
COMS 4995: Unsupervised Learning (Summer’18) May 22, 2018

Lecture 1 – Introduction and Clustering

Instructor: Nakul Verma Scribes: Vincent Liu, Yadin Rozov, Laura Tinsi

Today, we introduce the content of the class and begin the first topic of this class: clustering.

Unsupervised Learning is based on the assumption that given a dataset X , there exists an underlying

structure in X . Our learning task is to discover this structure given n examples from data. We

aim to come up with a summary of the data using the discovered structure.

1 Introduction and Logistics

1.1 Agenda

- Partition the data into meaningful structure: Clustering (2 weeks).

- Find a low-dimensional representation that retains important information about the dataset and

suppresses irrelevant/noisy information: dimensionality reduction (2 weeks).

- Understand and model how data is distributed in space: density estimation (1 week).

1.2 Logistics and Grading

- Website: http://www.cs.columbia.edu/~verma/classes/uml/index.html

- Piazza to access homeworks and ask questions, Gradescope to submit the homeworks submission

- HW0 due by 11:59 Sunday

- Grading: 45% HW, 10% scribing, 25% project, 20% participation in class

2 Clustering

• What is clustering and why do we need it?

- Given input data, partition the data into multiple meaningful groups

• Why?

- Approximate large/infinite/continuous set of objects with finite set of representatives.

Example of applications: vector quantization, codebook learning, dictionary learning.

It is used in computer vision to map from pixel space to HOG (histogram of oriented gradient)

space - and edge detection - histogram profile or edge orientation gives rise to new features

- Find a meaningful way to group data.

Example of applications: in exploratory data analysis, gives a good understanding and sum-

mary of your input data (ex of biology).
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2.1 Problem setup: Metric space

2.1.1 Definition

Definition 1. Let X be a space. We define the metric space (X , ρ) such that ρ : X × X −→ R is

the distance function such that it verifies :

- Non-negativity (reflexivity): ∀x, y ∈ X , ρ(x, y) ≥ 0 with equality iff x = y

- Symmetry: ∀x, y ∈ X , ρ(x, y) = ρ(y, x)

- Triangle Inequality: ∀x, y, z ∈ X , ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

Definition 2. For a set T ⊂ X , we define :

ρ(s, T ) := inf
t∈T

ρ(s, t)

2.1.2 Examples

- `2 distance on Rd: ∀x, y `2(x, y) = ρ(x, y) =
√∑d

i=1(xi − yi)2

- `1 distance on Rd: ∀x, y `1(x, y) = ρ(x, y) =
∑d

i=1 |xi − yi|

- `∞ distance on Rd: `∞ = maxi |xi − yi|

- Geodesics on manifolds: In a Non-linear space the distance between two points is defined as the

shortest path between those two points. Note that the path must be included in the space. It is

called the shortest geodesic.

- Shortest path on graphs (for example a social network graph): the distance is the shortest path

i.e the smallest number of edges between two vertices.

- Note: metric space isn’t always Euclidean and we cannot perform Euclidean operations (ie.

taking the mean) in any metric space.
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2.1.3 Covering of a metric space

Covering, ε-covering, covering number

Definition 3. Let S ⊂ X , ε ≥ 0. A set T ⊂ X is an ε-cover of S if: ∀s ∈ S, ∃t ∈ T s.t. ρ(s, t) ≤ ε.

In other words, ρ(s, T ) := inft∈T ρ(s, t) and T ε-covers S if sups∈S ρ(s, T ) ≤ ε.

Questions to consider :

- Is S a cover of S?

Yes.

- Vertices of a d-cube with distance `∞: What is a good 1-cover, 1
2 -cover, 0.9-cover?

You can think of it in the 2-dimensional case. {−1,+1}d vertices of the cube. 1-cover is just

the zero vector.

2.2 k-center problem

- Input: a set of n points x1, ....xn ∈ X assuming (X, ρ); a positive integer k

- Output: T ⊂ X s.t. |T | = k

- Goal: minimize ”cost” of T where: cost(T ) := maxi∈{1...n} ρ(xi, T )

How would we solve it? k-means? No, since we don’t have an Euclidean space and distance here.

