COMS 4995: Unsupervised Learning (Summer’18) Jun 5, 2018
Lecture 5 — Dimensionality Reduction and Bourgain’s Theorem

Instructor: Nakul Verma Scribes: Ziyuan Zhong, Vincent Liu

This lecture introduces the problem of embedding and talks about the proof of Bourgain’s
Theorem.

1 Embedding and dimensionality reduction

1.1 Overview and Motivations

Not all data people deal with has a “vector space” representation. For example, we might only
have a similarity matrix, like the following:

I i) T3 | T4
T 0 1 1 1
zo |1 |0 [2 |2
zz |1 |2 |0 |2
ze |1 |2 |2 |0

Typical goals:
e gain better understanding of the relationship among data points.

e embed the data into a space (typically R?, l5) that we understand better. We can then apply
off-the-shelf models/algorithms etc.

Dimensionality Reduction:

3

e Reduce “noise” (noise is application-specific; whatever you do not care about.)

e Increase computational efficiency
Metric Embedding:

e Given a metric space (X, p), want to "embed” it into a "normed” space (Rd, ly).
——

I

e Computational efficiency
The goal for an embedding is a function f : X — R? where Yu,v € X, || f(u) = f(0)[lig = p(u,v).
The bad news: in general, there are finite metric spaces (X, p), where X is a n-point metric space,

that cannot be isometrically embedded into Zg for any d (in other word, no embeddings preserve
distance exactly). See the following figure for an example.

Definition 1. Given two metric space (X,p),(Y,0). A mapping f : X — Y is called a D-
embedding of X into Y (where D > 1) if there exists some r > 0 such that Vx,2' € X,

repla,2’) <o(f(2), f(a") <D -1 pla,2)



Figure 1: An illustration of not embeddable distance matrix

1.2 Embedding into ¢

Reminder: ||u — v||;a = maxj<j<q |u; — vi
g, <i<

Theorem 2 (Frechet). Any n-point metric space (X, p) with |X| = n can be isometrically embedded
into 1%, (d = n).

Proof. Let z € X, consider the function

p(f;;%n)

Claim: f is a contraction. That is, Vu,v € X, [|f(u) — f(v)|[;o. < p(u,v).
Observation: Because p is a metric and thus by triangle inequality,

Vi € X, plu,ai) — plv,2:) < plu,v)

It follows that
max p(u, z1) — plv, ;) < plu,v)

u,v

so the claim is true.
Now consider the coordinate for u, we have

plu,v) < |p(u,u) = p(u, v)|



Therefore,
p(u,v) < [[f(u) = f(0)|l12, < p(u,v)
O
Question: can we do significantly better (e.g. d = o(n)) than d = n in Frechet’s Embedding?

Theorem 3 (Incompressibility of general metric spaces). If Z is a normed space that D-embeds
all n-points metric space, then,

dim(Z) = Q(n) for D < 3.

dim(Z) = Q(n'/?) for D < 5.

dim(Z) = Q(n'/3) for D < 7.

If we want to compress lgo, we have to have more distortion.

Theorem 4 (Construction is due to Bourgain). Let D = 3 and (X, p) be a n-point metric space.
Then there exists a D-embedding into 1% with d = [48y/n1lnn] = O(y/ninn).

Proof Sketch
We want to have a coordinate such that p(u,v) > [f(u) — f(v)]; > $p(u,v).

p(“? Al)
flay = | P14
p(uuAd)

where A; C X, p(u, A) = mingea p(u, ).

)
@
@) x1

Figure 2: An illustration of the construction in the proof

Formal Proof
Proof. For 1 <i < [24y/nlnn] =m:
Pick x € X with probability min(
Pick x € X with probability min(

%, ﬁ) independently and thus constitute the set A;.
%, %) independently and thus constitute the set A;.



Ve e X, f(x) =

p(u, ).

Claim: Pick any u, v € X, u % v and pick 4, then either |p(u, A) — p(v, A)| > %p(u,v) or |p(u, A) —
p(v, A)| > $p(u,v) with probability > ﬁ (over the choices of A and A).

