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Lecture 7: Weak Duality
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7.1 Lagrange Dual problem

7.1.1 Primal problem

In this section, we consider a possibly non-convex optimization problem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m, (7.1)

where the functions f0, f1, . . . , fm We denote by D the domain of the problem (which is the
intersection of the domains of all the functions involved), and by X ⊆ D its feasible set.

We will refer to the above as the primal problem, and to the decision variable x in that
problem, as the primal variable. One purpose of Lagrange duality is to find a lower bound
on a minimization problem (or an upper bounds for a maximization problem). Later, we
will use duality tools to derive optimality conditions for convex problems.

7.1.2 Dual problem

Lagrangian. To the problem we associate the Lagrangian L : Rn×Rm → R, with values

L(x, λ) := f0(x) +
m∑
i=1

λifi(x)

The variables λ ∈ Rm, are called Lagrange multipliers.
We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded below by

L(x, λ):
∀ x ∈ X , ∀ λ ∈ Rm

+ : f0(x) ≥ L(x, λ). (7.2)

The Lagrangian can be used to express the primal problem (7.1) as an unconstrained one.
Precisely:

p∗ = min
x

max
λ≥0, ν

L(x, λ), (7.3)

where we have used the fact that, for any vectors f ∈ Rm, we have

max
λ≥0

λTf =

{
0 if f ≤ 0
+∞ otherwise.
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Lagrange dual function. We then define the Lagrange dual function (dual function for
short) the function

g(λ) := min
x
L(x, λ).

Note that, since g is the pointwise minimum of affine functions (L(x, ·) is affine for every x),
it is concave. Note also that it may take the value −∞.

From the bound (7.2), by minimizing over x in the right-hand side, we obtain

∀ x ∈ X , ∀ λ ≥ 0 : f0(x) ≥ min
x′
L(x′, λ, ) = g(λ),

which, after minimizing over x the left-hand side, leads to the lower bound

∀ λ ∈ Rm
+ , ν ∈ Rp : p∗ ≥ g(λ).

Lagrange dual problem. The best lower bound that we can obtain using the above
bound is p∗ ≥ d∗, where

d∗ = max
λ≥0, ν

g(λ).

We refer to the above problem as the dual problem, and to the vector λ ∈ Rm as the dual
variable. The dual problem involves the maximization of a concave function under convex
(sign) constraints, so it is a convex problem. The dual problem always contains the implicit
constraint λ ∈ dom g.

We have obtained:

Theorem 1 (Weak duality). For the general (possibly non-convex) problem (7.1),weak
duality holds: p∗ ≥ d∗.

Case with equality constraints. If equality constraints are present in the problem, we
can represent them as two inequalities. It turns out that this leads to the same dual, as if we
would directly use a single dual variable for each equality constraint, which is not restricted
in sign. To see this, consider the problem

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
hi(x) = 0, i = 1, · · · , p.

We write the problem as

p∗ := min
x

f0(x) : fi(x) ≤ 0, i = 1, · · · ,m,
hi(x) ≤ 0, −hi(x) ≤ 0, i = 1, · · · , p.

Using a mulitplier ν±i for the constraint ±hi(x) ≤ 0, we write the associated Lagrangian as

L(x, λ, ν+, ν−) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

ν+i hi(x) +

p∑
i=1

ν−i (−hi(x))

= f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x),
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where ν := ν+ − ν− does not have any sign constraints.
Thus, inequality constraints in the original problem are associated with sign constraints

on the corresponding multipliers, while the multipliers for the equality constraints are not
explicitly constrained.

7.1.3 Minimax inequality

Weak duality can also be obtained as a consequence of the following minimax inequality,
which is valid for any function φ of two vector variables x, y, and any subsets X , Y :

max
y∈Y

min
x∈X

φ(x, y) ≤ min
x∈X

max
y∈Y

φ(x, y). (7.4)

To prove this, start from

∀ x, y : min
x′∈X

φ(x′, y) ≤ max
y′∈Y

φ(x, y′).

and take the minimum over x ∈ X on the right-hand side, then the maximum over y ∈ Y
on the left-hand side.

