
COMS 4995: Unsupervised Learning (Summer’18) May 29, 2018

Lecture 3 – k-means++ & the Impossibility Theorem

Instructor: Nakul Verma Scribes: Zongkai Tian

Instead of arbitrarily initializing cluster centers in Lloyd’s k-means algorithm, k-mean++ algo-
rithm chooses a center using a probabilistic version of farthest-first traversal.

Second part of the lecture covers impossibility theorem which states that no clustering function
satisfies all 3 axioms.

k-means++

Here’s Lloyd’s k-means algorithm:

Algorithm 1 Lloyd’s k-means algorithm

Require: x1, . . . , xn ∈ Rd, k ∈ N
1: Arbitrarily initialize k centers c1, c2, · · · , ck ∈ Rd

2: Assign each xi to the closest Cj (this creates a partition P1, P2, · · · , Pk)
3: Re-compute centers cj = 1

|Pj |
∑

xi∈Pj
xi

4: Repeat step 2-3 until convergence (up to some ε)

Fact 1. Solution to Lloyd’s method for k-means can be arbitrarily worse from the optimal solution.

Lemma 2. At every step of the algorithm, the k-means cost can only improve.

Proof. For step 2, observe that the xi are assigned to their closest centers; if a point is assigned to
another center, cost would go up. For step 3, once the partition is fixed, the centroid 1

|Pj |
∑

xi∈Pj
xi

minimizes cost.

Possible Initialization Methods

• Choose centers uniformly at random: Suppose we were given data that is evenly distributed
across k natural clusters (P1, . . . , Pk). If the initial centers (c1, . . . , ck) are chosen uniformly
at random from data points x1, . . . , xn, then the probability that we choose an initial center
from each cluster is low.

This is the coupon collector problem. The average time of number of draws to select at least
one data point from each cluster is k log k. We could modify the algorithm to run (k log k)-
means then merge clusters down to k, but this increases time complexity.

Lower bound of cost : Consider an optimal clustering situation, where the n data points are
even distributed across k clusters in R1. The clusters are of radius δ while the clusters are at
least a distance B away from any other. B can be chosen to be much larger than δ.
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On initialization, we select k points from x1, . . . , xn uniformly at random. It turns out the
expected number of draws to select a one data point from each of the k clusters is highly
concentrated around k log k. Therefore, with high probability, there will be a cluster that is
not represented in the initialization centers. After running k-means, it is likely that one of
the centroids straddles two clusters, and so is on average around a distance of B/2 from the
data points it represents. It follows that the cost of the output is Ω(B2n), where on the other
hand, the optimal cost is O(δ2n). And so, uniform random initialization can have arbitrarily
worse cost than optimal.

• Farthest-First Traversal: If there are outliers in the data, then this method can have arbitrarily
worse cost than optimal. Exercise: why?

• Probabilistic Farthest-First Traversal (k-means++ paper):

Algorithm 2 k-means++ initialization algorithm

Require: x1, . . . , xn ∈ Rd, k ∈ N
1: Uniformly at random pick C1 from x1, . . . , xn.
2: Let C = {c1}.
3: Assign xj probability pj := 1

Z d(xj , C)2, where d(x,C) is the usual distance from a point to a
set and Z is an appropriate normalization factor.

4: Select a point x according to the probabilities pj and let C ← C ∪ {c}.
5: Repeat step 3-4 until |C| = k.

Theorem 3. The k-means++ algorithm, using the above initialization, obtains expected cost:

E[cost(c)] ≤ O(log k) ·OPT,

where OPT is the cost of an optimal clustering.

In the following, let A ⊂ X = {x1, . . . , xn} be a subset, C = {c1, . . . , ck} be the cluster centroids.
We define the following notation:

φC(A) =
∑
a∈A

min
cj∈C
||a− cj ||2 φ = φC(X) = cost(C)

φopt(A) =
∑
a∈A

min
cj∈Copt

||a− cj ||2 φopt = φopt(X)

Conceptual proof.
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Figure 1: Optimal Clustering with k = 5 (note that figure is just
a conceptual representation; the partitions generated by the centers
will necessarily be convex).

agenda 1. if the first pick falls under region 2, what expected cost for region 2 would be?

agenda 2. if some points are already picked, what expected cost for a particular region would
be for next pick?

Lemma 4 (Lemma 3.2 in k-means++ paper). Let A be a cluster from Copt, let C be just one
cluster chosen uniformly at random from A. Then E[φ(A)] ≤ 2φopt(A).

Proof.

E[φ(A)] =
1

|A|
∑
a0∈A

∑
a∈A
||a− a0||2, a0 is a center that chosen uniformly at random from A

=
1

|A|
∑

a0∈A,a∈A
||a− a0||2, (recall that E[||x− y||2] = 2E[||x− E(x)||2])

= 2
∑
a∈A
||a− 1

|A|
∑
a∈A

a||2

= 2
∑
a∈A
||a− c(A)||2

≤ 2φopt(A)

Lemma 5 (Lemma 3.3 in k-means++ paper). Let A be an arbirary cluster from Copt and C be
some arbitrary clustering. If we add a random center to C (C is a set of centers) from A according
to k-means++ weighting, then E[φ(A)] ≤ 8φopt(A).

Proof.
Observation: probability that a0 ∈ A is chosen: D2(a0)/

∑
a∈AD

2(a), where D2(a0) = d2(a0, C)
and D(a0) denotes the shortest distance from a0 to the closest center we have already chosen.
For a given point a ∈ A, after choosing the center a0, the contribution of a to the cost will be
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min(D2(a), ||a− a0||2).

