
An intoductory tutorial on kd-trees

Andrew W. Moore

Carnegie Mellon University

awm@cs.cmu.edu

Extract from Andrew Moore's PhD Thesis: E�cient Memory-based Learning for Robot Control

PhD. Thesis; Technical Report No. 209, Computer Laboratory, University of Cambridge. 1991.

Chapter 6

Kd-trees for Cheap Learning

This chapter gives a speci�cation of the nearest neighbour algorithm. It also gives

both an informal and formal introduction to the kd-tree data structure. Then there

is an explicit, detailed account of how the nearest neighbour search algorithm is

implemented e�ciently, which is followed by an empirical investigation into the al-

gorithm's performance. Finally, there is discussion of some other algorithms related

to the nearest neighbour search.

6.1 Nearest Neighbour Speci�cation

Given two multi-dimensional spaces Domain = <kd and Range = <kr , let an exemplar be a

member of Domain � Range and let an exemplar-set be a �nite set of exemplars. Given an

exemplar-set, E, and a target domain vector, d, then a nearest neighbour of d is any. exemplar

(d0; r0) 2 E such that None-nearer(E;d;d0). Notice that there might be more than one suit-

able exemplar. This ambiguity captures the requirement that any nearest neighbour is adequate.

None-nearer is de�ned thus:

None-nearer(E;d;d0) , 8(d00; r00) 2 E j d� d0 j�j d� d00 j (6.1)

In Equation 6.1 the distance metric is Euclidean, though any other Lp-norm could have been used.

j d � d0 j=
vuuti=kdX

i=1

(di � d0i)2 (6.2)

where di is the ith component of vector d.

In the following sections I describe some algorithms to realize this abstract speci�cation with

the additional informal requirement that the computation time should be relatively short.

6-1

Algorithm: Nearest Neighbour by Scanning.

Data Structures:

domain-vector A vector of kd
oating point numbers.

range-vector A vector of kr
oating point numbers.

exemplar A pair: (domain-vector; range-vector)

Input: exlist, of type list of exemplar

dom, of type domain-vector

Output: nearest, of type exemplar

Preconditions: exlist is not empty

Postconditions: if nearest represents the exemplar (d0; r0),

and exlist represents the exemplar set E,

and dom represents the vector d,

then (d0; r0) 2 E and None-nearer(E;d;d0).

Code:

1. nearest-dist := in�nity

2. nearest := unde�ned

3. for ex := each exemplar in exlist

3.1 dist := distance between dom and the domain of ex

3.2 if dist < nearest-dist then

3.2.1 nearest-dist := dist

3.2.2 nearest := ex

Table 6.1: Finding Nearest Neighbour by scanning a list.

6.2 Naive Nearest Neighbour

This operation could be achieved by representing the exemplar-set as a list of exemplars. In Ta-

ble 6.1, I give the trivial nearest neighbour algorithm which scans the entire list. This algorithm has

time complexity O(N) where N is the size of E. By structuring the exemplar-set more intelligently,

it is possible to avoid making a distance computation for every member.

6.3 Introduction to kd-trees

A kd-tree is a data structure for storing a �nite set of points from a k-dimensional space. It was

examined in detail by J. Bentley [Bentley, 1980; Friedman et al., 1977]. Recently, S. Omohundro

has recommended it in a survey of possible techniques to increase the speed of neural network

learning [Omohundro, 1987].

A kd-tree is a binary tree. The contents of each node are depicted in Table 6.2. Here I provide

an informal description of the structure and meaning of the tree, and in the following subsection I

6-2

Field Name: Field Type Description

dom-elt domain-vector A point from kd-d space

range-elt range-vector A point from kr-d space

split integer The splitting dimension

left kd-tree A kd-tree representing those points

to the left of the splitting plane

right kd-tree A kd-tree representing those points

to the right of the splitting plane

Table 6.2: The �elds of a kd-tree node

give a formal de�nition of the invariants and semantics.

The exemplar-set E is represented by the set of nodes in the kd-tree, each node representing

one exemplar. The dom-elt �eld represents the domain-vector of the exemplar and the range-elt

�eld represents the range-vector. The dom-elt component is the index for the node. It splits the

space into two subspaces according to the splitting hyperplane of the node. All the points in the

\left" subspace are represented by the left subtree, and the points in the \right" subspace by the

right subtree. The splitting hyperplane is a plane which passes through dom-elt and which is

perpendicular to the direction speci�ed by the split �eld. Let i be the value of the split �eld. Then

a point is to the left of dom-elt if and only if its ith component is less than the ith component of

dom-elt. The complimentary de�nition holds for the right �eld. If a node has no children, then

the splitting hyperplane is not required.