Weak duality is indeed a direct consequence of the above. To see this, start from the
unconstrained formulation (7.3), and apply the above inequality with φ = L the Lagrangian
of the original problem, and y = λ the vector of Lagrange multipliers.

Interpretation as a game. We can interpret the minimax inequality result in the context
of a one-shot, zero-sum game. Assume that you have two players A and B, where A controls
the decision variable x, while B controls y. We assume that both players have full knowledge
of the other player’s decision, once it is made. The player A seeks to minimize a payoff (to
player B) L(x, y), while B seeks to maximize that payoff. The right-hand side in (7.4) is the
optimal pay-off if the first player is required to play first. Obviously, the first player can do
better by playing second, since then he or she knows the opponent’s choice and can adapt
to it.

7.2 Examples

7.2.1 Linear optimization problem

Inequality form. Consider the LP in standard inequality form

p∗ = min
x

cTx : Ax ≤ b,

where A ∈ Rm×n, b ∈ Rm, and the inequality in the constraint Ax ≤ b is interpreted
component-wise.
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The Lagrange function is

L(x, λ) = cTx+ λT (Ax− b)

and the corresponding dual function is

g(λ) = min
x
L(x, λ) =

{
−bTλ if ATλ+ c = 0
+∞ otherwise.

The dual problem reads

d∗ = max
λ

g(λ) = max
λ
−bTλ : λ ≥ 0, ATλ+ c = 0.

The dual problem is an LP in standard (sign-constrained) form, just as the primal problem
was an LP in standard (inequality) form.

Weak duality implies that
cTx+ bTλ ≥ 0

for every x, λ such that Ax ≤ b, ATλ = −c. This property can be proven directly, by
replacing c by −ATλ in the left-hand side of the above inequality, and exploiting Ax ≤ b
and λ ≥ 0.

Standard form. We can also consider an LP in standard form:

p∗ = min
x

cTx : Ax = b, x ≥ 0.

The equality constraints are associated with a dual variable ν that is not constrained in the
dual problem.

The Lagrange function is

L(x, λ, ν) = cTx− λTx+ νT (b− Ax)

and the corresponding dual function is

g(λ) = min
x
L(x, λ, ν) =

{
bTν if c = ATν + λ
+∞ otherwise.

The dual problem reads

d∗ = max
λ≥0, ν

g(λ, ν) = max
ν

bTν : c ≥ ATν.

This is an LP in inequality form.

7-4



EE 227A Lecture 7 — February 7, 2012 Spring 2012

7.2.2 Minimum Euclidean distance problem

Consider the problem of minimizing the Euclidean distance to a given affine space:

min
1

2
‖x‖22 : Ax = b, (7.5)

where A ∈ Rp×n, b ∈ Rp. We assume that A is full row rank, or equivalently, AAT � 0. The
Lagrangian is

L(x, ν) =
1

2
‖x‖22 + νT (Ax− b),

and the Lagrange dual function is

g(ν) = min
x
L(x, ν) = min

x

1

2
‖x‖22 + νT (Ax− b).

In this example, the dual function can be computed analytically, using the optimality con-
dition ∇xL(x, ν) = x+ ATν = 0. We obtain x = −ATν, and

g(ν) = −1

2
νTAATν − bTν.

The dual problem expresses as

d∗ = max
ν

g(ν) = max
ν
−1

2
νTAATν − bTν.

The dual problem can also be solved analytically, since it is unconstrained (the domain of g
is the entire space Rp). We obtain ν∗ = −(AAT )−1b, and

d∗ =
1

2
bT (AAT )−1b.

We have thus obtained the bound p∗ ≥ d∗.

7.2.3 A non-convex boolean problem

For a given matrix W = W T � 0, we consider the problem

p∗ = max
x

xTWx : x2i ≤ 1, i = 1, . . . , n.

