
COMS 4995: Unsupervised Learning (Summer’18) Jun 21 & 25, 2018

Lecture 10 & 11 – Tensor Decomposition

Instructor: Geelon So Scribes: Wenbo Gao, Xuefeng Hu

1 Method of Moments

Let X be data we observe generated by model with θ.

1. f(X) is a function that measures something about the data.

2. From our data, we can form an empirical estimate: Ê[f(X)]

3. Then, we solve an inverse problem — which θ satisfied: Eθ[f(X)] = Ê[f(X)].

This yields estimate θ of the model parameter.

2 Concerns

1. Identifiability: is determining the true parameters θ possible?

2. Consistency: will our estimate θ̂ converge to the true θ?

3. Complexity: how many samples? How much time? (for ε, δ)

4. Bias: How off is the model’s best?

3 Tensor Decompositions in Parameter Estimation

High level:

• Construct f(X) a tensor-valued function.

– Tensors have ’rigid’ structure, so identifiability becomes easier.

• There are efficient algorithms to decompose tensors.

– This allows us to retrieve model parameters.

4 Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and C?

Rotation Problem: If B and C are solutions, and R ∈ GL(k,R): then so are BR−1 and RC.

Thus, B and C are not unique (and so not identifiable).
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5 Motivating Example II: Topic Modeling

Notation: define the 3-way array M to be:

Mijk = P[x1 = i, x2 = j, x3 = k] =
t∑

h=1

whP
h
i P

h
j P

h
k

6 Motivating Examples: Comparison

Problem I

Ars =
k∑
i=1

BriCis

• [Ars] is an n×m matrix.

• Fixing i, [BriCis] is a n×m matrix with rank 1.

7 Outline

• Coordinate-free linear algebra

• Multilinear algebra and tensors

• SVD and low-rank approximations

• Tensor decompositions

• Latent variable models

8 Dual Vector Space

Definition 1. Let V be a finite-dimensional vector space over R. The dual vector space V ∗ is the

space of all real-valued linear functions f : V → R.

9 Vector Space and its Dual

How should we make sense of V and V ∗?

• V is the space of objects or states

– the dimension of V is how many degrees of freedom / ways for objects to be different

Example 2 (Traits). Let V be the space of personality traits of an individual.

• Perhaps, secretly, we know that there are k independent traits, so V = span(e1, . . . , ek)

• We can design tests e1, . . . , ek that measures how much an individual has those traits:

ei(ej) = δij
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Say Alice has personality trait v ∈ V . Then, her ith trait has magnitude:

αi := ei(v)

which is a scalar in R.

• Since v =
∑

i α
iei, we can represent her personality in coordinates with respect to the basis ei

by a 1D array

[v] =

α
1

...

αk

 .
On the other hand, say we have a personality test f ∈ V ∗.

• The amount that f tests for the ith trait is:

βi := f(ei),

which is a scalar.

The score Alice gets on the test f is then:

f(v) =
[
β1 · · ·βk

] α
1

...

αk

 =

k∑
i=1

αiβi.

Let’s introduce a machine T : V → V that takes in a person and purges them of all personality

except for the first trait, e1.

• i.e. T projects v ∈ V onto e1.

Thus, given v ∈ V the machine T :

1. measures the magnitude of trait e1 using e1 ∈ V ∗

2. outputs e1(v) attached to e1 ∈ V :

T (v) = e1 ⊗ e1(v)

where we informally use ⊗ to mean ’attach’.

Naturally, we say that T = e1 ⊗ e1.

The matrix representation of T = e1 ⊗ e1 is:

[T ] =


1 0 · · · 0

0 0
...

. . .

0 0

 .
The first row of [T ] determines what [Tv]1 is; indeed the first row is the dual vector e1.
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10 Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally substituted any (finite-dimensional)

abstract vector space V by some Rn.

• The price was coordinates, [v] =
∑

i α
iei.

• And real-valued linear map as 1× n matrix (more numbers).

However, if we begin to work with more complicated spaces and maps, coordinates might reduce

clarity.

• For now, just understand that V is a space of objects, while V ∗ is a space of devices that

make linear measurements.

• These are dual objects, and there is a natural way we can apply two dual objects to each

other.

