
COMS 4995: Unsupervised Learning (Summer ‘18) June 7, 2018

Lecture 6 – Proof for JL Lemma and Linear Dimensionality Reduction

Instructor: Nakul Verma Scribes: Ziyuan Zhong, Kirsten Blancato

This lecture gives a proof of JL-lemma and introduces linear dimensionality reduction techniques

including: RP (Random Projection), PCA (Principal Component Analysis), LDA (Linear Discrim-

inant Analysis) and MDS (Multidimensional scaling).

1 JL-Lemma

1.1 Recall

Theorem 1 (Johnson-Lidenstrauss “flattening” lemma, 1984). Pick any 0 < ε < 1
2 . Then for any

integer n, let d > d 4
ε2

(2 lnn+ ln 3)e, that is, d > Ω( lnn
ε2

). Then for any set V ⊂ RD, s.t. |V | = n,

there exists a linear map f : RD → Rd s.t. ∀u, v ∈ V ,

(1− ε)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ε)||u− v||22

Remark 2. Since
√

1− ε ≤ 1− ε and 1 + ε ≤
√

1 + ε, the embedding is thus a D-embedding where

the distortion D = 1+ε
1−ε ≤ 1 + 5ε because 1

1−ε ≤ 1 + 2ε ∀0 < ε < 1
2 . The above holds true for any

random d-dim subspace (in D-dim) with high probability (minor global scaling).

Lemma 3 (Concentration of Measure). Pick any 0 < ε < 1
2 , fix any unit vector w ∈ RD(i.e. ||w|| =

1), let φ : RD → Rd, d < D, be a random subspace map. Then,

Pr
φ

[
||φ(w)||2 < (1− ε) d

D
or ||φ(w)||2 > (1 + ε)

d

D

]
≤ 3e−dε

2/4.

For JL, we’ll want to project to a random subspace, then scale by
√
D/d.

1.2 Proof of JL-Lemma

Proof. Because φ is linear, there is a corresponding matrix P ∈ Rd×D s.t. φ(w) = Pw.

f :=
√

D
d φ, so f(w) =

√
D
d Pw. For any distinct u, v ∈ V ,
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Pr

[
∃u, v ∈ V s.t. ||f(u)− f(v)||2 < (1− ε)||u− v||2 or ||f(u)− f(v)||2 > (1 + ε)||u− v||2

]
≤

∑
(u,v)∈V×V

unordered pairs

Pr
φ

[
||f(u)− f(v)||2 < (1− ε)||u− v||2

or ||f(u)− f(v)||2 > (1 + ε)||u− v||2
]

=
∑

(u,v)∈V×V
unordered pairs

Pr
φ

[ ∣∣∣∣∣∣∣∣φ( u− v
||u− v||

)∣∣∣∣∣∣∣∣2 < (1− ε) d
D

or

∣∣∣∣∣∣∣∣φ( u− v
||u− v||

)∣∣∣∣∣∣∣∣2 > (1 + ε)
d

D

]
≤
(
n

2

)
3e−dε

2/4 < 1

where the first inequality is a union bound, and the last inequality holds if we choose d such that:

d >

⌈
4

ε2
(2 lnn+ ln 3)

⌉
.

The inner inequality follows from the linearity of f =
√

D
d φ, followed by an application of Lemma 3:

||f(u)− f(v)||2 < (1− ε)||u− v||2 ⇔

∣∣∣∣∣
∣∣∣∣∣
√
D

d
φ

(
u− v
||u− v||

)∣∣∣∣∣
∣∣∣∣∣
2

< (1− ε)

⇔
∣∣∣∣∣∣∣∣φ( u− v

||u− v||

)∣∣∣∣∣∣∣∣2 < (1− ε) d
D
.

Recap:

• JL is a linear dimensionality-reduction technique. The goal is to preserve `2 distances up to

distortions of 1± ε.

• This is also a concentration result, ||φ(w)||2 < (1− ε)d/D, where ||φ(w)||2 is the actual length

of a particular draw and d/D is the expected length. The actual draw will be concentrated

towards a specific value, typically the expected value.

1.3 Aside: A list of concentration inequalities

Markov

Chebychev

Chernoff

Hoeffding

Bernstein
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Effron-Stein

Azuma

Mcdiarmid

Talagrand

2 Linear Dimensionality Reduction

The goal of JL is to presere `2 distances. However, depending on what property you care about,

there will be different linear dimensionality reduction techniques appropriate for your task.

Common linear dimensionality reduction techniques:

• RP (Random Projection)

• PCA (Principal Component Analysis)

• LDA (Linear Discriminate Analysis)

• MDS (Multi-dimensional Scaling)

• ICA/BSS (Independent Component Analysis/Blind Source Separation)

• CCA (Canonical Correlation Analysis)

• DML (Distance Metric Learning)

• Factor (Factor Analysis)

• NMF/MF ((Non-negative) Matrix Factorization)

2.1 RP (Random Projection)

Method

For random projection, P ∈ Rd×D with Pij = N (0, 1). i.e.

P =

[
N (0, 1) N (0, 1) · · ·

...
. . .

]

If a projection matrix is wanted, apply Gram-Schmidt to P .

