Linderman, Stefan
Steinerberger. arxiv 2017.
Contribution:
At the high level, this paper shows that points in the same cluster move
towards each other.
Limitation:
The result is insufficient to establish that t-SNE succeeds in finding a full
visualization as it does not rule out multiple clusters merging into each
other.
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First Theoretical Guarantee for t-SNE

”An Analysis of the t-SNE Algorithm for Data Visualization” Sanjeev
Arora, Wei Hu, Pravesh K. Kothari. COLT 2018
Contribution:
First provable guarantees on t-SNE for computing visualization of
clusterable data. The proof is built on results from Linderman’s paper.
Proof Technique:
They obtained an update rule for the centroids of the embeddings of all
underlying clusters. They showed that the distance between distinct
centroids remains lower-bounded whenever the data is γ-spherical and
γ-well-separated. Combined with the shrinkage result for points in the
same cluster, this implies that t-SNE outputs a full visualization of the
data.
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Preliminary

A distribution D with density function f on Rd is said to be log-concave if
log(f ) is a concave function. Example: Gaussian, Uniform on any convex
set.
D is said to be isotropic if its covariance is I.
A mixture of k log-concave distributions is described by k positive mixing
weights w1, ...,wk , (

∑k
l=1 wl = 1) and k log-concave distribution

D1, ...,Dk in Rd . To sample a point from this model, we pick cluster l
with probability wl and draw x from Dl .
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Formalizing Visualization

Given a collection of points X = {x1, ..., xn} ⊂ Rd and there exists a
”ground-truth” clustering described by a partition C1, ...,Ck of [n] into k
clusters. A visualization is a 2-dimensional embedding
Y = {y1, ..., yn} ⊆ R2 of X, where each xi ∈ X is mapped to the
corresponding yi ∈ Y.
Intuitively, a cluster Cl in the original data is visualized if the
corresponding points in the 2-dimensional embedding Y are well-separated
from all the rest.
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Formalizing Visualization

Definition 1.1 (Visible Cluster)

Let Y be a 2-dimensional embedding of a dataset X with ground-truth
clustering C1, ...,Ck . Given ε ≥ 0, a cluster Cl in X is said to be
(1− ε)-visible in Y if there exist P,Perr ⊆ [n] such that:
1.|(P\Cl) ∪ (Cl\P)| ≤ ε · |Cl | i.e. the number of False Positive points and
False Negative points are relatively small compared with the size of the
ground-truth cluster.
2.for every i , i ′ ∈ P and j ∈ [n]\(P ∪ Perr), ||yi − yi ′ || ≤ 1

2 ||yi − yj || i.e.
except some mistakenly embedded points, other clusters are far away from
the current clusters.
In such a case, we say that P(1− ε)-visualize Ci in Y.
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Formalizing Visualization

Definition 1.2 (Visualization)

Let Y be a 2-dimensional embedding of a dataset X with ground-truth
clustering C1, ...,Ck . Given ε ≥ 0, we say that Y is a (1− ε)-visualization
of X if there exists a partition P1, ...,Pk ,Perr of [n] such that:
(i) For each i ∈ [k], Pi (1− ε)-visualizes Ci in Y.
(ii) |Perr| ≤ εn i.e. the proportion of mistakenly embedded points must be
small.
When ε = 0, we call Y a full visualization of X.
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Definition of Well-separated and Spherical

Definition 1.4 (Well-separated, spherical data)

Let X = {x1, ..., xn} ⊂ Rd be clusterable data with C1, ...,Ck defining the
individual clusters such that for each l ∈ [k], |Cl | ≥ 0.1(n/k). We say that
X is γ-spherical and γ-well-separated if for some b1, ..., bk > 0, we have:
1.γ-Spherical: For any l ∈ [k] and i , j ∈ Cl(i 6= j), we have
||xi − xj ||2 ≥ bl