11 Linear Transformations

More generally, let T : V → V be a linear transformation:

T : V → V = Re1 ⊕ · · · ⊕ Ren,

so we can decompose T into n maps, T i : V → Rei.

• But notice that Rei is isomorphic to R.

• So really, T i is a measurement in V ∗ (it produces a scalar), but we’ve attached output to the

vector ei:

ei ⊗ T i

• Recomposing T , we get:

T =
n∑
i=1

ei ⊗ T i.

Relying on how we usually use matrices, the ith row of [T ] gives the coordinate representation

of the dual vector T i ∈ V ∗ that we then attach to ei.

Definition 3. Let V ⊗ V ∗ be the vector space of all linear maps T : V → V .

• Objects in V ⊗ V ∗ are linear combination of v ⊗ f , where v ∈ V and f ∈ V ∗.

• The action of (v ⊗ f) on a vector u ∈ V is:

(v ⊗ f)(u) = v ⊗ f(u) = f(u) · u.
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12 Other views

Stepping back a bit, we have objects v ∈ V and dual objects f ∈ V ∗. We stuck them together

producing v ⊗ f . It is:

• a linear map V → V

• a linear map V ∗ → V ∗, with g 7→ g(v) · f

• a linear map V ∗ × V → R, with (g, u) 7→ g(v) · f(u)

13 Wire Diagram

14 Coordinate-Free Objects

Importantly, our definition of V , V ∗ and V ⊗ V ∗ are coordinate-free and do not depend on a basis.

Thus, each has ’physical reality’ outside of a basis:

• object

• measuring-device

• object-attached-to-measuring-device

15 Tensors

”God created the matrix. The Devil created the tensor.” — G. Ottaviani [O2014]

16 Tensors: definitions

1. coordinate-free

2. coordinate

3. formal

4. multilinear

17 The Matrix: physical picture

We can describe a matrix as this object in V ⊗ V ∗:
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18 Tensor Product: coordinate definition

The tensor product of Rn and Rm is the space

Rn ⊗ Rm = Rn×m.

If e1, . . . , en and f1, . . . , fm are their bases, then

ei ⊗ fj

form a basis on Rn ⊗ Rm.

We think of an element of Rn ⊗ Rm as an array of size n×m. Given any u ∈ Rn and v ∈ Rm,

their tensor product is:

(u⊗ v)ij = uivj ,

coinciding with the usual outer product uvT .

19 Tensor Product: formal definition

Definition 4. Let V and W be vector spaces. The tensor product V ⊗ W is the vector space

generated over elements of the form v ⊗ w modulo the equivalence:

(λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw)

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

where λ ∈ R and v, v1, v2 ∈ V and w,w1, w2 ∈W .

A general element of V ⊗W is of the form (nonuniquely):

∑̀
i=1

λivi ⊗ wi,

where λi ∈ R and vi ∈ V and wi ∈W .

Definition 5 (basis). Let v1, . . . , vn ∈ V and w1, . . . , wm ∈W be bases. Then, the elements of the

form

vi ⊗ wj

form a basis for V ⊗W , where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Definition 6. If V1, . . . , Vn are vector spaces, then V1 ⊗ · · · ⊗ Vn is the vector space generated by

taking the iterated tensor product

V1 ⊗ · · · ⊗ Vn := ((V1 ⊗ V2)⊗ V3)⊗ · · ·Vn).

• We say that a tensor in this tensor product space has order n.
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20 Tensor Product: coordinate picture

We arrive back to the picture of the n-dimensional array of coordinates. For example, here T ∈
U ⊗ V ⊗W is:

T =
∑
i,j,j

Tijkui ⊗ vj ⊗ wk.

21 Multilinear Function

Definition 7. Let V1, . . . , Vn,W be vector spaces. A map A : V1 × · · · × Vn → W is multilinear if

it is linear in each argument.

• That is, for all vk ∈ Vk and for all i,

A(v1, . . . , vi−1, ·, vi+1, . . . , vn) : Vi →W

is a linear map.

Exercise 8. If A : V1 × V2 × Vn → R is multilinear, is it linear? What is a basis of V1 × ... × Vn
as a vector space?