Solution:

- Exhaustive search (takes a long time, exponential complexity)

- Farthest First Traversal Algorithm (polynomial complexity)

Algorithm 1 Farthest First Traversal Algorithm

Pick randomly z ∈ X and set T = {z}
while |T | < k do
z = arg maxx∈X ρ(x, T )
T = T ∪ {z}

end while

Important: This is not an optimal solution to the k-center problem. A counter example we can

think of is the 2-center problem (|T | = 2) on the space X = {0, 14 ,
1
2 ,

3
4 , 1}, with the usual metric ρ.

The farthest fast traversal algorithm might yield to {0, 1} while the optimal solution is {14 ,
3
4}.

Theorem 4. Let T ∗ be the optimal solution of the k-center problem and cost(T ∗) be its optimal

cost. Let T be a solution given by the Farthest First Traversal Algorithm. Then we have that :

cost(T ∗) ≤ cost(T ) ≤ 2 ∗ cost(T ∗)

In other words, Farthest First Traversal Algorithm is 2-optimal for the k-center problem.
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Proof. Let cost(T ) = r = maxs∈X ρ(s, T ). There exists x0 ∈ X such that x0 = arg maxx∈X ρ(x, T ).

We set T ′ = T ∪ {x0}, and observe that ∀ti, tj ∈ T ′, ti 6= tj : ρ(ti, tj) ≥ r, because if x0 /∈ T ,

then during any iteration of the farthest first traversal algorithm, for the new center ti added to

T it must be true that ρ(ti, T ) ≥ r, otherwise x0 would be already added to T . We note that

|T ′| = k + 1 and |T ∗| = k. Because there are k elements in T ∗ covering k + 1 elements in T ′, by

the pigeonhole principle, there exists some t∗ ∈ T ∗ that covers at least two element t1, t2 ∈ T ′.

As ρ(t1, t2) ≥ r, by the triangle inequality, at least one of ρ(t1, t
∗) or ρ(t2, t

∗) is at least r
2 . This

implies: cost(T ∗) ≥ r
2 .

Remark: The algorithm that gives the an optimal solution to this problem isn’t a polynomial time

algorithm but is in fact NP-hard. Even a (2−ε)-approximation is NP-hard for general metric spaces.

Some related open problems: Hardness in Euclidean spaces. Is k-center problem still hard

in these spaces? Can we get better than 2-optimality? Is this the better algorithm to solve the

problem?

2.3 k-means problem

- Input: A set of n points x1, ....xn ∈ R and a positive integer k < n.

- Output: T ⊂ R s.t. |T | = k.

- Goal: minimize ”cost” of T where: cost(T ) :=
∑n

i=1 minµj∈T ‖xi − µj‖
2.

Solution:

- Exhaustive search (takes a long time, exponential complexity)

- Farthest First Traversal Algorithm?

- Lloyd’s method for the k-means (Here, T is the set of the centroids µj , j ∈ {1, ..., k}).

Algorithm 2 Lloyd k-means algorithm

Pick randomly x1, ..., xk from X
while stopping criteria not satisfied do

Assign points of the dataset to the closest center
Get the clusters C1, ..., Ck
Compute the new centrods µj = 1

|Cj |
∑

xi∈Cj
xi, ∀j ∈ {1, ..., k}

end while

Important: This is not an optimal solution of the k-means problem and we do not have any ap-

proximation guarantee on the solution: it is an unbounded approximation solution problem. This

is explained by the fact that you can find a local optimum as far as possible of the global optimum.

This illustrates the hardness of k-means theorem: k-means is a NP-hard optimization problem

(k-means ++).
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Example of k-means non-optimality: Consider the following setting and dataset where k = 2

and d = 1:

The dashed lines point to the current cluster centers, with 0 for the blue cluster and 28 for the red

cluster. On this setting, Lloyd’s algorithm makes no further improvement (it terminates after one

iteration), since the middle point at 16 is closer to the red cluster center 28 than to the blue cluster

center 0. And the total cost is 02+122+122 = 288. However, the optimal cluster center assignment

should be 8 for the blue cluster and 40 for the red cluster, which gives a cost of 82 + 82 + 02 = 128.

Thus, Lloyd’s algorithm does not give the optimal solution.
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