Lagrange relaxation. In this maximization problem, Lagrange duality will provide an
upper bound on the problem. This is called a “relaxation”, as we go above the true maximum,
as if we’d relax (ignore) constraints.
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Lagrange dual. The Lagrangian writes

L(x, λ) = xTWx+
n∑
i=1

λi(1− x2i ) = TrDλ + xT (W −Dλ)x.

where Dλ := diag(λ).
To find the dual function, we need to maximize the Lagrangian with respect to the primal

variable x. We express this problem as

g(λ) = max
x
L(x, λ) = min

t
t : ∀ x, t ≥ TrDλ + xT (W −Dλ)x.

The last inequality holds if and only if(
Dλ −W 0

0 t−TrDλ

)
� 0.

Hence the dual function is the optimal value of an SDP in one variable:

g(λ) = min
t

t :

(
Dλ −W 0

0 t−TrDλ

)
� 0.

We can solve this problem explicitly:

g(λ) =

{
TrDλ if Dλ � W
−∞ otherwise.

The dual problem involves minimizing (that is, getting the best upper bound) the dual
function over the variable λ ≥ 0:

d∗ = min
λ

λT1 : diag(λ) � W.

The above is an SDP, in variable λ. Note that λ > 0 is automatically enforced by the PSD
constraint.

Geometric interpretation. The Lagrange relaxation of the primal problem can be in-
terpreted geometrically, as follows. For t > 0, λ > 0, consider the ellipsoids

Et =
{
x : xTWx ≤ t

}
, Eλ =

{
x : xTDλx ≤ TrDλ

}
.

The primal problem amounts to find the smallest t ≥ 0 for which the ellipsoid Et contains
the ball B∞ := {x : ‖x‖∞ ≤ 1}. Note that for every λ > 0, Eλ contains the ball B∞. To
find an upper bound on the problem, we can find the smallest t for which there exist λ > 0
such that Et ⊇ Eλ. The latter condition is precisely diag(λ) � W , t ≥ TrDλ.
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Figure 7.1. Geometric interpretation of dual problem in the boolean quadratic problem. In 2D the relax-
ation turns out to be exact.

7.3 More on non-convex quadratic optimization

The Boolean problem examined previously is part of a general class of non-convex quadratic
problems of the form

p∗ := max
x

q0(x) : qi(x) ≤ 0, i = 1, . . . ,m, (7.6)

where x ∈ Rn is the decision variable, and qi’s are quadratic functions, of the form

qi(x) := xTQix+ 2qTi x+ pi, i = 1, . . . ,m,

Lagrange relaxation. The idea is that if, for a given m-vector λ ≥ 0, and scalar t, we
have

∀ x : q0(x) ≤
m∑
i=1

λiqi(x) + t,

then for every x that is feasible for (7.6), the sum in the above is non-positive. Hence,
q0(x) ≥ t, so that t is an upper bound on our problem. The condition above is easy to check,
as it involves a single quadratic function: indeed, it is equivalent to the LMI in (t, λ):(

Q0 q0
qT0 r0

)
�

m∑
i=1

λi

(
Qi qi
qTi ri

)
+

(
0 0
0 t

)
. (7.7)

Hence, the best upper bound that we can achieve using this approach is the SDP

min
t,λ

t : (7.7), λ ≥ 0.
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The S-lemma. This mysterious name corresponds to a special case of non-convex quadratic
optimization, where there is only a single constraint. (Refer to appendix B of [BV] for more
details.) The problem bears the form

max
x

q0(x) : q1(x) ≤ 0,

where both q0, q1 are arbitrary quadratic functions. The S-lemma states that if there exist
a point x ∈ Rn such that q1(x) < 0, then the Lagrange relaxation is exact. The latter has
the form of an SDP:

min
t,λ

t :

(
Q0 q0
qT0 r0

)
� λ

(
Q1 q1
qT1 r1

)
+

(
0 0
0 t

)
, λ ≥ 0. (7.8)

This shows in particular that the apparently non-convex problem of finding the direction
of maximal variance for a given covariance matrix Σ is actually convex. Lagrange relaxation
for the problem

max
x : ‖x‖2=1

xTΣx

yields the dual problem (check this!)

min
t

t : tI � Σ.

From the S-lemma, the bound is exact. The S-lemma has many other applications.

