COMS 4995: Unsupervised Learning (Summer'18)

Jun 19, 2018

Lecture 9 – Non-Linear Dimensionality Reduction

Instructor: Nakul Verma

Scribes: Ziyuan Zhong

This lecture introduces more manifold learning algorithms including Isomap, LLE, LE, MVU and briefly mentions an analog of JL-lemma in the manifold setting.

1 Non-Linear Dimensionality Reduction

Idea: underlying data follows some kind of manifold. Agenda for today:

- Isomap (Isometric mapping)
- LLE (Locally Linear Embedding)
- LE (Laplacian Eigenmaps)
- MVU (Maximum Variance Unfolding)
- Some open problems and approaches to solve these problems

1.1 Isomap

Goal

Preserve geodesic distances globally. Applications: computer vision.

Notation

Input data is $X \in \mathbb{R}^{D \times n}$. Output data $Y \in \mathbb{R}^{d \times n}$ where $d \ll D$.

How?

- Approximate the geodesic distances by computing the shortest path on a k-nearest neighbor (k-NN) graph on the input data (note that the graph needs to be connected).
- Construct a "distance" matrix $D_{n \times n}^{(G)}$.
- Run (classical/metric) MDS (multidimensional scaling) to find the corresponding embedding $(\min_Y \sum_{i < j} ||y_i y_j|| D_{ij}^{(G)}).$

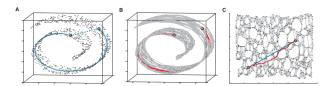


Figure 1: Illustration of geodesic distance

Observations

- How well can k-NN graph approximate the geodesics.
 - Under suitable distributions over the underlying manifold, as $r \to 0$, $n \to \infty$, $nr \to \infty$, can show the shortest path \to geodesic path.
- When can geodesic paths become Euclidean paths?
 - Underlying manifold needs to be (globally) isometric some \mathbb{R}^n ; that is, it has no intrinsic curvature. For example, a spherical cap (a hemisphere) cannot be embedded into Euclidean space without distorting distances (imagine trying to flatten the northern hemisphere of a globe without stretching/ripping the map).
 - Parametrization space should be convex. For example, if there is a missing/hole at the center of a manifold, an embedding will 'fill in' the space and shorten the distance between two points that were originally across each other in the original manifold.

1.2 LLE(Locally Linear Embedding)

Goal

Find a low-dimensional embedding that preserves "local geometry". But what is "local geometry"?

Answer: If a manifold is locally linear, one can define "local geometry" as how a specific data point is linearly related to its neighbors. Then we can find a low-dimensional embedding Y of the given data X such that the locally linear relationships between neighbors is approximately preserved.

How?

Input: Input data $X \in \mathbb{R}^{D \times n}$, number of neighbors k, embedding dimension d.

• Use the k-NN graph to find/determine the nearest neighbors for each data point x_i .

•

$$\min_{W} \Phi(W) = \sum_{i=1}^{n} \left\| x_i - \sum_{j \in N(i)} W_{ij} x_j \right\|^2$$

s.t. $\forall i \ \sum_{j} W_{ij} = 1.$
 $w_{ij} = 0$ where $j \notin N(i)$

$$\min_{Y} \Psi(Y) = \sum_{i=1}^{n} ||y_i - \sum_{j \in N(i)} W_{ij} y_i||^2$$

s.t. $YY^T = I$

Details

٠

Step 2

Consider the *i*-th data point. $\Phi(W_{i:}) = ||x_i - \sum_{j \in N(i)} W_{ij}x_j||^2$. We use the following notations: $D \times k$ matrix:

$$N_i = \begin{bmatrix} x_{j_1} & x_{j_2} & \dots & x_{j_k} \end{bmatrix}$$

 $k \times 1$ vector:

$$W_i = \begin{bmatrix} W_{ij_1} \\ W_{ij_2} \\ \vdots \\ W_{ij_k} \end{bmatrix}$$

 $e = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$

 $k \times 1$ vector:

$$\begin{bmatrix} x_i & x_i & \dots & x_i \end{bmatrix} = x_i e^T$$
$$\Rightarrow x_i = x_i e^T w_i \text{ where } \sum_j w_{ij} = 1$$

and

$$\sum_{j \in N(i)} W_{ij} x_j = N_i W_i$$

It follows that:

$$\min_{W_i} \Phi(W_{i:}) = \min_{W_i} ||X_i e^T W_i - N_i W_i||^2$$

=
$$\min_{W_i} ||(X_i e^T - N_i) W_i||^2$$

=
$$\min_{W_i} W_i^T (X_i e^T - N_i)^T (X_i e^T - N_i) W_i$$

The optimization now becomes:

$$\min_{W_i} W_i^T G W_i \text{ where } G = (X_i e^T - N_i)^T (X_i e^T - N_i)$$

s.t. $e^T W_i = 1$

We relax the constraint using Lagrange and take the derivative of the cost function as the following:

$$L(W_i, \lambda) = W_i^T G W_i - \lambda (e^T W_i - 1)$$
$$\frac{dL}{dW_i} = 2G W_i - \lambda e = 0$$
$$2G w_i = \lambda e$$

If λ is known, $W_i = G^{-1} \frac{\lambda}{2} e$. We can pick any $\lambda \neq 0$ and solve for W_i . $W_i^* = \frac{W_i}{\sum_j W_{ij}}$.