Figure 6.1 demonstrates a kd-tree representation of the four dom-elt points (2; 5), (3; 8), (6; 3)

and (8; 9). The root node, with dom-elt (2; 5) splits the plane in the y-axis into two subspaces.

The point (3; 8) lies in the lower subspace, that is f(x; y) j y < 5g, and so is in the left subtree.

Figure 6.2 shows how the nodes partition the plane.

6.3.1 Formal Speci�cation of a kd-tree

The reader who is content with the informal description above can omit this section. I de�ne a

mapping

exset-rep : kd-tree! exemplar-set (6.3)

which maps the tree to the exemplar-set it represents:

exset-rep(empty) = �

exset-rep(< d; r;�; empty; empty >) = f(d; r)g
exset-rep(< d; r; split; treeleft; treeright >) =

exset-rep(treeleft) [f(d; r)g [exset-rep(treeright)

(6.4)

6-3

[2,5]

[6,3] [3,8]

[8,9]

Figure 6.1

A 2d-tree of four elements.

The splitting planes are not

indicated. The [2,5] node

splits along the y = 5 plane

and the [3,8] node splits

along the x = 3 plane.

[2,5]

[3,8]

[6,3]

[8,9]

Figure 6.2

How the tree of Figure 6.1

splits up the x,y plane.

6-4

The invariant is that subtrees only ever contain dom-elts which are on the correct side of all their

ancestors' splitting planes.

Is-legal-kdtree(empty):

Is-legal-kdtree(< d; r;�; empty; empty >):

Is-legal-kdtree(< d; r; split; treeleft; treeright >) ,
8(d0; r0) 2 exset-rep(treeleft) d0split � dsplit^
8(d0; r0) 2 exset-rep(treeright) d0split > dsplit^

Is-legal-kdtree(treeleft)^
Is-legal-kdtree(treeright)

(6.5)

6.3.2 Constructing a kd-tree

Given an exemplar-set E, a kd-tree can be constructed by the algorithm in Table 6.3. The pivot-

choosing procedure of Step 2 inspects the set and chooses a \good" domain vector from this set

to use as the tree's root. The discussion of how such a root is chosen is deferred to Section 6.7.

Whichever exemplar is chosen as root will not a�ect the correctness of the kd-tree, though the

tree's maximum depth and the shape of the hyperregions will be a�ected.

6.4 Nearest Neighbour Search

In this section, I describe the nearest neighbour algorithm which operates on kd-trees. I begin with

an informal description and worked example, and then give the precise algorithm.

A �rst approximation is initially found at the leaf node which contains the target point. In

Figure 6.3 the target point is marked X and the leaf node of the region containing the target is

coloured black. As is exempli�ed in this case, this �rst approximation is not necessarily the nearest

neighbour, but at least we know any potential nearer neighbour must lie closer, and so must lie

within the circle centred on X and passing through the leaf node. We now back up to the parent

of the current node. In Figure 6.4 this parent is the black node. We compute whether it is possible

for a closer solution to that so far found to exist in this parent's other child. Here it is not possible,

because the circle does not intersect with the (shaded) space occupied by the parent's other child.

If no closer neighbour can exist in the other child, the algorithm can immediately move up a further

level, else it must recursively explore the other child. In this example, the next parent which is

checked will need to be explored, because the area it covers (i.e. everywhere north of the central

horizontal line) does intersect with the best circle so far.

Table 6.4 describes my actual implementation of the nearest neighbour algorithm. It is called

with four parameters: the kd-tree, the target domain vector, a representation of a hyperrectangle in

Domain, and a value indicating the maximum distance from the target which is worth searching.

The search will only take place within those portions of the kd-tree which lie both in the hyper-

6-5

Algorithm: Constructing a kd-tree

Input: exset, of type exemplar-set

Output: kd, of type kdtree

Pre: None

Post: exset = exset-rep(kd) ^ Is-legal-kdtree(kd)

Code:

1. If exset is empty then return the empty kdtree

2. Call pivot-choosing procedure, which returns two values:

ex := a member of exset

split := the splitting dimension

3. d := domain vector of ex

4. exset' := exset with ex removed

5. r := range vector of ex

6. exsetleft := f(d0; r0) 2 exset' j d0split � dsplitg
7. exsetright := f(d0; r0) 2 exset' j d0split > dsplitg
8. kdleft := recursively construct kd-tree from exsetleft

9. kdright := recursively construct kd-tree from exsetright

10. kd := < d; r; split;kdleft;kdright >

Proof: By induction on the length of exset and the de�nitions

of exset-rep and Is-legal-kdtree.