1+γ , and for i ∈ Cl we have

|{j ∈ Cl\{i} : ||xi − xj ||2 ≤ bl}| ≥ 0.51|Cl |i.e. for any point, points from
the same cluster are not too close with it and at least half of them are not
too far away.
2.γ-Well-separated: For any l , l ′ ∈ [k](l 6= l ′), i ∈ Cl and k ∈ C ′l , we have
||xi − xj ||2 ≥ (1 + γ log n) max{bl , bl ′}i.e. for any point, points from other
clusters are far away.
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Main Result

Theorem 3.1

Let X = {x1, ..., xn} ⊂ Rd be a γ-spherical and γ-well-separated
clusterable data with C1, ...,Ck defining k individual clusters of size at
least 0.1(n/k), where k << n1/5. Choose
τ2i = γ

4 ·minj∈[n]\{i} ||xi − xj ||2(∀i ∈ [n]), step size h = 1, and any early
exaggeration coefficient α satisfying k2

√
n log n << α << n.

Let Y(T ) be the output of t-SNE after T = Θ(n log nα ) iterations on input
X with the above parameters. Then, with probability at least 0.99 over the
choice of the initialization, Y(T ) is a full visualization of X.

As γ becomes smaller, t-SNE requires more separations among points in
the same cluster but less separation between individual clusters in X in
order to succeed in finding a full visualization of X.
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Main Result

Corollary 3.2

Let X = {x1, ..., xn} be generated i.i.d. from a mixture of k Gaussians
N(µi , I) whose means µ1, ..., µk satisfy ||µl − µl ′ || = Ω̃(d1/4)(d is the
dimension of the embedded space) for any l 6= l ′.
Let Y be the output of the t-SNE algorithm with early exaggeration when
run on input X with parameters from Theorem 3.1. Then with high
probability over the draw of X and the choice of the random initialization,
Y is a full visualization of X.
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Proof Road-map
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Recall: h is the step size and α is the early exaggeration coefficient.

Remarks: For any point, (i)most points from the same cluster are not far
away.(ii)All points from the same clusters cannot be too close to it.(iii)All
points from the same clusters are far away from it. (iv) for math in
Lemma3.6 to work out.
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Proof of Theorem 3.1

Proof.

Lemma 3.3 identifies sufficient conditions on the pairwise affinities pij ’s
that imply that t-SNE outputs a full visualization, and Lemma3.4 shows
that pi ,j ’s computed for γ-spherical, γ-well-separated data satisfy the
requirements in Lemma 3.3. Therefore, combining Lemma3.3 and 3.4
gives Theorem 3.1.
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Lemmas needed for Lemma3.3
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Proof of Lemma3.3

Using Lemmas3.5 and 3.6, we know that after T = Θ(
log 1

ε
δη )

iterations, for any i , j ∈ [n] we have:

if i ∼ j , then ||y (T )
i − y

(T )
j || ≤ Diam({y (t)l : l ∈ Cπ(i)}) = O( ε

δη )

if i 6∼ j , then

||y (T )
i − y

(T )
j || ≥ ||µ(T )

π(i) − µ
(T )
π(j)|| − ||y

(T )
i − µ(T )

π(i)|| − ||y
(T )
j − µ(T )

π(j)||

≥ ||µ(T )
π(i) − µ

(T )
π(j)|| − Diam({y (t)l : l ∈ Cπ(i)})

− Diam({y (t)l : l ∈ Cπ(j)})

≥ Ω(
1

k2
√
n

)− O(
ε

δη
)− O(

ε

δη
)

= Ω(
1

k2
√
n

)

>> O(
ε

δη
)
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Recall Lemma3.6
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Lemmas needed for Lemma3.6

Random initialization ensures that the cluster centroids are initially
well-separated with high probability.

The centroid of each cluster will move no more than ε in each of the first
0.01
ε iterations.
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Proof of Lemma3.6

By condition (iv) in Lemma3.3 (
ε log 1

ε
δη << 1

k2
√
n

), We have

O(
log 1

ε
δη ) << 1

k2
√
nε
< 0.01

ε . Hence we can apply Lemma3.9 for all t ≤ T .