2.1.1 Practical application

PCA has time complexity O(n3), if we assume both the number of data points and the number

of features are equal to n. In practice, if we are working with large amounts of data our first

instinct to speed up PCA might be to subsample the data, i.e. if our dataset has 10k samples

in R10k, randomly subsample 1k points and perform PCA on this reduced dataset. However, the

quality of the kth eigenvector of the subsampled data decays with respect to the kth eigenvector of

the full dataset. While the first eigenvector of the subsampled and full dataset will be similar, all

subsequent eigenvectors of the subsampled data will be of worsening quality.
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The better approach to speeding up PCA is to first do a random projection, and then per-

form PCA. While the distances between points will be distorted within 1 ± ε, the quality of the

eigenvectors will be better.

2.2 PCA (Principal Component Analysis)

2.2.1 Outline

Data: x1, x2, ..., xn ∈ Rd

Goal: Find the best linear transformation φ : Rd → Rk that best maintains reconstruction accuracy.

Equivalently, minimize aggregate residual error.

Define: Πk : Rd → Rd minimize 1
n

∑n
i=1 ||xi −Πk(xi)||2

Figure 1: An illustration of PCA

2.2.2 Method

A k dimensional subspace can be represented by q1, ..., qk ∈ Rd orthonormal vectors.

The projection of any x ∈ Rd in the span(q1, ..., qk) is given by

(

k∑
i=1

qiq
T
i )x︸ ︷︷ ︸

Πk

=

k∑
i=1

(qi · x)qi
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To represent it in Rk (using basis q1, ..., qk) the coefficients simply are: (q1, x), ..., (qk, x).

2.2.3 The k = 1 case

In k = 1 case, the objective is the following:

minimize||q||=1
1
n

∑n
i=1 ||xi − (qqT )xi||2

Equivalently,

maximize||q||=1q
T ( 1

nXX
T )q,

where 1
nXX

T is the covariance of data, if the data is mean-centered. The solution is the top eigen-

vector (1/n)XXT .

Remark: For any q, the quadratic form qT ( 1
nXX

T )q is the empirical variance of data in the

direction q.

2.2.4 General k case

The general k case is similar and the solution is basically the top k eigenvectors of the matrix XXT .

2.3 LDA (Linear Discriminate Analysis)

2.3.1 Motivation

The goal of PCA is to minimize the reconstruction error. However, this is not necessarily going to

help for classification purposes.

2.3.2 Method

Define µ1 = 1
|C1|

∑
x∈C1

x and µ2 = 1
|C2|

∑
x∈C2

x. Define µ̄1 = wTµ1 and µ̄2 = wTµ2

One intuitive formulation would be:

max
w,s.t.||w||=1

L(w) = |µ̄1 − µ̄2| = |wTµ1 − wTµ2|

It is easy to see that w∗ = µ1−µ2
||µ1−µ2|| .

Problem: Maintaining the distance between the means is not sufficient. What we want are for the:

• class means to be as far as possible after projection, and

• class variances to be as small as possible.
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After projection, denote s̄2
1 =

∑
x̄∈C1

(x̄ − µ̄1)2, s̄2
2 =

∑
x̄∈C2

(x̄ − µ̄2)2. The formulation according

to our criteria would be the following:

max
w

L(w) =
(µ̄1 − µ̄2)2

s̄2
1 + s̄2

2

We will expand each term in this equation in the following:

s̄2
1 =

∑
x̄∈C1

(x̄− µ̄1)2

=
∑
x̄∈C1

(wTx− wTµ1)2

= wT
( ∑
x̄∈C1

(x− µ1)(x− µ1)T
)
w

= wTS1w where S1 is the scatter matrix for 1

Similarly, s̄2
2 = wTS2w

(µ̄1 − µ̄2)2 = (wT (µ1 − µ2))2

= wT (µ1 − µ2)(µ1 − µ2)Tw

= wTSBw where SB is the between class scatter matrix

Note: rank of SB = 1.

Thus,

L(w) =
wTSBw

wTSww

It follows that it has derivative (if we ignore its denominator):

d

dw
L(w) = wTSww2SBw − wTSBw2Sww

When we divide it by 2wTSww, we get:

SBw −
wTSBw

wTSww
(Sww) = SBw − L(w)(Sww)

If we let it equal to 0, we get:

SBw = SwL(w)w ⇔ S−1
w SBw = L(w)w

Maximizing L(w)⇔ finding eigenvector corresponding to the largest eigenvalues of S−1
w SB.

Remark: When you have c-classes, LDA will find a c− 1 subspace.
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2.4 MDS (Multi-dimensional Scaling)

MDS is useful when you don’t have a Euclidean representation of the data, and wish to come up

with one based on distances between data points. There are three types of MDS:

• classical MDS

• metric MDS

• non-metric MDS

Here, we are mostly going to discuss metric MDS.

2.4.1 Metric MDS method

Given a distance matrix P ∈ Rn×n, define the “stress function”, for xi ∈ Rk ∀i = 1, ..., n, to be the

following:

S(x1, ..., xn) =
∑
i<j

(||xi − xj || − pij)2

We want to minimize the stress function over the data points x1, ..., xn.

The problem can be formulated as the following:

minS(x1, ..., xn)

s.t.
∑

xi = 0

There is no easy way to write this as an eigenvalue problem, so to solve this we can simply do any

gradient based optimization.

2.4.2 Non-metric MDS

The goal on non-metric MDS is to maintain the order of distances between data points. For

example, if xi is closer to xj than xk, then maintain this ordering. Can make ||xi − xj || into any

monotonic function.
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