COMS 4995: Unsupervised Learning (Summer’18) Jun 19, 2018
Lecture 9 — Non-Linear Dimensionality Reduction

Instructor: Nakul Verma Scribes: Ziyuan Zhong

This lecture introduces more manifold learning algorithms including Isomap, LLE, LE, MVU
and briefly mentions an analog of JL-lemma in the manifold setting.

1 Non-Linear Dimensionality Reduction

Idea: underlying data follows some kind of manifold.
Agenda for today:

e Isomap (Isometric mapping)

e LLE (Locally Linear Embedding)

LE (Laplacian Eigenmaps)
e MVU (Maximum Variance Unfolding)

e Some open problems and approaches to solve these problems

1.1 Isomap
Goal

Preserve geodesic distances globally. Applications: computer vision.

Notation

Input data is X € RP*". Output data Y € R¥™ where d < D.

How?

e Approximate the geodesic distances by computing the shortest path on a k-nearest neighbor
(k-NN) graph on the input data (note that the graph needs to be connected).

e Construct a “distance” matrix DELGX),L.

e Run (classical/metric) MDS (multidimensional scaling) to find the corresponding embedding
. G
(miny ¥i; v = vyl = D).



Figure 1: Illustration of geodesic distance

Observations

e How well can k-NN graph approximate the geodesics.

— Under suitable distributions over the underlying manifold, as » — 0, n — oo, nr — oo,
can show the shortest path — geodesic path.

e When can geodesic paths become Euclidean paths?

— Underlying manifold needs to be (globally) isometric some R"; that is, it has no intrin-
sic curvature. For example, a spherical cap (a hemisphere) cannot be embedded into
Euclidean space without distorting distances (imagine trying to flatten the northern
hemisphere of a globe without stretching/ripping the map).

— Parametrization space should be convex. For example, if there is a missing/hole at
the center of a manifold, an embedding will ‘fill in’ the space and shorten the distance
between two points that were originally across each other in the original manifold.

1.2 LLE(Locally Linear Embedding)

Goal

Find a low-dimensional embedding that preserves “local geometry”. But what is “local geometry”?

Answer: If a manifold is locally linear, one can define “local geometry” as how a specific data
point is linearly related to its neighbors. Then we can find a low-dimensional embedding Y of
the given data X such that the locally linear relationships between neighbors is approximately
preserved.

How?
Input: Input data X € RP*™ number of neighbors k, embedding dimension d.
e Use the k-NN graph to find/determine the nearest neighbors for each data point z;.
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Details

Step 2

n

: _ o 12

ml;n‘I’(Y) = leyz Z Wijyil|
=1 JEN(3)

st. YYT =171

Consider the i-th data point. ®(Ws) = || — > 2;ene) Wijzj||2.
We use the following notations:

D x k matrix:

k x 1 vector:

k x 1 vector:

Ni= [z @ oo 5]

So we can write the two parts as the following forms:

and

It follows that:
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The optimization now becomes:
n‘r/l[}zn WIGW; where G = (X;eT — N)T(XieT — N;)
s.t. eTWi =1
We relax the constraint using Lagrange and take the derivative of the cost function as the following:

L(Wi, A) = WIGW; — A" W; - 1)

dL
dWi = QGWZ' —Xe=0
2Gw; = Ae

If X is known, W; = Gilge.

We can pick any A # 0 and solve for W;. W' = ZW‘}V -
i Vi

Step 3

We use the following notations:
d x n matrix

1 the i-th entry0

So we have
Yi = yIz
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The optimization problem becomes:
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It follows that:
n%;ntr(YMYT)
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where M = (I —w)(I — W)T.
We can solve it by taking the eigenvalue decomposition takes 2,3, ...,d + 1 eigenvectors of M.

Observations
e does not preserve the scale in the low-dimensional parametrization.
e works quite poorly in practice.

o (I —W)(I —W)T is kind of like a Laplacian of the underlying graph.

LE(Laplacian Eigenmaps)
Goal

Find a Low-Dimensional embedding of the original input data that preserves ”local geometry”
in terms of maximally preserving similarity between points. Question: How do we measure
similarity?

Answer: Can estimate local distances define similarity proportional to the distance.

How?
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Observations

If points x; and x; are far apart, W;; is close to 0 so y; and y; can be mapped anywhere. If x; and
x; are close, then w;; is large so it encourages y; and y; to be mapped close. In this sense, it is
local neighborhood preserved.

Discussion

We can put most linear dimensionality reduction algorithms in a unified framework. Essentially,
they are all special cases of Kernel-PCA.

e PCA: K = XT X (Linear Kernel).

Classical-MDS: K = _TIH DPFuclidean [T where H is the centering matrix.

Isomap: K = —71 [ DGeodesic fy

e LLE: once W is learned, K = M~! or K = (A\paed — M), where M = (I — W)(I — W)T.
(Difference is in the scale of coordinate of the embedding. K = A/2V).

e LE: K = L' or K = (ApazI — L) and the result is also off in the scale of coordinate of the
embedding as LLE.

MVU (Maximum Variance Unfolding) (aka. Semi-Definite Embedding(SDE))
Goal

Find a low-dimensional embedding of the given data which preserves "local geometry” in terms of
finding the best kernel.
Define Local Geometry in terms of distance between data points in a local neighborhood. Denote
D x n matrix

X = [$1 To ... xn]

and denote d X n matrix
Y=y yo - nl.

Want: If j is a neighbor of ¢,
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e K is positive semi-definite.
° Zij K;; = 0.
The optimization problem can be formulated as the following:
tr(K
max r(K)
st. Ky + Kjj — 2K;j — ||#; — z;||* if i and j are neighbors.
st. Y Kij=0
1]
st. K>0

This is a convex optimization and can find a globally optimal solution.

More discussions

Suppose we want to preserve geodesic distance approximately.

Theorem 1 (JL-manifold). Say n-dimensional manifold M in RP. We know that the volume
of the manifold, Vol(M) =V and global bound on curvature K(M) = k. 3f : RP — R? where
d = O(Zlog(Vk)). Vp,q € M and G(p,q) is the geodesic path between p,q. Let L(-) be the "length”

function. Vp,q,n,
| _ o < LG(fp). f(9))
- L(G(p9)

f is linear (can use random projection matrix).

<1l+e
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