Answer Not linear, consider the following examples,

Example 9. Let f : R×R×R → R be defined by f(x, y, z) = xyz

Example 10. Let X : V × V ∗ → V × V ∗ be defined by X(v, f) = v × f

The above examples give demonstration that tells the multilinear map is often not a linear map.

To intuitively understand the relation between a multilinear map and a linear map, consider the

following examples:

Example 11. Let A : V1 × ...× Vn → R to be map, say V1 are the individual’s personality traits,

..., Vn are drugs the individual has taken, and A(v1, ..., vn) is how well the individual performs on

a test, given their characteristics v1, ..., vn.

Therefore, if A is multilinear, we have

A(v1, ..., 2vn) = 2A(v1, ..., vn)

and if A is linear, we have

A(v1, ..., 2vn) = A(v1, ..., vn) +A(0, ..., vn)

where a linear map suggest each of its coordinates are independent, while coordinates in a multi-

linear map is conceptually entangled together.
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22 Tensor Product: Curring, Vector Space and Contraction

Curring describes the operation to transform a multi-variable function into the compound of a

series of single-variable function chained together. For example, a 2-variable function f(x, y), we

can define maps

g : x→ fx

fx : y → f(x, y)

and therefore

f(x, y) = fx(y) = g(x)(y)

Therefore, consider the multilinear map A : V1 × ...× Vn → W , we can replace the object from V1
with the operation from V ∗1 , and therefore

A : V1 × ...× Vn →W

≡A : V ∗1 ⊗ V2 × ...× Vn →W

continue the above procedure we will finally have

A : V1 × ...× Vn →W

≡A : V ∗1 ⊗ ...⊗ V ∗n →W

Therefore, tensor product can be consider as a process to turn a linear map A : V1×...×Vn →W

into a multilinear map A : V ∗1 ⊗ ...⊗ V ∗n →W by attaches the objects v1 ∈ V1, ..., vn ∈ Vn together

into a single object v∗1 ⊗ ... ⊗ v∗n ∈ V ∗1 , ..., V ∗n , where V1, ..., Vn are vector spaces, and V1 ⊗ ... ⊗ Vn
itself can also be considered as a vector space.

Definition 12. Consider a type (m,n) tensor (m ≥ 1, n ≥ 1), which is an element from vector

space V ⊗...⊗V ⊗V ∗⊗...⊗V ∗, which includes m times of V and n times of V ∗. A (k, l) contraction

is a linear operation that applying the natural pairing on k-th V factor and l-th V ∗ factor and yield

a (m− 1, n− 1) type tensor as the result.

For example, consider a (1, 1) tensor f ⊗ v ∈ V ∗ ⊗ V , the (1, 1) contraction would be an linear

operation C : V ∗ ⊗ V → k, where k is the field of the natural pairing result, and in most cases

the natural pairing will be corresponding to the bilinear form 〈f, v〉 = f(v) and k will just be R.

Notice that V ∗⊗ V actually corresponding to the matrix space V × V , and the contraction will be

corresponding to the trace operation in this case.

23 Tensor Decomposition

Notations Let V ⊗d denotes the tensor space V ⊗ ...⊗V (d times), and let v⊗d denotes the elements

from V ⊗d

Definition 13. A tensor T ∈ V1 ⊗ ... ⊗ Vn is decomposable or pure if there are vectors v1 ∈
V1, ..., vn ∈ Vn such that:

T = v1 ⊗ ...⊗ vn

For example, let M ∈ V ⊗ V ∗ is decomposable, we have M = v ⊗ f .
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Figure 1: ”Most tensor problems are NP-hard”, Hillar, Lim,
[H2013]

Exercise 14. Describe the action of M ∈ V → V . What is its rank? What would its singular

value decomposition look like?

Physically, it is a ‘machine’ that is sensitive to one direction, and spits out a vector also only in

one direction. Therefore the rank of M is 1. However, what if M =
∑

i vi⊗ f i? Now we can define

the rank for tensors as follows,

Definition 15. The rank of a tensor T ∈ V1 ⊗ ...⊗ Vn is the minimum number r such that T is a

sum of r decomposable tensors:

T =
r∑
i=1

v
(i)
1 ⊗ ...⊗ v

(i)
1

The tensor rank coincides with the matrix rank. However, intuition from matrices don’t carry

over to tensors.

