
COMS 4995: Unsupervised Learning (Summer’18) May 24, 2018

Lecture 2 – Clustering Part II

Instructor: Nakul Verma Scribes: Jie Li, Yadin Rozov

Today, we will be talking about the hardness results for k-means. More specifically, we will

develop tools and complete a proof that the 2-means problem is NP-hard along the lines of [3].

1 k-means – overview

1.1 k-means problem - definition I

The definition of the k-means from the previous class:

- Input: A set of n points x1,xn ∈ Rd and a positive integer k < n.

- Output: T ⊂ R s.t. |T | = k.

- Goal: minimize ”cost” of T where: cost(T) :=
∑n

i=1 minµj∈T ‖xi − µj‖
2. µj =

∑
xi∈Cj

xi

|Cj | and

C1, ..., Ck are the clusters (specific partition of the n points).

1.2 k-means problem - definition II

Alternative definition of the problem that is more useful for today’s proof:

- Input: A set of n points X = x1,xn ∈ R and a positive integer k < n.

- Output:

(a) P1, P2, ...Pk ⊂ X , ”partitions” s.t. ∪iPi = X , Pi ∩ Pj = Ø

(b) µ1, µ2, ..., µk centroids

- Goal: minimize ”cost” of P where cost is defined as:

(a)
∑k

j=1

∑
i∈Pj
||xi − µj ||2 where P1, ..., Pk are the clusters (specific partition of the n points)

[k-means cost]

1.3 Observations

- The obvious way to find the optimal solution to k-means is through exhaustive search which is

untenable, as that takes a long time and has exponential complexity. While there are only O(nk)

combinations of possible choices for centroids (assuming only points of X are admissible) there

are kn possible partitions, which for k = 10 and n = 100 equals the number of atoms in the

universe!

1

- The identity E ||X−Y ||2 = 2E ||X−EX||2 implies that the cost function in the second definition

above can be re-written as:

k∑
j=1

∑
i∈Pj

||xi − µj ||2 =

k∑
j=1

1

2|Pj |
∑
i,k∈Pj

||xi − xk||2

- The first of these is true because (assuming X and Y to be I.I.D.):

E ||X − Y ||2 = E
x
E
y
[||X||2 + ||Y ||2 − 2XY] = E

x
||X||2 + E

y
||Y ||2 − 2E

x
E
y
[XY]

= 2[EX2 − (EX)2] = 2E[X − EX]2 = 2E ||X − EX||2

- And the second of these is true because by using the first identity and since µj = EX =
1
|Pj |
∑

xi∈Pj
xi:

k∑
j=1

∑
i∈Pj

||xi − µj ||2 =

k∑
j=1

∑
i∈Pj

||xi −
1

|Pj |
∑
xk∈Pj

xk||2 =

k∑
j=1

1

2|Pj |
∑
i,k∈Pj

||xi − xk||2

1.4 Review of NP-hard problems

For a more complete review of complexity and hardness please go to reference [4] chapter 34.

- problems that are NP-hard admit polynomial time reductions from all other problems ∈ NP

- to carry out such a necessary reduction that proves a problem (B below) is NP-hard the following

steps can used (based off page 1052 from reference [4]):

(a) Given an instance α of a problem A that has previously been proven to be ∈ NP , use a

polynomial time reduction algorithm to transform it to an instance β of problem B

(b) Run a decision algorithm for B on instance β

(c) Use the answer for β to get α

1.5 2-means hardness - statement of main theorem and discussion of approach

Theorem 1. 2-means clustering is an NP-hard optimization problem

Approach to the problem is based on Dasgupta from 2008 [3]. To prove this we will start with

the known NP-hard problem of 3SAT and show a reduction from it to the NAE-3SAT* problem.

From that problem we will show a reduction to the Generalized 2-means problem and finally show

a reduction from that to the 2-means problem. In each reduction as above we need to show how an

instance of the known NP-hard problem is polynomially modified cleverly into an instance of the

problem we want to show is NP-hard and back (to show that the reduction maps a ’yes’ instance of

the known problem to a ’yes’ instance of the new problem and ’no’ instance of the known problem

to a ’no’ instance of the new problem). Note since we are dealing with ’decision problems’, the

input of an instance of a problem must include the decision threshold for the problem. We begin

by defining the various problems before proving hardness and properties of the reductions.

2

We’ll briefly review NP-completeness, only to the extent necessary to set the stage for this proof.

A more thorough treatment can found in a computational complexity course. As a consequence

of the Cook-Levin Theorem, which pointed to the first NP-hard problem, we know that SAT and

variations, such as 3SAT and NAE 3-SAT, are NP-hard.

1.6 Definitions of various problems required for proving the main theorem

Definition 2 (3SAT).

Input: A Boolean formula in 3CNF-form: a formula of m clauses, each containing 3 literals,

connected by ’and’ operator.

Output: true if formula is satisfiable, false if not

Definition 3 (NAE 3-SAT). Not-all-equal-3SAT. A 3SAT formula, with the additional requirement

that, in each clause at least one literal is true and at least one literal is false. This removes the

case where all three literals in a clause are true.

Definition 4 (NAE 3-SAT*). A boolean formula φ containing n literals x1, ...xn. Exactly 3 literals

for each of m clauses. Each pair of variables xi, xj appears in at most 2 clauses. Once as (xi, xj)

or (¬xi,¬xj) and once as (xi,¬xj) or (¬xi, xj)

Definition 5 (Generalized k-means).

Input: nxn matrix, ”distance matrix” with elements Dij = distance between object i and object j.

