
COMS 4995: Unsupervised Learning (Summer’18) Jun 19, 2018

Lecture 9 – Non-Linear Dimensionality Reduction

Instructor: Nakul Verma Scribes: Ziyuan Zhong

This lecture introduces more manifold learning algorithms including Isomap, LLE, LE, MVU

and briefly mentions an analog of JL-lemma in the manifold setting.

1 Non-Linear Dimensionality Reduction

Idea: underlying data follows some kind of manifold.

Agenda for today:

• Isomap (Isometric mapping)

• LLE (Locally Linear Embedding)

• LE (Laplacian Eigenmaps)

• MVU (Maximum Variance Unfolding)

• Some open problems and approaches to solve these problems

1.1 Isomap

Goal

Preserve geodesic distances globally. Applications: computer vision.

Notation

Input data is X ∈ RD×n. Output data Y ∈ Rd×n where d� D.

How?

• Approximate the geodesic distances by computing the shortest path on a k-nearest neighbor

(k-NN) graph on the input data (note that the graph needs to be connected).

• Construct a “distance” matrix D
(G)
n×n.

• Run (classical/metric) MDS (multidimensional scaling) to find the corresponding embedding

(minY
∑

i<j ||yi − yj || −D
(G)
ij ).
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Figure 1: Illustration of geodesic distance

Observations

• How well can k-NN graph approximate the geodesics.

– Under suitable distributions over the underlying manifold, as r → 0, n → ∞, nr → ∞,

can show the shortest path → geodesic path.

• When can geodesic paths become Euclidean paths?

– Underlying manifold needs to be (globally) isometric some Rn; that is, it has no intrin-

sic curvature. For example, a spherical cap (a hemisphere) cannot be embedded into

Euclidean space without distorting distances (imagine trying to flatten the northern

hemisphere of a globe without stretching/ripping the map).

– Parametrization space should be convex. For example, if there is a missing/hole at

the center of a manifold, an embedding will ‘fill in’ the space and shorten the distance

between two points that were originally across each other in the original manifold.

1.2 LLE(Locally Linear Embedding)

Goal

Find a low-dimensional embedding that preserves “local geometry”. But what is “local geometry”?

Answer: If a manifold is locally linear, one can define “local geometry” as how a specific data

point is linearly related to its neighbors. Then we can find a low-dimensional embedding Y of

the given data X such that the locally linear relationships between neighbors is approximately

preserved.

How?

Input: Input data X ∈ RD×n, number of neighbors k, embedding dimension d.

• Use the k-NN graph to find/determine the nearest neighbors for each data point xi.

•

min
W

Φ(W ) =

n∑
i=1

∣∣∣∣∣∣∣∣xi − ∑
j∈N(i)

Wijxj

∣∣∣∣∣∣∣∣2
s.t. ∀i

∑
j

Wij = 1.

wij = 0 where j 6∈ N(i)
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•

min
Y

Ψ(Y ) =
n∑
i=1

||yi −
∑
j∈N(i)

Wijyi||2

s.t. Y Y T = I

Details

Step 2

Consider the i-th data point. Φ(Wi:) = ||xi −
∑

j∈N(i)Wijxj ||2.
We use the following notations:

D × k matrix:

Ni =
[
xj1 xj2 . . . xjk

]
k × 1 vector:

Wi =


Wij1

Wij2
...

Wijk


k × 1 vector:

e =


1

1
...

1


So we can write the two parts as the following forms:[

xi xi . . . xi
]

= xie
T

⇒ xi = xie
Twi where

∑
j

wij = 1

and ∑
j∈N(i)

Wijxj = NiWi

It follows that:

min
Wi

Φ(Wi:) = min
Wi

||Xie
TWi −NiWi||2

= min
Wi

||(Xie
T −Ni)Wi||2

= min
Wi

W T
i (Xie

T −Ni)
T (Xie

T −Ni)Wi
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The optimization now becomes:

min
Wi

W T
i GWi where G = (Xie

T −Ni)
T (Xie

T −Ni)

s.t. eTWi = 1

We relax the constraint using Lagrange and take the derivative of the cost function as the following:

L(Wi, λ) = W T
i GWi − λ(eTWi − 1)

dL

dWi
= 2GWi − λe = 0

2Gwi = λe

If λ is known, Wi = G−1 λ2 e.

