
COMS 4995: Unsupervised Learning (Summer’18) June 12, 2018

Lecture 7 – Linear Dimensionality Reduction

Instructor: Nakul Verma Scribes: Di Zhang

Overview: Distance Matrix Learning, Independent Component Analysis(Blind Source Separa-

tion ), Matrix Factorization and Manifold Embedding

1 Review for Last Lecture

Linear Dimensionality Reduction:

1.RP

2.PCA

3.LDA(supervised technique)

“maximizing” the distance between class means

“minimizing” the inter-cluster varience

4.MDS

Given: dist(Oi, Oj) = δij xi, xj ∈ RD s.t. ||xi − xj ||2
.
= δij

Goal: minS(x1, ..., xn) =
∑

i<j(Dij − δij)2
Question: If new data comes, do we need to do the optimization again or there is a simple way?

Answer: This is a question related to “out of simple” extension.

2 Distance Metric Learning

Given: xi, ..., xn ∈ RD ρ(xi, xj) = ||xi − xj ||2 = [
∑D

d=1(xid − xjd)1/2]1/2 = [(xi − xj)T I(xi − xj)]1/2
Output: Best Matrix L ∈ RK×D for representing the data(improve the classification)

One observation:

ρL(xi, xj) = ||Lxi − Lxj ||2 = [(xi − xj)TLTL(xi − xj)]1/2

Define M = LTL

“Supervision”: x1, ...xn ∈ RD; y1, ...yn ∈ {0, 1}
Idea: Find M s.t. distances belonging to same class small and distances belonging to different

classes large.

Define 1.“similar set” S = {(xi, xj)} s.t. yi = yj 2.“different set” D = {(xi, xj)} s.t. yi 6= yj
Professor came up an objective function:

minΨ(M) =
∑

(xi,xj)∈S

ρ2M (xi, xj)
1

|S|
− λ

∑
(xi,xj)∈D

ρ2M (xi, xj)
1

|D|
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The first term can be called “pull term ”, the second “push term”, λ is a hyper-parameter.

The classic approach is:

max
∑

(xi,xj)∈D

ρ2M (xi, xj)

s.t. ∑
(xi,xj)∈S

ρ2M (xi, xj) ≤ 1

M ≥ 0 [M ∈ PSD]

rank(M) ≤ k (“non− convex′′)

Note1: M ≥ 0 is “conic constrain”, it can be solved by “semi-definite program”, the basic idea is

pick up negative eigenvalue and make it to be 0. Figure 1 shows some basic idea about how to deal

with it.

Figure 1

Note2: Rank constraints are L0 − type and it is non-convex, the nearest convex constraints are

L1 − type i.e. trace constraints(tr(M)). Therefore, you can replace rank(M) ≤ k by tr(M) ≤ k.

However, if rank of L is critical, you have to work with rank(L), making this a Q2P2 problem.

3 Independent Component Analysis

Idea: “Maximize the non-gaussian of each dimension”

Example: Try to separate the conversation in a cocktail party using microphone.

Define D: number of microphone; K: number of conversation; T: sound dimension

Let X = M × S, where X ∈ RD×T is what you get from all the microphones, M ∈ RD×K is the
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conversation gained by the microphone. S ∈ RK×T is sound signal from K conversations.

Assumption: The assumption is based on CLT, i.e, linear combination of independent random

variables is going to be gaussian like. Therefore, X is more gaussian than S(S is independent from

each other and X will be more dependent).

Goal: Find WX=S which is less gaussian like.

Question: How to measure gaussian like?

Answer:1.Kurtosis Method 2. Negative Entropy Method 3. Minimize Mutual Information Method

3.1 Kurtosis Method

Define kurtosis for a distribution y, kertosis(y) := E[y4]− 3(E[y2])2.

Fact: g ∼ N(0, 1) E(g4) = 3

kertosis(y) = 0↔ gaussian

kertosis(y) < 0↔ subgaussian

kertosis(y) > 0↔ supgaussian

The objective function:

max(kurt(W TX))2

s.t.

var(W TX) = 1

Drawback: Not robust to outliers!

3.2 Negative Entropy Method

Reminder: Entropy H(y) := −
∑

p P [Y = y]logP [Y = y] = −
∫
x plogp dx

Observation:Guassian distribution has least information, i.e. has most entropy of all distribution

with the same variance.

The objective function:

max−H(W TX)

s.t.

V ar(W TX) = 1

3.3 Minimize Mutual Information Method

Goal:

min
∑
i<j

I(W T
i X;W T

j X)

4 Matrix Factorization

Example: Netflix Problem

Description: Suppose we have m users and n movies, each user rates the movies which he has seen.

Letrij be the rating assigned by user i to movies j. Since each user can only rate few movies, The

matrix would be super-sparse.
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Idea: we assume there are k factors which have vital influence on users and movies, these factors

maybe include horror, romance, science, etc.

Define ui ∈ Rk,mj ∈ Rk, then U ∈ Rm×k,M ∈ Rk×n

Objective function:

min
U,M

∑
rij∈observed

(rij − uimj)
2

Another way:

min
U,M
||R− UM ||2F

5 Manifold Embedding

Definitions:

1. n-dim manifolds: An object ⊆ RD which locally looks like(homeomorphic) Rn

2. Homeomorphic: continual f and f−1 := homeomorphic

3. Diffeomorphic: differentiable f and f−1 := diffeomorphic

Manifold hypothesis: X ⊆ RD measurement are non-linear smoothly related. X is sampled from

an underlying(low-dimensional) manifold(perhaps with some noise).

Explain: There are few underlying factors(n independent) which “control” your observations and

you make D � n different measurement s.t. xi ∈ RD.

Figure 2 gives some intuition from R2 to R3.

Figure 2

Goal of manifold embedding: find f−1 or at least find f−1(xi) ∀xi ∈ X
Figure 3 gives some intuition from R2 to R1.
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Figure 3

Approach: Isometric mapping

1. Create K-NN graph to approximate geodesic distance.

ρ(xi, xj) = geo(xi, xj)

2. Run MDS on the geodesic distance.

minS(y1, ..., yn) =
∑
i<j

(D(yi, yj)− δij)2

Note: Other approaches such as t-SNE, LLE, Max var unfolding will be discussed in the next few

lecture.
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