
Kernel Regression

Advanced Methods for Data Analysis (36-402/36-608)

Spring 2014

1 Linear smoothers and kernels

• Recall our basic setup: we are given i.i.d. samples (xi, yi), i = 1, . . . n from the model

yi = r(xi) + εi, i = 1, . . . n,

and our goal is to estimate r with some function r̂. Assume for now that each xi ∈ R (i.e., the
predictors are 1-dimensional)

• We talked about consider r̂ in the class of linear smoothers, so that

r̂(x) =

n∑
i=1

w(x, xi) · yi (1)

for some choice of weights w(x, xi). Indeed, both linear regression and k-nearest-neighbors are
special cases of this

• Here we will examine another important linear smoother, called kernel smoothing or kernel
regression. We start by defining a kernel function K : R→ R, satisfying∫

K(x) dx = 1, K(x) = K(−x)

• Three common examples are the box kernel:

K(x) =

{
1/2 if |x| ≤ 1

0 otherwise
,

the Gaussian kernel:

K(x) =
1√
2π

exp(−x2/2),

and the Epanechnikov kernel:

K(x) =

{
3/4(1− x2) if |x| ≤ 1

0 else

• Given a choice of kernel K, and a bandwidth h, kernel regression is defined by taking

w(x, xi) =
K
(
xi−x
h

)∑n
j=1K

(
xj−x

h

)
in the linear smoother form (1). In other words, the kernel regression estimator is

r̂(x) =

∑n
i=1K

(
xi−x
h

)
· yi∑n

i=1K
(
xi−x
h

)
1

• What is this doing? This is a weighted average of yi values. Think about laying doing a
Gaussian kernel around a specific query point x, and evaluating its height at each xi in order
to determine the weight associate with yi

• Because these weights are smoothly varying with x, the kernel regression estimator r̂(x) itself
is also smoothly varying with x; compare this to k-nearest-neighbors regression

• What’s in the choice of kernel? Different kernels can give different results. But many of the
common kernels tend to produce similar estimators; e.g., Gaussian vs. Epanechnikov, there’s
not a huge difference

• A much bigger difference comes from choosing different bandwidth values h. What’s the
tradeoff present when we vary h? Hint: as we’ve mentioned before, you should always keep
these two quantities in mind ...

2 Bias and variance of kernels

• At a fixed query point x, recall our fundamental decomposition

E[TestErr(r̂(x))] = E
[(
Y − r̂(x)

)2∣∣X = x
]

= σ2 + Bias(r̂(x))2 + Var(r̂(x)).

So what is the bias and variance of the kernel regression estimator?

• Fortunately, these can actually roughly be worked out theoretically, under some smoothness
assumptions on r (and other assumptions). We can show that

Bias(r̂(x))2 =
(
E[r̂(x)]− r(x)

)2 ≤ C1h
2

and

Var(r̂(x)) ≤ C2

nh
,

for some constants C1 and C2. Does this make sense? What happens to the bias and variance
as h shrinks? As h grows?

• This means that

E[TestErr(r̂(x))] = σ2 + C1h
2 +

C2

nh
.

We can find the best bandwidth h, i.e., the one minimizing test error, by differentiating and
setting equal to 0: this yields

h =
C2

2C1n1/3
.

Is this is a realistic choice for the bandwidth? Problem is that we don’t know C1 and C2!
(And even if we did, it may not be a good idea to use this ... why?)

3 Practical considerations, multiple dimensions

• In practice, we tend to select h by, you guessed it, cross-validation

• Kernels can actually suffer bad bias at the boundaries ... why? Think of the asymmetry of
the weights

2

• In multiple dimensions, say, each xi ∈ Rp, we can easily use kernels, we just replace xi − x in
the kernel argument by ‖xi − x‖2, so that the multivariate kernel regression estimator is

r̂(x) =

∑n
i=1K

(
‖xi−x‖2

h

)
· yi∑n

i=1K
(
‖xi−x‖2

h

)
• The same calculations as those that went into producing the bias and variance bounds above

can be done in this multivariate case, showing that

Bias(r̂(x))2 ≤ C̃1h
2

and

Var(r̂(x)) ≤ C̃2

nhp
.

Why is the variance so strongly affected now by the dimension p? What is the optimal h, now?

• A little later we’ll see an alternative extension to higher dimensions that doesn’t nearly suffer
the same variance; this is called an additive model

3