Lemma3.7 says that the initial distance µ
(0)
l and µ

(0)
l ′ is at least Ω( 1

k2
√
n

)

with high probability.
Lemma3.9 says that after each iteration every centroid moves by at most ε
so the distance between any two centroids changes by at most 2ε.
We know that after T rounds, with high probability, we have

||µ(T )
l − µ(T )

l ′ || ≥ Ω(
1

k2
√
n

)− T · 2ε

= Ω(
1

k2
√
n

)− O(
ε log 1

ε

δη
)

= Ω(
1

k2
√
n

)

, where the last step is due to condition (iv) in Lemma3.6.
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Recall Lemma3.7

It is suffices to prove that |(µl)1 − (µl ′)1| = Ω( 1
k2
√
n

) for all l 6= l ′.
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Lemma needed for Lemma3.7

Remark: This is similar to Central Limit Theorem. It says that the CDF of
the average of i.i.d random variables is close to the standard normal’s CDF.
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Proof of Lemma3.7 Part1

Consider a fixed l ∈ [k]. Note that (yi )1’s i.i.d. with uniform distribution
over [−0.01, 0.01], which clearly has zero mean and finite second and third
absolute moments.
Since (µl)1 = 1

|Cl |
∑

i∈Cl
(yi )1, using the Berry-Esseen theorem we know

that
|F (x)− φ(x)| ≤ O(1/

√
|Cl |)

where F is the CDF of
(µl )1
√
|Cl |

σ (σ is the standard deviation of the
uniform distribution over [−0.01, 0.01]), and φ is the CDF of N(0, 1).
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Proof of Lemma3.7 Part2

It follows that for any fixed a ∈ R and b > 0, we have:

Pr
[
|(µ)1 − a| ≤ b

k2
√
|Cl |

]
= Pr

[∣∣∣(µ)1
√
|Cl |

σ
−

a
√
|Cl |
σ

∣∣∣ ≤ b

k2σ

]
= F (

α
√
|Cl |+ b/k2

σ
)− F (

α
√
|Cl | − b/k2

σ
)

≤ Φ(
α
√
|Cl |+ b/k2

σ
)− Φ(

α
√
|Cl | − b/k2

σ
)

+ O(
1√
|Cl |

)

=

∫ α
√
|Cl |+b/k2

σ

α
√
|Cl |−b/k2

σ

1√
2π

e
−x2

2 dx + O(
√
k/n)

Remark: The last equality is by the definition of CDF for standard normal
distribution and the assumption that |Cl | ≥ 0.1 n

k .
Ziyuan Zhong (Columbia University) t-SNE July 4, 2018 58 / 72



Proof of Lemma3.7 Part3

≤
∫ α
√
|Cl |+b/k2

σ

α
√
|Cl |−b/k2

σ

1√
2π

dx + O(
√

k/n)

=
1√
2π

2b

k2σ
+ O(

√
k/n)

From k << n1/5 we have
√

k/n << 1/k2. Therefore, letting b be a
sufficiently small constant, for any a ∈ R, we can ensure

Pr
[
|(µl)1 − a| ≤ b

k2
√
|Cl |

]
≤ 0.01

k2
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Proof of Lemma3.7 Part4

For any l ′ 6= l , because (µl)1 and (µl ′)1 are independent, we can let
a = (µl ′)1,

Pr
[
|(ul)1 − |(ul ′)1| ≤

b

k2
√
|Cl |

]
≤ 0.01

k2

The above inequality holds for any l , l ′ ∈ [k](l 6= l ′). Taking a union
bound over all l and l’, we know that with probability at least 0.99 we have
|(µl)1 − (µl ′)1 ≥ b

k2
√
|Cl |

= Ω( 1
k2
√
n

) for all l , l ′ ∈ [k](l 6= l ′)

simultaneously(Recall |Cl | ≥ 0.1(n/k)).
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Claim needed for Lemma3.9

where
ε
(t)
i := αh

∑
j 6∼ ipijq

(t)
ij Z (t)(y

(t)
j − y

(t)
i )− h

∑
j 6=i (q

(t)
ij )2Z (t)(y

(t)
j − y

(t)
i )
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Proof of Lemma3.9 Part1