Table 6.3: Constructing a kd-tree from a set of exemplars.

Figure 6.3

The black dot is the dot

which owns the leaf node

containing the target (the

cross). Any nearer neigh-

bour must lie inside this cir-

cle.

6-6

Figure 6.4

The black dot is the parent

of the closest found so far.

In this case the black dot's

other child (shaded grey)

need not be searched.

rectangle, and within the maximum distance to the target. The caller of the routine will generally

specify the in�nite hyperrectangle which covers the whole of Domain, and the in�nite maximum

distance.

Before discussing its execution, I will explain how the operations on the hyperrectangles can

be implemented. A hyperrectangle is represented by two arrays: one of its minimum coordinates,

the other of its maximum coordinates. To cut the hyperrectangle, so that one of its edges is moved

closer to its centre, the appropriate array component is altered. To check to see if a hyperrectangle

hr intersects with a hypersphere radius r centered at point t, we �nd the point p in hr which is

closest to t. Write hrmin
i as the minimum extreme of hr in the ith dimension and hrmax

i as the

maximum extreme. pi, the ith component of this closest point is computed thus:

pi =

8>><
>>:

hrmin
i if ti � hrmin

i

ti if hrmin
i < ti < hrmax

i

hrmin
i if ti � hrmax

i

(6.6)

The objects intersect only if the distance between p and t is less than or equal to r.

The search is depth �rst, and uses the heuristic of searching �rst the child node which contains

the target. Step 1 deals with the trivial empty tree case, and Steps 2 and 3 assign two important

local variables. Step 4 cuts the current hyperrectangle into the two hyperrectangles covering the

space occupied by the child nodes. Steps 5{7 determine which child contains the target. After

Step 8, when this initial child is searched, it may be possible to prove that there cannot be any

closer point in the hyperrectangle of the further child. In particular, the point at the current node

must be out of range. The test is made in Steps 9 and 10. Step 9 restricts the maximum radius in

which any possible closer point could lie, and then the test in Step 10 checks whether there is any

6-7

Algorithm: Nearest Neighbour in a kd-tree

Input: kd, of type kdtree
target, of type domain vector

hr, of type hyperrectangle
max-dist-sqd, of type
oat

Output: nearest, of type exemplar

dist-sqd, of type
oat

Pre: Is-legal-kdtree(kd)

Post: Informally, the postcondition is that nearest is a nearest exemplar
to target which also lies both within the hyperrectangle hr
and within distance

p
max-dist-sqd of target.

p
dist-sqd is

the distance of this nearest point.
If there is no such point then dist-sqd contains in�nity.

Code:

1. if kd is empty then set dist-sqd to in�nity and exit.
2. s := split �eld of kd
3. pivot := dom-elt �eld of kd
4. Cut hr into two sub-hyperrectangles left-hr and right-hr.

The cut plane is through pivot and perpendicular to the s dimension.
5. target-in-left := targets � pivots
6. if target-in-left then
6.1 nearer-kd := left �eld of kd and nearer-hr := left-hr

6.2 further-kd := right �eld of kd and further-hr := right-hr

7. if not target-in-left then
7.1 nearer-kd := right �eld of kd and nearer-hr := right-hr

7.2 further-kd := left �eld of kd and further-hr := left-hr

8. Recursively call Nearest Neighbour with parameters
(nearer-kd,target, nearer-hr,max-dist-sqd), storing the results
in nearest and dist-sqd

9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
10. A nearer point could only lie in further-kd if there were some

part of further-hr within distance
p
max-dist-sqd of target.

if this is the case then
10.1 if (pivot� target)2 < dist-sqd then
10.1.1 nearest := (pivot; range-elt �eld of kd)
10.1.2 dist-sqd := (pivot� target)2

10.1.3 max-dist-sqd := dist-sqd

10.2 Recursively call Nearest Neighbour with parameters
(further-kd,target, further-hr,max-dist-sqd),
storing the results in temp-nearest and temp-dist-sqd

10.3 If temp-dist-sqd < dist-sqd then
10.3.1 nearest := temp-nearest and dist-sqd := temp-dist-sqd

Proof: Outlined in text

Table 6.4: The Nearest Neighbour Algorithm

6-8

space in the hyperrectangle of the further child which lies within this radius. If it is not possible

then no further search is necessary. If it is possible, then Step 10:1 checks if the point associated

with the current node of the tree is closer than the closest yet. Then, in Step 10.2, the further

child is recursively searched. The maximum distance worth examining in this further search is the

distance to the closest point yet discovered.