Output: Partition of objects into P1 and P2

Goal: minimize cost(P1, P2) =
∑2

j=1
1

2|pj |
∑

i,j∈pj Dij

1.7 Hardness of NAE-3SAT*

Lemma 6. see [3]

1.8 Hardness of Generalized 2-means

For any instance φ of x1, ...xn of NAE-3SAT* we construct a 2n x 2n distance matrix Dα,β as below

where α, β ∈ x1, ...xn,¬x1,,¬xn. Note that because the definition of NAE-3SAT* requires that

each pair of variables xi, xj appears in at most 2 clauses, once as (xi, xj) or (¬xi,¬xj) and once as

(xi,¬xj) or (¬xi, xj) , the matrix is uniquely defined for a given φ.

Definition 7 (Distance matrix for Generalized 2-means - D(φ)).

Dα,β =


0 if α = β

1 + ∆ if α = β

1 + δ if α ∼ β
1 otherwise

(1)

Where α ∼ β means that either α and β occur together in a clause or α and β occur together in a

clause Where:

∆ =
5m

5m+ 2n
(2)

3

And:

δ =
1

5m+ 2n
(3)

Note that above implies that 0 < δ < ∆ < 1 and by using algebra we get that:

4δm < ∆ ≤ 1− 2δn (4)

Lemma 8. If φ is NAE-3SAT* satisfiable, then D(φ) admits to a generalized 2-means cost of

cost(φ) = n− 1 + 2δm
n

Proof. Partition the corresponding matrix object (2n object) for the NAE-3SAT* satisfied φ into

two partitions; one for all the literals that are assigned true and a second for all literals that are

assigned false. Since each literal is represented twice we have |P1| = |P2| = n. By definition of the

NAE-3SAT*, each clause contributes one pair to P1 and pair to P2. Also this leads to the fact that

the distances between pairs can only be 1, 1 + δ, with m instances of the later and the fact that

the two clusters have identical costs. So we get that

cost(P1, P2) =
2∑
j=1

1

2|Pj |
∑
i,j∈Pj

Dij

=
1

2n
(2

(
n

2

)
+ 2mδ) +

1

2n
(2

(
n

2

)
+ 2mδ)

=
n(n− 1)

n
+

2mδ

n

= n− 1 +
2mδ

n

Lemma 9. For any partition P1 and P2, WLOG P1 contains a variable and its negation, with

cost(P1, P2) ≥ n− 1 + ∆
2n > n− 1 + 2mδ

n = cost(φ).

Proof. Let n′ = |P1|. Note

cost(P1, P2) ≥ 1

n′
(

(
n′

2

)
+ ∆) +

1

2n− n′

(
2n− n′

2

)
= n− 1 +

∆

n′
≥ n− 1 +

∆

2n

Lemma 10. If D(φ) admits a generalized 2-means cost of cost(φ) ≤ n − 1 + 2δm
n , then φ is a

satisfiable instance of NAE-3SAT*.

Proof. Let P1 and P2 be the partition with cost ≤ n− 1 + 2δm
n . First note that P1 and P2 do not

contain a variable and its negation and |P1| = |P2| = n. The cost of clustering P1 and P2

4

=
2

n
(

(
n

2

)
+ δ

∑
clauses

{
1 if clause is split across P1 and P2

3 otherwise
)

Since cost ≤ n − 1 + 2δm
n , it follows that all clauses are split between P1 and P2. That is, every

clause has at least one literal in P1 and one literal in P2. Therefore, the assignment that sets all of

the P1 to true and all of P2 to false is a valid NAE-3SAT* assignment.

1.9 From Generalized 2-means to 2-means - Embedding of D(φ)

Fact 11. Note that any n × n symmetric matrix D can be embedded in l22 iff uTDu ≤ 0 for all

u ∈ Rn s.t.
∑
ui = 0.

Proof. Homework 1

Fact 12. For D(φ), note

uTDu =
∑
α,β

uαuβDαβ

=
∑
α,β

uαuβ(1− 1(α=β) + ∆1(α=β̄) + δ1(α∼β))

=
∑
α,β

uαuβ −
∑
α

u2
α + 2∆(u+ · u−) + δ

∑
α,β

uαuβ1(α∼β)

≤ (
∑

uα)2 − ‖u‖2 + 2∆(u+ · u−) + δ
∑
α,β

|uα||uβ|, and use: 2ab ≤ a2 + b2

≤ −‖u‖2 + ∆(
∥∥u+

∥∥2
+
∥∥u−∥∥2

) + δ(
∑
|uα|)2

≤ −(1−∆) ‖u‖2 + δ2n ‖u‖2 , and since (1−∆) ≥ δ2n
≤ 0

1.10 Proof of Theorem 1

Proof. NAE-3SAT* is NP hard from Lemma 6. From Definition 7 and Lemmas 8,9,10 we have

that any instance of the NAE-3SAT*, φ of x1, ...xn can be reduced to an instance of the (decision

version of the) Generalized 2-means problem with D(φ) and threshold cost(φ). We also have from

the Lemma that with these specific instances that NAE-3SAT* is solved, if and only if the

Generalized 2-means problem is solved. This combined with the fact that the reduction steps take

polynomial time in n and Fact 12 that D(φ) can be embedded into l2, completes the proof for

2-means.

References

[1] Gonzalez, F. “Clustering to minimize the maximum intercluster distance.” Theoretical

Computer Science 38 (1985): 293-306.

5

[2] Hartigan, John A. “Clustering Algorithms” John wiley & sons (1977).

[3] Sanjoy Dasgupta. “The hardness of k-means clustering” Department of Computer Sci-

ence and Engineering University of California, San Diego (2008): Technical Report

CS2008-0916.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein ”Introduc-

tion to Algorithms, Third Edition” The MIT Press (2009)

6