Exercises

Figure 7.2. Localization problem with three range measurements in two dimensions.
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1. Anchor localization. We are given anchor positions xi ∈ R3, and associated distances
from these anchor points to an unknown object, Ri, i = 1, . . . ,m. The problem is to
estimate a position of the object, and associated measure of uncertainty around the
estimated point. Geometrically, the measurements imply that the object is located at
the intersection of the m spheres of centers xi and radiuses Ri, i = 1, . . . ,m. The main
problem is to provide one point in the intersection located at some kind of “center”,
and also a measure of the size of the intersection.

In this problem, we seek to compute an outer spherical approximation to the inter-
section, that is, a sphere of center x0 and radius R0, of minimal volume, such that it
contains the intersection.

(a) First show how to find a point in the intersection, or determine it is empty,
via SOCP. To simplify, and without loss of generality, we assume from now on
that 0 is inside the intersection. This means that the vector z with components
zi := R2

i − xTi xi, i = 1, . . . ,m, is non-negative componentwise.

(b) A first approach, which works well only in moderate dimensions (2D or 3D), simply
entails gridding the boundary of the intersection. In 2D, we can parametrize the
boundary explicitly, as a curve, using an angular parameter. For each angular
direction θ ∈ [0, 2π], we can easily find the point that is located on the boundary
of the intersection, in the direction given by θ: we simply maximize t such that
the point (t cos θ, t sin θ) is inside everyone of the spheres. (There is an explicit
formula for the maximal value.)

One we have computed N points on the boundary, x(k), k = 1, . . . , N , we simply
solve the SOCP

min
x0,R0

R0 : R0 ≥ ‖x0 − x(k)‖2, k = 1, . . . , N.

Compare the results with a uniform gridding of 13 and 63 points. Use the data

X = (x1, x2, x3) =

(
−0.46 0.19 0.48
0.03 0.54 −0.49

)
,

RT = (R1, R2, R3) =
(

0.5 0.6 0.85
)
.

(c) Show that the optimal (minimum-volume) spherical approximation can be ob-
tained by solving

R2
0 = min

x0
max
x

{
‖x− x0‖22 : ‖x− xi‖22 ≤ R2

i , i = 1, . . . ,m
}
.

(d) Using Lagrange relaxation, show that an upper bound on the optimal radius can
be obtained as

min
x0,y

F (x0, y), with F (x0, y) :=
m∑
i=1

yiR
2
i + max

x

(
‖x− x0‖22 −

m∑
i=1

yi‖x− xi‖22

)
.
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(e) Show that

F (x0, y) =


xT0 x0 + yT z +

‖Xy−x0‖22∑m
i=1 yi−1

if
∑m

i=1 yi > 1,

xT0 x0 + yT z if
∑m

i=1 yi = 1, x0 = Xy,
+∞ otherwise.

(f) Solve the problem via CVX, and compare your approximation with the gridding
approach.

2. Reachable sets for discrete-time dynamical systems. Consider the discrete-time linear
system

x(t+ 1) = Ax(t) +Bp(t), t = 0, 1, 2, . . .

where A ∈ Rn×n and B ∈ Rn×np . We assume that the initial condition x(0) is zero,
while the signal p is considered to be noise, and is only known to be norm-bounded,
precisely ‖p(t)‖2 ≤ 1 for ever t ≥ 0. The goal of reachability analysis is to come up
with bounds on the state at a certain time T .

We seek a minimum-volume sphere S that is guaranteed to contain x(T ), irrespective of
the values of the perturbation signal p(t) within its bounds. By applying the recursion,
we can express x(T ) as a linear combination of p(0), . . . , p(T − 1):

x(T ) =
T−1∑
t=0

AtBp(t) = Lp,

where p = (p(0), . . . , p(T − 1)), and L := [L(0), . . . , L(T − 1)], with L(t) := AtB.

(a) Show that a sufficient condition for S to contain the state vector at time T is

∃ λ ≥ 0 : ∀ p = (p(0), . . . , p(T − 1)), pTLTLp ≤ R2
0 +

T−1∑
t=0

λ(t)(p(t)Tp(t)− 1).

(b) Show how to compute the best approximation based on the condition above, via
SDP.
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