
COMS 4995: Unsupervised Learning (Summer’18) Jun 5, 2018

Lecture 5 – Dimensionality Reduction and Bourgain’s Theorem

Instructor: Nakul Verma Scribes: Ziyuan Zhong, Vincent Liu

This lecture introduces the problem of embedding and talks about the proof of Bourgain’s

Theorem.

1 Embedding and dimensionality reduction

1.1 Overview and Motivations

Not all data people deal with has a “vector space” representation. For example, we might only

have a similarity matrix, like the following:

x1 x2 x3 x4
x1 0 1 1 1

x2 1 0 2 2

x3 1 2 0 2

x4 1 2 2 0

Typical goals:

• gain better understanding of the relationship among data points.

• embed the data into a space (typically Rd, l2) that we understand better. We can then apply

off-the-shelf models/algorithms etc.

Dimensionality Reduction:

• Reduce “noise” (noise is application-specific; whatever you do not care about.)

• Increase computational efficiency

Metric Embedding:

• Given a metric space (X, ρ), want to ”embed” it into a ”normed” space (Rd, lp)︸ ︷︷ ︸
lpρ

.

• Computational efficiency

The goal for an embedding is a function f : X→ Rd, where ∀u, v ∈ X, ||f(u)−f(v)||lρp ≈ p(u, v).

The bad news: in general, there are finite metric spaces (X, p), where X is a n-point metric space,

that cannot be isometrically embedded into ld2 for any d (in other word, no embeddings preserve

distance exactly). See the following figure for an example.

Definition 1. Given two metric space (X, ρ), (Y, σ). A mapping f : X → Y is called a D-

embedding of X into Y (where D ≥ 1) if there exists some r > 0 such that ∀x, x′ ∈ X,

r · ρ(x, x′) ≤ σ(f(x), f(x′)) ≤ D · r · ρ(x, x′)
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Figure 1: An illustration of not embeddable distance matrix

1.2 Embedding into ld∞

Reminder: ||u− v||ld∞ = max1≤i≤d |ui − vi|

Theorem 2 (Frechet). Any n-point metric space (X, ρ) with |X| = n can be isometrically embedded

into ld∞(d = n).

Proof. Let x ∈ X, consider the function

f(x) =


ρ(x, x1)

ρ(x, x2)

...

ρ(x, xn)


Claim: f is a contraction. That is, ∀u, v ∈ X, ||f(u)− f(v)||ld∞ ≤ ρ(u, v).

Observation: Because ρ is a metric and thus by triangle inequality,

∀xi ∈ X, ρ(u, xi)− ρ(v, xi) ≤ ρ(u, v)

It follows that

max
u,v

ρ(u, xi)− ρ(v, xi) ≤ ρ(u, v)

so the claim is true.

Now consider the coordinate for u, we have

ρ(u, v) ≤ |ρ(u, u)− ρ(u, v)|
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Therefore,

ρ(u, v) ≤ ||f(u)− f(v)||ld∞ ≤ ρ(u, v)

Question: can we do significantly better (e.g. d = o(n)) than d = n in Frechet’s Embedding?

Theorem 3 (Incompressibility of general metric spaces). If Z is a normed space that D-embeds

all n-points metric space, then,

dim(Z) = Ω(n) for D < 3.

dim(Z) = Ω(n1/2) for D < 5.

dim(Z) = Ω(n1/3) for D < 7.

If we want to compress ld∞, we have to have more distortion.

Theorem 4 (Construction is due to Bourgain). Let D = 3 and (X, ρ) be a n-point metric space.

Then there exists a D-embedding into ld∞ with d = d48
√
n lnne = O(

√
n lnn).

Proof Sketch

We want to have a coordinate such that ρ(u, v) ≥ [f(u)− f(v)]i ≥ 1
3ρ(u, v).

f(u) =


ρ(u,A1)

ρ(u,A2)

...

ρ(u,Ad)


where Ai ⊂ X, ρ(u,A) = minx∈A ρ(u, x).

Figure 2: An illustration of the construction in the proof

Formal Proof

Proof. For 1 ≤ i ≤ d24
√
n lnne = m:

Pick x ∈ X with probability min(12 ,
1√
n

) independently and thus constitute the set Ai.

Pick x ∈ X with probability min(12 ,
1
n) independently and thus constitute the set Āi.
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∀x ∈ X, f(x) =



ρ(u,A1)

ρ(u,A2)

...

ρ(u,Am)

ρ(u, Ā1)

ρ(u, Ā2)

...

ρ(u, Ām)


Claim: Pick any u, v ∈ X, u 6= v and pick i, then either |ρ(u,A)− ρ(v,A)| ≥ 1

3ρ(u, v) or |ρ(u, Ā)−
ρ(v, Ā)| ≥ 1

3ρ(u, v) with probability ≥ 1
12
√
n

(over the choices of A and Ā).