Step 3

We use the following notations: $d\times n$ matrix

$$Y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}$$
$$W = \begin{bmatrix} \dots & \dots & \dots \\ \dots & W_{ij} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$
$$W_{:i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ W_{j_1} \\ 0 \\ \vdots \\ 0 \\ W_{j_2} \\ 0 \\ \vdots \end{bmatrix}$$
$$I_{:i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \text{ the } i\text{-th entry0} \\ \vdots \end{bmatrix}$$

So we have

 $y_i = yI_{:i}$

$$\sum_{j \in N(i)} W_{:j} y_i = Y W_{:i}$$

The optimization problem becomes:

$$\begin{split} \min_{Y} \sum_{i=1}^{n} ||YI_{:i} - YW_{:i}||^2 \\ \min_{Y} ||YI - YW||_F^2 \\ \min_{Y} ||Y(I - W)||_F^2 \\ \min_{Y} tr((I - W)^T Y^T Y(I - W)) \\ \min_{Y} tr(Y(I - w)(I - W)^T Y^T) \end{split}$$

It follows that:

$$\min_{Y} \operatorname{tr}(YMY^{T})$$

s.t. $Y^{T}Y = I$

where $M = (I - w)(I - W)^T$. We can solve it by taking the eigenvalue decomposition takes 2, 3, ..., d + 1 eigenvectors of M.

Observations

- does not preserve the scale in the low-dimensional parametrization.
- works quite poorly in practice.
- $(I W)(I W)^T$ is kind of like a Laplacian of the underlying graph.

LE(Laplacian Eigenmaps)

Goal

Find a Low-Dimensional embedding of the original input data that preserves "local geometry" in terms of maximally preserving similarity between points. **Question**: How do we measure similarity?

Answer: Can estimate local distances define similarity proportional to the distance.

How?

• Define $W_{ij} = e^{-||x_i - x_j||^2} 2\sigma^2$.

$$\min_{Y} \sum_{i,j} W_{ij} ||y_i - y_j||^2$$

s.t. $Y^T Y = I$
min tr $(Y^T L Y)$

 \Rightarrow

$$\lim_{Y} V(I - LI)$$

s.t. $Y^T Y = I$

Observations

If points x_i and x_j are far apart, W_{ij} is close to 0 so y_i and y_j can be mapped anywhere. If x_i and x_j are close, then w_{ij} is large so it encourages y_i and y_j to be mapped close. In this sense, it is local neighborhood preserved.

Discussion

We can put most linear dimensionality reduction algorithms in a unified framework. Essentially, they are all special cases of Kernel-PCA.

- PCA: $K = X^T X$ (Linear Kernel).
- Classical-MDS: $K = \frac{-1}{2} H D^{Euclidean} H$ where H is the centering matrix.
- Isomap: $K = \frac{-1}{2} H D^{Geodesic} H$.
- LLE: once W is learned, $K = M^{-1}$ or $K = (\lambda_{max}I M)$, where $M = (I W)(I W)^T$. (Difference is in the scale of coordinate of the embedding. $K = \wedge^{1/2} V$).
- LE: $K = L^{-1}$ or $K = (\lambda_{max}I L)$ and the result is also off in the scale of coordinate of the embedding as LLE.

MVU(Maximum Variance Unfolding) (aka. Semi-Definite Embedding(SDE))

Goal

Find a low-dimensional embedding of the given data which preserves "local geometry" in terms of finding the best kernel.

Define Local Geometry in terms of distance between data points in a local neighborhood. Denote $D\times n$ matrix

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$$

and denote $d \times n$ matrix

 $Y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}.$

Want: If j is a neighbor of i,

$$||x_i - x_j||^2 = ||\phi(x_i) - \phi(x_j)||^2$$

= $K_{ii} + K_{jj} - 2K_{ij}$

• *K* is positive semi-definite.

• $\sum_{ij} K_{ij} = 0.$

The optimization problem can be formulated as the following:

$$\max_{K} \operatorname{tr}(K)$$

s.t. $K_{ii} + K_{jj} - 2K_{ij} - ||x_i - x_j||^2$ if *i* and *j* are neighbors.
s.t. $\sum_{ij} K_{ij} = 0$
s.t. $K \succeq 0$

This is a convex optimization and can find a globally optimal solution.

More discussions

Suppose we want to preserve geodesic distance approximately.

Theorem 1 (JL-manifold). Say n-dimensional manifold M in \mathbb{R}^D . We know that the volume of the manifold, Vol(M) = V and global bound on curvature K(M) = k. $\exists f : \mathbb{R}^D \to \mathbb{R}^d$ where $d = O(\frac{n}{\epsilon^2} \log(Vk))$. $\forall p, q \in M$ and G(p,q) is the geodesic path between p, q. Let $L(\cdot)$ be the "length" function. $\forall p, q, n$,

$$1-\epsilon \leq \frac{L(G(f(p), f(q)))}{L(G(p, q))} \leq 1+\epsilon$$

f is linear (can use random projection matrix).

References

- [1] Lawrence Cayton. Algorithms for manifold learning. http://www.cs.columbia.edu/~verma/classes/uml/ref/dim_redux_nldr_survey_ cayton.pdf
- [2] Nakul Verma. A note on random projections for preserving paths on a manifold. http://www.cs.columbia.edu/~verma/papers/rp_mfd.pdf