• row rank = column rank is generally false for tensors.

• rank ≤ minimum dimension is also false.

• For general n dimensional tensor, computing the rank of the tensor is NP-hard as shown in

Figure 1.

with the help of rank for tensors, now we can take a look at the singular value decomposition

(SVD) for tensors. Since we want to begin talking about SVD, we need a notion of inner product

on our space.
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24 Choice of Basis and Inner Product

Consider is a finite-dimensional vector space V , a choice of basis e1, ..., en ∈ V induces a set of basis

e1, ..., en ∈ V ∗, and also the inner product (and norm) on V and V ∗:

〈u, v〉V = [u]T [v]

〈f, g〉V ∗ = [f ][g]T

where the [u]T [v] and [f ][g]T means their coordinates with respect to the chosen standard basis.

Therefore, a choice of basis is (essentially) equivalent to a choice of inner product. In the

following, we can identify V , V ∗, and Rn.

25 SVD

Theorem 16 (SVD, coordinate). Any real m× n matrix has the SVD

A = UΣV >

where U and V > are orthogonal, and Σ = Diag(σ1, σ2...), with σ1 ≥ σ2 ≥ ... > 0

For simplicity, we’ll state the version for A ∈ V ⊗ V ∗, where adjoints are implicit due to the

identication of V with V ∗ (from the choice of basis).

Theorem 17 (SVD, coordinate-free). Let A ∈ V ⊗ V ∗. Then there is a decomposition (SVD)

A =
k∑
i=1

σi
(
vi ⊗ f i

)
where σ1 ≥ σ2 ≥ ... > 0 such that the vi’s are unit vectors and pairwise orthogonal, and similarly

for the fi’s.

Similar to what we have in PCA, SVD has a geometric intuition.

Theorem 18 (SVD, geometric). Let A ∈ Rm×n, and let UΣV > be its SVD, where Σ = Σ1+...+Σk

(with σ1 ≥ σ2 ≥ ... ≥ 0), then UΣ1V
> is the best rank-1 approximation of A:

‖A− UΣ1V
>‖F ≤ ‖A−X‖F

where X is any rank-1 matrix in Rm×n.

Therefore, we can iteratively generate UΣi+1V
> by finding the best rank-1 approximation of A

after being deflated of its first i singular values:

A−
i∑

j=1

UΣjV
>

However, a key problem in this process is how do you determine whether the rank of the tensor is

less than k? We first take a look at several ways to determine the rank of matrices,
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• Determinants of k × k minors.

• The determinant is a polynomial equation over the ei ⊗ f j ’s.

• The subset of m× n matrices:

Mk = {m× n matrices of rank ≤ k}

is the zero set of some set of polynomial equations.

Note that the Mk’s contain each other:

0 =M0 ⊂M1 ⊂ ... ⊂Mmin (m,n) = Rm×n

a following result gives relation between SVD and ranks,

Theorem 19 (Eckart-Young). Let A = UΣV > be the SVD and 1 ≤≤ rank(A). Then, All critical

points of the distance function from A to the (smooth) variety Mr\Mr−1 are given by:

U (Σi1 + ...+ Σir)V
>

where 1 ≤ ip ≤ rank(A). If the nonzero singular values of A are distinct, then the number of critical

points is
(rank(A)

k

)
.

For tensors, now we see use a tensor style notation to see the SVD of matrix A ∈ Rm×n

A = Σ(̇U, V )

where Σ ∈ Rm×n is diagonal, and U ∈ Rm×m and V ∈ Rn×n are unitary. Similarly, we have the

Tucker decomposition for A ∈ Rn1×...×np :

A = Σ(̇U1, ..., Up)

where Σ ∈ Rm×n is diagonal, U1 ∈ Rn1×n1 ,..., Up ∈ Rnp×np are unitary. However, several problems

occurs when we want to extend the best rank r approximation from matrices to tensors:

• The set of rank k tensors Mk may not be a closed set, so minimizer might not exist.

• The best rank-1 tensor may have nothing to do with the best rank-k tensor.

• Deflating by the best rank-1 tensor may increase the rank.

To get rid of those problems, a border Rank definition is suggested:

Definition 20. The border rank R(T ) of a tensor T is the minimum r such that T is the limit of

tensors of rank r. If R(T ) = R(T ), we say that T is an open boundary tensor (OBT).