Figure 3: An illustration of the three balls

@BO

Proof. (for the claim) Assume we have three balls: By(u,r = 0), Bi(v,r = %p(u,v)), By (u,r =
30(u,0)).

Idea: either |B; N X| < /n (no points from B; will be picked and at least one point from By will
be picked with some probability) or |B; N X| > y/n (no points from Bs will be picked and at least
one point from B; will be picked with probability > 1—12\/77)

Casel (|B1NX]| < /n):

Consider set A,

Pr[E; := ByN A # ¢| = min(s,

Pr(Ey:=BiNA=¢|=(1-min(}, £))5"™X > (1 —min(J, L))Vr > 1,

Since F7 and E5 are disjoint,

N[ =
—

S

~—

Case2 (|B1 NX]| > /n):
Consider set A,

PrlEs:=BiNA#¢|>..> ﬁ
PrlEy:=ByNA=¢|>..>1
PT[E3QE4] > ﬁ



Therefore, the claim is true. ]

‘We have:

Pr [Ju,v € X s.t. VA;, /L‘,

1 - - 1
|p(u, Ai) = p(v, Ai)| < 5p(u,v) and |p(u, Ai) = p(v, Ai)| < 5p(u, v)
1 .
< Z (1-— m) because of the union bound
(u,v)eX xXunordered pair

n
<
<(3)
<(")emwm
—\2
(ML
—\2/)n?

< 1.

The proof uses the fact that m = [24\/n]Ilnn and (1 —z) < €”.
Therefore, the embedding f exists.
[

Open question: Is there a deterministic construction of embedding into I4.d = O(y/nInn)
with D = 37

Theorem 5 (Generalization). Let D = 2q — 1 > 3(be odd). Then any n-point metric space can
be D-embedded into 1%, where d = O(gn"/?1nn).

1.2.1 Summary

Frechet (4. d = nd = Q(n), D < 3.
Bourgain 4, d = O(y/nlnn), D = 3.

1.3 Embedding into /¢

Resultl: (follows from Bourgain generalization): Any n-point metric space can be embedded into
1¢. with D = O(log®n) and d = O(log®n).
Refinement (Bourgain’s I3 result): Any n-point metric can embed in 19 with D = O(logn).

Theorem 6 (Johnson—Lidenstrauss "flatten” lemma(JL-lemma, 1984)). Pick any 0 < e < 3. Then
for any integer n, let d > [ 2lnn+1In3)] —»d > Q(h;—zn) Then for any set V C RP | s.t. |V|=n,
there exists a map f: RP = R s.t. Yu,v € V, (1—€)|lu—v||3 < ||f(u) = f0)]|2 < (1+6)|Ju—v]]3.

o Moreover, f is simply a linear map.



e Pick a random d-dim subspace (in D-dim), then above holds true with high probability(minor
global scaling).

For any D-dim v, define
r11 ... 1D
flw)y=1.. v
Td1 .-~ TdD
where x;; Vi, j is drawn from a Gaussian independently. Then with high probability, f satisfies the
above properties.
3 n 4+ 1 points in RP(D > n) that cannot be isometrically embeddable in 1§ with d < n.
Application of JL:

e Fast provable clusterings(1999)

Fast approximate nearest neighbor search

e Approximate solutions to graph problems(e.g. multi-commodity flow)

Fast approximate linear algebra(e.g. matrix multiplication)(”sketching”)

Proof Sketch

Observation: Let ¢ be a random d-dim subspace (in D-dim).
Claim: We can show that Ey[||¢(w)||?] = &. Pick any 0 < € < 1 and fix a unit vector w € RP.
Then,

Pr [[lo(uw)|? < (1 ) or [lgw)|[* > (1460 | <5e4

Note: on average, a projection of w onto the random subspace ¢ has expected squared-norm:

E [low)]2] = .

Then, apply a concentration/Chernoff-type bound.
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