E[φ(A)] =
∑
a0∈A

D2(a0)∑
a∈AD

2(a)

∑
a∈A

min(D2(a), ||a− a0||2)

D(a0) ≤ D(a) + ||a− a0||,∀a, a0
D2(a0) ≤ (D(a) + ||a− a0||)2

≤ 2D2(a) + 2||a− a0||2∑
a∈A

D2(a0) ≤ 2
∑
a∈A

(D2(a) + ||a− a0||2)

D2(a0) ≤
2

|A|
∑
a∈A

D2(a) +
2

|A|
∑
a∈A
||a− a0||2

E[φ(A)] ≤ 2

|A|
∑
a0∈A

∑
aD

2(a)∑
aD

2(a)

∑
a∈A

min(D2(a), ||a− a0||2) +

2

|A|
∑
a0∈A

∑
a ||a− a0||2∑

aD
2(a)

∑
a∈A

min(D2(a), ||a− a0||2)

(pick ||a− a0||2 for the first term and pick D2(a) for the second term.)

≤ 4

|A|
∑
a0∈A

∑
a

||a− a0||2

≤ 4 · 2φopt(A) = 8φopt(A)

Lemma 6 (Lemma 3.4 in k-means++ paper). Let C be any arbitrary clustering we have chosen,
choose u > 0 (number of uncovered clustering from Copt). The corresponding uncovered points are
χu. Let χc = χ− χu.

Figure 2: Optimal Clustering with k = 5
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Now suppose we add t ≤ u random centers (according to k-means++) and C ′ = C∪{c1, c2 · · · , ct}.
The corresponding cost is φ′.

E[φ′] ≤ (φ(χc) + 8φopt(χu))(1 +Ht) +
u− t
u

φ(χu)

Ht = 1 +
1

2
+

1

3
+ · · ·+ 1

t
is the harmonic sum

Let A be the cluster which is covered by the first pick. Then u = k − 1, chose t = k − 1

E[φ′] ≤ (φ(A) + 8φopt(χ−A)(1 +Hk−1), (where Hk−1 = 2 + logk)

= (φ(A) + 8φopt − 8φopt(A))(2 + logk), (where φ(A) ≤ 2φopt(A))

≤ (2 + logk)8φopt

Proof. The proof was done by induction, showing that if we can prove equations P (u, t − 1) and
P (u − 1, t− 1) hold true, then P (u, t) holds true. Base case of the induction is P (u, 0) for u > 0
and P (1, 1).

Example: Let k = 3 for optimal clustering, after first pick there are 2 uncovered clusters from
Copt. Now we want to prove that P (2, 2) holds true when we pick other two centers with D2

weighting. By induction, if we prove that P (2, 1) and P (1, 1) hold true then the result holds.

Algorithm 3 Local Swap Algorithm

input x1 · · ·xn, k ∈ N
1: Pick T ⊂ {x1 · · ·xn}, |T | = k
2: Swap ti ∈ T with xj ∈ X if it improves the k-means cost.
3: Repeat step 2 until no more improvement can be made.

Lemma 7 (w/o proof). The solution to ”local swap method” is no more than 25 optimum.

k-means++ & Lloydss ∼ O(logk) ·OPT

Local Swap Method ∼ 25 ·OPT

Kleinberg’s Impossibility Theorem for Clustering

Here, we take an axiomatic approach to clustering: define a clustering procedure as an algorithm
f(X, d) that takes in data X and metric on X, d, and returns a partition of X. That is, f(X, d) =
{X1, . . . , Xk}, where X = X1 t · · · t Xk. The following are natural qualities we might hope our
clustering algorithm to satisfy:

1. Scale-Invariance

Choice of unit should not affect clustering

f(x, d) = f(x, α · d), for any α > 0
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2. Richness

Different d’s can give different partitions. In fact, for all partitions P, there should exist some
metric d yielding that partition, f(X, d) = P.

3. Consistency

If d yields a partition P, then if d̄ is a metric that only reduces distances within clusters and
increases distances between clusters, then f(X, d) = f(X, d̄). That is, if f(X, d) = P, and

d̄(i, j) ≤ d(i, j) for i, j in the same cluster

d̄(i, j) ≥ d(i, j) for i, j in different clusters,

then f(X, d) = f(X, d̄).

Theorem 8. There exists no f which satisfies axiom 1, 2 & 3.

Proof. Suppose there is a set of three points{x1, x2, x3}. Two distance function d and d′ such that
f(x, d) gives a clustering of {{x1}, {x2}, {x3}} and f(x, d′) gives a clustering of {{x1, x2}, {x3}}.

It can be observed that
f(x, d) 6= f(x, d′) (1)

By scale-invariance,
f(x, α · d′) = f(x, d′) (2)

We can find an α that α ·d′ enlarges distance between any two points. If consistency holds, it means
new distance function α · d′ shouldn’t change partition result of f(x, d) because α · d′ increases all
between-cluster distances. However, from (1) and (2) we know that f(x, d) 6= f(x, α · d′), so
consistency doesn’t hold for the partition function f .

Note that the k-means algorithm is not rich because it can only yield k clusters.

References

[1] Arthur, David and Vassilvitskii. “k-means++: The Advantages of Careful Seeding.”
Stanford. Sergei (2006). Technical Report

[2] Kleinberg, Jon M. “An impossibility theorem for clustering.” Advances in Neural In-
formation Processing Systems (2003)

6