While no direct analog of SVD theorem is possible on tensors, there are a few generalizations.

We can relax Tucker’s criteria:

• Higher-order SVD: Σ no longer has to be diagonal.

• CP decomposition: U, V,W no longer need to be orthonormal.
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26 Symmetric and Odeco Tensors

Now we may try to find which kind of tensors in V ⊗d have a ’eigendecomposition’:

λ1v
⊗d
1 + ...+ λkv

⊗d
k

where vi’s form a Inspired by the Spectral Theorem for matrices,

Definition 21. Let Pd defines a group of permutation on d objects, if σ ∈ Pd, it acts elements in

V ⊗d by

σ(v1 ⊗ ...⊗ vd)→ vσ(1) ⊗ ...⊗ vσ(d)

Definition 22. Symmetric Subspace SdV of symmetric tensors in V ⊗d is the collection of tensors

invariant to permutations σ ∈ Gd:

SdV := {T ∈ V ⊗d : σ(T ) = T}

Then, we define what is orthogonally decomposable for tensors:

Definition 23. A symmetric tensor T ∈ SdV is orthogonally decomposable (ODECO) if it can be

written as:

T =

k∑
i=1

λiv
⊗d
i

where the vi ∈ V form an orthonormal basis of V .

Since SdV is just set of symmetric matrices when d = 2, then by spectral theorem all S2V are

odeco. For d ≥ 2, we have the following theorem

Theorem 24 (Alexander-Hirschowitz). For d > 2, the generic symmetric rank RS of a tensor in

SdCn is equal to:

RS

[
1

n

(
n+ d− 1

d

)]
,

except when (d, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)},where it should be increased by 1. From the

theorem, we can note that the rank of a tensor over C lower bounds the rank of a tensor over R.

While Odeco tensors must have rank n implies that not all of SdV are Odeco, in fact:

Lemma 25. The dimension of the odeco variety in SdCn is
(
n+1
2

)
, and The dimension of SdCn is(

n+d+1
d

)
Again, in general finding a symmetric decomposition of a symmetric tensor is NP-hard. How-

ever, the lucky news is that it is computationally efficient for odeco tensors with the power method.

27 Power Method

Definition 26. Let T ∈ SdV . A unit vector v ∈ V is an eigenvector of T with eigenvalue λ ∈ R
if:

T · v⊗d−1 = λv
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for example, if T = e⊗d1 . Its eigenvectors will be those v ∈ V such that :

T · v⊗d−1 = (e1 ⊗ ...⊗ e1) · (v ⊗ ...⊗ v)

= (e1 · v)d−1 ⊗ e1
= e1(v)d−1e1

= λe1

which implies the only eigenvector for T is e1. Notice when d = 2, it becomes

T · v = λv

which coincide the definition of eigenvectors for matrices.

Since we can always normalize the eigenvectors by adjusting the corresponding eigenvalue, we

now require the eigenvector v’s to have unit length.

Definition 27. Let T ∈ SdV . A unit vector v ∈ V is a robust eigenvector of T if there is a closed

ball B of radius ε > 0 centered at v such that for all v0 ∈ B, the repeated iteration of the map:

φ := u→ T · u⊗d−1

‖T · u⊗d−1‖

converges to v, which implies an alternative definition of the robust eigenvectors: the attracting

fixed points of φ.

With robust eigenvectors, we have the following results:

Theorem 28. Suppose T ∈ S3Rn is odeco, T =
∑d

i=0 λiv
⊗3
i

• The set of u ∈ Rn that do not converge to some vi under repeated iteration of φ has measure

zero.

• The set of robust eigenvectors of T is equal to {v1, ..., vk}.

which implies the following corollary,

Corollary 29. Suppose T ∈ S3Rn is odeco, its decomposition is unique.

Specifically, the robust eigenvectors of matrices M ∈ S2Rn would just be the (normalized)

eigenvectors.

By the above results, now we have the power method to estimate the robust eigenvectors.

Suppose that u ∈ Rn satisfies

|λ〈v1, u〉| > |λ〈v2, u〉| ≥ ...