Taking the average of y
(t+1)
i ∀ i ∈ Cl , we obtain:

1

|Cl |
∑
i∈Cl

y
(t+1)
i =

1

|Cl |
∑
i∈Cl

y
(t)
i +

h

Cl

∑
i∈Cl

∑
j 6=i

(αpij − q
(t)
ij )q

(t)
ij Z (t)(y

(t)
j − y

(t)
i )

=
1

|Cl |
∑
i∈Cl

y
(t)
i

+
h

Cl

∑
i∈Cl

∑
j∈Cl ,j 6=i

(αpij − q
(t)
ij )q

(t)
ij Z (t)(y

(t)
j − y

(t)
i )

+
h

Cl

∑
i∈Cl

∑
j 6∈Cl

(αpij − q
(t)
ij )q

(t)
ij Z (t)(y

(t)
j − y

(t)
i )

=
1

|Cl |
∑
i∈Cl

y
(t)
i +

h

Cl

∑
i∈Cl

∑
j 6∈Cl

(αpij − q
(t)
ij )q

(t)
ij Z (t)(y

(t)
j − y

(t)
i )
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Proof of Lemma3.9 Part2

Thus we have:

||µt+1
l − µtl || = || h

Cl

∑
i∈Cl

∑
j 6∈Cl

(αpij − qtij)q
(t)
ij Z (t)(y

(t)
j − y

(t)
i )||

≤ h

|Cl |
∑
i∈Cl

∑
j 6∈Cl

(αpij + q
(t)
ij q

(t)
ij Z (t)||y (t)j − y

(t)
i ||)

Since t ≤ 0.01
ε and αh

∑
j 6∈Cl

pij + h
n ≤ ε for all i ∈ Cl (condition(iii) in

Lemma 3.3), we can apply Claim 3.10 and get:

||µt+1
l − µtl || ≤

h

Cl

∑
i∈Cl

∑
j 6∈Cl

(αpij +
1

0.9n(n − 1)
) · 1 · 0.06

≤ h

Cl

∑
i∈Cl

(αh
∑
j 6∈Cl

pij +
h

0.9n
) · 0.06

≤ 0.06

|Cl |
∑
i∈Cl

ε

0.9
≤ ε
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Results on mixture of Log-Concave Distributions

The results on mixture of isotropic Gaussian or isotropic log-concave
distributions can be generalized to mixture of (non-isotropic) log-concave
distributions.
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Results on partial visualization via t-SNE
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Limitations

k << n1/5 can be potentially improved.

It has implicit assumption that k2
√
n > 100
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Generalize t-SNE

Stochastic Neighbor Embedding under f-divergences. Verma et al.
Preprint.
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Results
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Results
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Results
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Summary

SNE → tSNE(crowding problem)

t-SNE → BH-tSNE(O(N2)→ O(N logN))

BH-SNE → FIt-tSNE(O(N logN)→ O(N))

t-SNE guarantee(clusters shrink)

More t-SNE guarantee(centroids keep well-separated ⇒ for mixtures
of well-separated log-concave distributions → full-visualization and for
general settings → partial-visualization).

t-SNE with KL is for dataset with cluster-like structure. RKL is for
dataset with manifold-like structure.
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Future Work

k << n1/5 can potentially be improved.

improve the visualization of t-SNE using the insight gained from its
theoretical guarantee.

automatically adjust the early/late exaggeration parameter α and
choose the appropriate perplexity number.

modify t-SNE for general dimensionality reduction problems(not just
for visualization).

Theoretical guarantee for t-SNE with RKL on manifold data.

Ziyuan Zhong (Columbia University) t-SNE July 4, 2018 72 / 72


