1

Kernel Regression

Advanced Methods for Data Analysis (36-402/36-608)
Spring 2014

Linear smoothers and kernels

Recall our basic setup: we are given i.i.d. samples (x;,y;), ¢ = 1,...n from the model
yi:r(xi)+€i7 izla"'nv

and our goal is to estimate r with some function #. Assume for now that each z; € R (i.e., the
predictors are 1-dimensional)

We talked about consider 7 in the class of linear smoothers, so that

n

i(z) = wlz,)y (1)

i=1
for some choice of weights w(z, ;). Indeed, both linear regression and k-nearest-neighbors are
special cases of this

Here we will examine another important linear smoother, called kernel smoothing or kernel
regression. We start by defining a kernel function K : R — R, satisfying

/K(x)dle, K(z) = K(—x)

Three common examples are the box kernel:

Ki(z) = {1/2 if 2] <1

0 otherwise ’

the Gaussian kernel:

K(z) = —— exp(—a?/2),

1
V2w
and the Epanechnikov kernel:

4(1—22) if Jz| <1
Koy B0 =) i el <
0 else
Given a choice of kernel K, and a bandwidth h, kernel regression is defined by taking
K (25*)
S K ()
in the linear smoother form (1). In other words, the kernel regression estimator is
AN Z?:lK(Iih_m)'yi
7"(1[,’) - n T;—x
> K (57%)

w(z,z;) =

What is this doing? This is a weighted average of y; values. Think about laying doing a
Gaussian kernel around a specific query point x, and evaluating its height at each x; in order
to determine the weight associate with y;

Because these weights are smoothly varying with x, the kernel regression estimator #(x) itself
is also smoothly varying with x; compare this to k-nearest-neighbors regression

What’s in the choice of kernel? Different kernels can give different results. But many of the
common kernels tend to produce similar estimators; e.g., Gaussian vs. Epanechnikov, there’s
not a huge difference

A much bigger difference comes from choosing different bandwidth values h. What’s the
tradeoff present when we vary h? Hint: as we’ve mentioned before, you should always keep
these two quantities in mind ...

Bias and variance of kernels
At a fixed query point z, recall our fundamental decomposition
E[TestErr(#(x))] = E[(Y — #(2))°| X = «]
= 0 + Bias(#(x))? + Var(#(x)).
So what is the bias and variance of the kernel regression estimator?

Fortunately, these can actually roughly be worked out theoretically, under some smoothness
assumptions on r (and other assumptions). We can show that

Bias(#(x))? = (E[f(z)] — r(x))* < C1h?
and
Co
%a
for some constants C; and Cs. Does this make sense? What happens to the bias and variance
as h shrinks? As h grows?

Var(7(z)) <

This means that

Cy

e

We can find the best bandwidth h, i.e., the one minimizing test error, by differentiating and
setting equal to O: this yields

E[TestErr(7(x))] = 0 + C1h? +

- 201711/3 '
Is this is a realistic choice for the bandwidth? Problem is that we don’t know C; and Cb!
(And even if we did, it may not be a good idea to use this ... why?)

h

Practical considerations, multiple dimensions

In practice, we tend to select h by, you guessed it, cross-validation

Kernels can actually suffer bad bias at the boundaries ... why? Think of the asymmetry of
the weights

e In multiple dimensions, say, each z; € RP, we can easily use kernels, we just replace z; — x in
the kernel argument by |z; — z||2, so that the multivariate kernel regression estimator is

Z:‘L:l K (Hﬂ?i;ﬂb) i
i (e

P(x)

e The same calculations as those that went into producing the bias and variance bounds above
can be done in this multivariate case, showing that

and

Why is the variance so strongly affected now by the dimension p? What is the optimal h, now?

e A little later we’ll see an alternative extension to higher dimensions that doesn’t nearly suffer
the same variance; this is called an additive model