Denote by φ(t)(u) the output of t repeated iteration of φ on u. We should have

‖v1 − φ(t)(u)‖2 ≤ O
(
|λ2〈v2, u〉
λ1〈v2, u〉

|2t
)

which means that u converges to v1 as a quadratic rate. (an interesting fact for d = 2 is the rate

is linearly upper bounded by λ1
λ2

.)
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Algorithm 1: Tensor Power Method

Input: T ∈ SdRn an odeco tensor with d > 2
1 Set E ← {};
2 repeat;
3 Choose random u ∈ Rn;
4 Iterate u← φ(u) until convergence;

5 Compute λ using Tu⊗d−1 = λu;

6 T ← T − λu⊗d;
7 E ← E ∪ {(λ, u)};
8 until T = 0;
9 return E;

However, In estimating an odeco tensor T , we might produce a tensor T that is not odeco,

and therefore we might need an power method to estimate the robust eigenvectors of T Where the

following facts follows:

• T̂ = T + E ∈ S3Rk symmetric; T =
∑k

i=0 λiv
⊗3
i odeco.

• λmin and λmax the min/max λi’s.

• ‖E‖op ≤ ε

and we have the theorem:

Theorem 30 (Thm. 5.1, A2014). Let δ ∈ (0, 1), if ε = O
(
λmin
k

)
, N = Ω

(
log k + log log

(
λmax
ε

))
and L = ploy(k) log

(
1
ε

)
, running RTPMk will yield, w.p. 1− δ,

‖vi, v̂i‖ = O

(
ε

λi

)
|λi, λ̂i| = O(ε)

‖T −
k∑
i=0

λ̂jv
⊗3
j ‖ ≤ O(ε)
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Figure 2: Topic Model

28 Back to Topic Model

Now consider back the topic model setting, where we have t topics, d-sized vocabulary and some 3

words long documents.

• topic h is chosen with probability wh

• words xi’s are conditionally independent on topic h, according to probability distribution

P h ∈ ∆d−1, as shown in figure 2.

Therefore, we can use tensor to represent the data. From d words, e1, ...., ed generates the vector

space of all ”words object”

V = Re1 ⊕ ...⊕ Red = Rd

We interpret x ∈ V as a probability vector, where the weight on the ith coordinate is the probability

the word is ei. Then, the 3 words documents space can be defined as V ⊗3, where

• Since we assume that the choice of 3 words in a single document is conditionally independent,

this means that expectation is multilinear.

• In particular, let x1, x2, x3 be the random variable for the words in a document:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j] = µi ⊗ µj

and we have the following result by [A2012],

Theorem 31. If M2 := E[x1 ⊗ x2],M3 := E[x1 ⊗ x2 ⊗ x3], then

M2 =
k∑
i=0

wiµ
⊗2
i

M3 =
k∑
i=0

wiµ
⊗3
i
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29 Whitening

We are almost at a point where we can use the Robust Tensor Power Method to deduce the

probabilities i (i.e. the robust eigenvectors) and the weights wi (i.e. the eigenvalues). However,

we need to make sure the µi’s are orthonormal. We can take advantage of M2, which is just an

invertible matrix, conditioned upon:

• the vectors µ1, ..., µk ∈ Rd are linearly independent,

• the weights w1, ..., wk > 0 are strictly positive.

If the condition is satisfied, then there exists W such that:

M2 · (W,W ) = I

so that setting µi =
√
wiW

>µi forms a set of orthonormal vectors. It then follows that:

M · (W,W,W ) =
k∑
i=0

1
√
wi
µ⊗3i

Get back to the LDA model in lecture 11, define the following

• M1 := E[x1]

• M2 := E[x1 ⊗ x2]− α0
α0+1M1 ⊗M1

• M3 := E[x1]− α0
α0+2 (E[x1 ⊗ x2 ⊗M1] + ...+ E[M1⊗ x1 ⊗ x2]) +

2α2
0

(α0+1)(α0+2)M
⊗3
1

Therefore, by [A2012], we have

Theorem 32. Let M1,M2,M3 as above, Then:

M2 =

k∑
i=0

αi
(α0 + 1)α0

µ⊗2i

M3 =

k∑
i=0

2αi
(α0 + 2)(α0 + 1)α0

µ⊗3i
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