Figure 3: An illustration of the three balls

Proof. (for the claim) Assume we have three balls: B0(u, r = 0), B1(v, r = 1
3ρ(u, v)), B2(u, r =

2
3ρ(u, v)).

Idea: either |B1 ∩X| ≤
√
n (no points from B1 will be picked and at least one point from B0 will

be picked with some probability) or |B1 ∩X| >
√
n (no points from B2 will be picked and at least

one point from B1 will be picked with probability ≥ 1
12

√
n).

Case1 (|B1 ∩X| ≤
√
n):

Consider set A,

Pr[E1 := B0 ∩A 6= φ] = min(12 ,
1√
n

),

Pr[E2 := B1 ∩A = φ] = (1−min(12 ,
1√
n

))B1∩X ≥ (1−min(12 ,
1√
n

))
√
n ≥ 1

4 ,

Since E1 and E2 are disjoint,

Pr[E1 ∩ E2] ≥ min(
1

8
,

1

4
√
n

) ≥ 1

12
√
n
.

Case2 (|B1 ∩X| >
√
n):

Consider set Ā,

Pr[E3 := B1 ∩ Ā 6= φ] ≥ ... ≥ 1
3
√
n

,

Pr[E4 := B2 ∩ Ā = φ] ≥ ... ≥ 1
4 ,

Pr[E3 ∩ E4] ≥ 1
12
√
n

.
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Therefore, the claim is true.

We have:

Pr

[
∃u, v ∈ X s.t. ∀Ai, Āi,

|ρ(u,Ai)− ρ(v,Ai)| <
1

3
ρ(u, v) and |ρ(u, Āi)− ρ(v, Āi)| <

1

3
ρ(u, v)

]
≤

∑
(u,v)∈X×Xunordered pair

(1− 1

12
√
n

)m because of the union bound

≤
(
n

2

)
e
− 1

12
√
n
m

≤
(
n

2

)
eln

1
n2

≤
(
n

2

)
1

n2

< 1.

The proof uses the fact that m = d24
√
ne lnn and (1− x) ≤ ex.

Therefore, the embedding f exists.

Open question: Is there a deterministic construction of embedding into ld∞d = O(
√
n lnn)

with D = 3?

Theorem 5 (Generalization). Let D = 2q − 1 ≥ 3(be odd).Then any n-point metric space can

be D-embedded into ld∞ where d = O(qn1/q lnn).

1.2.1 Summary

Frechet ld∞d = nd = Ω(n), D < 3.

Bourgain ld∞, d = O(
√
n lnn), D = 3.

1.3 Embedding into ld2

Result1: (follows from Bourgain generalization): Any n-point metric space can be embedded into

ld∞ with D = O(log2 n) and d = O(log2 n).

Refinement(Bourgain’s l2 result): Any n-point metric can embed in ld2 with D = O(log n).

Theorem 6 (Johnson-Lidenstrauss ”flatten” lemma(JL-lemma, 1984)). Pick any 0 < ε < 1
2 . Then

for any integer n, let d > d 4
ε2

(2 lnn+ ln 3)e → d > Ω( lnn
ε2

). Then for any set V ⊂ RD, s.t. |V | = n,

there exists a map f : RD → Rd s.t. ∀u, v ∈ V, (1− ε)||u− v||22 ≤ ||f(u)− f(v)||22 ≤ (1 + ε)||u− v||22.

• Moreover, f is simply a linear map.
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• Pick a random d-dim subspace (in D-dim), then above holds true with high probability(minor

global scaling).

For any D-dim v, define

f(v) =

x11 ... x1D
...

xd1 ... xdD

 v
where xij ∀i, j is drawn from a Gaussian independently. Then with high probability, f satisfies the

above properties.

∃ n+ 1 points in RD(D ≥ n) that cannot be isometrically embeddable in ld2 with d < n.

Application of JL:

• Fast provable clusterings(1999)

• Fast approximate nearest neighbor search

• Approximate solutions to graph problems(e.g. multi-commodity flow)

• Fast approximate linear algebra(e.g. matrix multiplication)(”sketching”)

Proof Sketch

Observation: Let φ be a random d-dim subspace (in D-dim).

Claim: We can show that Eφ[||φ(w)||2] = d
D . Pick any 0 < ε < 1

2 and fix a unit vector w ∈ RD.

Then,

Pr

[
||φ(w)||2 < (1− ε) d

D
or ||φ(w)||2 ≥ (1 + ε)

d

D

]
≤ 3e−dε

2/4.

Note: on average, a projection of w onto the random subspace φ has expected squared-norm:

E
[
||φ(w)||2

]
=

d

D
.

Then, apply a concentration/Chernoff-type bound.
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