We can pick any λ 6= 0 and solve for Wi. W
∗
i = Wi∑

j Wij
.

Step 3

We use the following notations:

d× n matrix

Y =
[
y1 y2 . . . yn

]
W =

. . . . . . . . .

. . . Wij . . .

. . . . . . . . .



W:i =



0
...

0

Wj1

0
...

0

Wj2

0
...



I:i =



0
...

0

1 the i-th entry0
...


So we have

yi = yI:i
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∑
j∈N(i)

W:jyi = YW:i

The optimization problem becomes:

min
Y

n∑
i=1

||Y I:i − YW:i||2

min
Y
||Y I − YW ||2F

min
Y
||Y (I −W )||2F

min
Y

tr((I −W )TY TY (I −W ))

min
Y

tr(Y (I − w)(I −W )TY T )

It follows that:

min
Y

tr(YMY T )

s.t. Y TY = I

where M = (I − w)(I −W )T .

We can solve it by taking the eigenvalue decomposition takes 2, 3, ..., d+ 1 eigenvectors of M .

Observations

• does not preserve the scale in the low-dimensional parametrization.

• works quite poorly in practice.

• (I −W )(I −W )T is kind of like a Laplacian of the underlying graph.

LE(Laplacian Eigenmaps)

Goal

Find a Low-Dimensional embedding of the original input data that preserves ”local geometry”

in terms of maximally preserving similarity between points. Question: How do we measure

similarity?

Answer: Can estimate local distances define similarity proportional to the distance.

How?

• Define Wij = e−||xi−xj ||
2
2σ2.
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•

min
Y

∑
i,j

Wij ||yi − yj ||2

s.t. Y TY = I

⇒

min
Y

tr(Y TLY )

s.t. Y TY = I

Observations

If points xi and xj are far apart, Wij is close to 0 so yi and yj can be mapped anywhere. If xi and

xj are close, then wij is large so it encourages yi and yj to be mapped close. In this sense, it is

local neighborhood preserved.

Discussion

We can put most linear dimensionality reduction algorithms in a unified framework. Essentially,

they are all special cases of Kernel-PCA.

• PCA: K = XTX(Linear Kernel).

• Classical-MDS: K = −1
2 HD

EuclideanH where H is the centering matrix.

• Isomap: K = −1
2 HD

GeodesicH.

• LLE: once W is learned, K = M−1 or K = (λmaxI −M), where M = (I −W )(I −W )T .

(Difference is in the scale of coordinate of the embedding. K = ∧1/2V ).

• LE: K = L−1 or K = (λmaxI − L) and the result is also off in the scale of coordinate of the

embedding as LLE.

MVU(Maximum Variance Unfolding) (aka. Semi-Definite Embedding(SDE))

Goal

Find a low-dimensional embedding of the given data which preserves ”local geometry” in terms of

finding the best kernel.

Define Local Geometry in terms of distance between data points in a local neighborhood. Denote

D × n matrix

X =
[
x1 x2 . . . xn

]
and denote d× n matrix

Y =
[
y1 y2 . . . yn

]
.

Want: If j is a neighbor of i,
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•

||xi − xj ||2 = ||φ(xi)− φ(xj)||2

= Kii +Kjj − 2Kij

.

• K is positive semi-definite.

•
∑

ijKij = 0.

The optimization problem can be formulated as the following:

max
K

tr(K)

s.t. Kii +Kjj − 2Kij − ||xi − xj ||2 if i and j are neighbors.

s.t.
∑
ij

Kij = 0

s.t. K � 0

This is a convex optimization and can find a globally optimal solution.

More discussions

Suppose we want to preserve geodesic distance approximately.

Theorem 1 (JL-manifold). Say n-dimensional manifold M in RD. We know that the volume

of the manifold, Vol(M) = V and global bound on curvature K(M) = k. ∃f : RD → Rd where

d = O( n
ε2

log(V k)). ∀p, q ∈M and G(p, q) is the geodesic path between p, q. Let L(·) be the ”length”

function. ∀p, q, n,

1− ε ≤ L(G(f(p), f(q)))

L(G(p, q))
≤ 1 + ε

f is linear (can use random projection matrix).
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