The proof that this will �nd the nearest neighbour within the constraints is by induction on the

size of the kd-tree. If the cuto� were not made in Step 10, then the proof would be straightforward:

the point returned is the closest out of (i) the closest point in the nearer child, (ii) the point at

the current node and (iii) the closest point in the further child. If the cuto� were made in Step 10,

then the point returned is the closest point in the nearest child, and we can show that neither the

current point, nor any point in the further child can possibly be closer.

Many local optimizations are possible which while not altering the asymptotic performance of

the algorithm will multiply the speed by a constant factor. In particular, it is in practice possible

to hold almost all of the search state globally, instead of passing it as recursive parameters.

6.5 Theoretical Behaviour

Given a kd-tree with N nodes, how many nodes need to be inspected in order to �nd the proven

nearest neighbour using the algorithm in Section 6.4?. It is clear at once that on average, at least

O(logN) inspections are necessary, because any nearest neighbour search requires traversal to at

least one leaf of the tree. It is also clear that no more than N nodes are searched: the algorithm

visits each node at most once.

Figure 6.5 graphically shows why we might expect considerably fewer than N nodes to be

visited: the shaded areas correspond to areas of the kd-tree which were cut o�.

The important values are (i) the worst case number of inspections and (ii) the expected number

of inspections. It is actually easy to construct worst case distributions of the points which will force

nearly all the nodes to be inspected. In Figure 6.6, the tree is two-dimensional, and the points are

scattered along the circumference of a circle. If we request the nearest neighbour with the target

close to the centre of the circle, it will therefore be necessary for each rectangle, and hence each

leaf, to be inspected (this is in order to ensure that there is no point lying inside the circle in any

rectangle).

Calculation of the expected number of inspections is di�cult, because the analysis depends

critically on the expected distribution of the points in the kd-tree, and the expected distribution

of the target points presented to the nearest neighbour algorithm.

The analysis is performed in [Friedman et al., 1977]. This paper considers the expected number

of hyperrectangles corresponding to leaf nodes which will provably need to be searched. Such

hyperrectangles intersect the volume enclosed by a hypersphere centered on the query point whose

surface passes through the nearest neighbour. For example, in Figure 6.5 the hypersphere (in this

6-9

Figure 6.5

Generally during a nearest

neighbour search only a few

leaf nodes need to be in-

spected.

Figure 6.6

A bad distribution which

forces almost all nodes to

be inspected.

6-10

case a circle) is shown, and the number of intersecting hyperrectangles is two.

The paper shows that the expected number of intersecting hyperrectangles is independent of

N , the number of exemplars. The asymptotic search time is thus logarithmic because the time to

descend from the root of the tree to the leaves is logarithmic (in a balanced tree), and then an

expected constant amount of backtracking is required.

However, this reasoning was based on the assumption that the hyperrectangles in the tree

tend to be hypercubic in shape. Empirical evidence in my investigations has shown that this

is not generally the case for their tree building strategy. This is discussed and demonstrated in

Section 6.7.

A second danger is that the cost, while independent of N , is exponentially dependent on k, the

dimensionality of the domain vectors1.

Thus theoretical analysis provides some insight into the cost, but here, empirical investigation

will be used to examine the expense of nearest neighbour in practice.

6.6 Empirical Behaviour

In this section I investigate the empirical behaviour of the nearest neighbour searching algorithm.

We expect that the number of nodes inspected in the tree varies according to the following properties

of the tree:

� N , the size of the tree.

� kdom , the dimensionality of the domain vectors in the tree. This value is the k in kd-tree.

� ddistrib , the distribution of the domain vectors. This can be quanti�ed as the \true" dimen-

sionality of the vectors. For example, if the vectors had three components, but all lay on the

surface of a sphere, then the underlying dimensionality would be 2. In general, discovery of

the underlying dimensionality of a given sample of points is extremely di�cult, but for these

tests it is a straightforward matter to generate such points. To make a kd-tree with underly-

ing dimensionality ddistrib, I use randomly generated kdom-dimensional domain vectors which

lie on a ddistrib-dimensional hyperelliptical surface. The random vector generation algorithm

is as follows: Generate ddistrib random angles �i 2 [0; 2�) where 0 � i < ddistrib. Then let

the jth component of the vector be
Qi=d�1

i=0 sin(�i + �ij). The phase angles �ij are de�ned as

�ij =
1
2
� if the jth bit of the binary representation of i is 1 and is zero otherwise.

� dtarget , the probability distribution from which the search target vector will be selected. I

shall assume that this distribution is the same as that which determines the domain vectors.

This is indeed what will happen when the kd-tree is used for learning control.

1This was pointed out to the author by N. Maclaren.

6-11

0 2000 4000 6000 8000 1000
0

2

4

6

8

10

12

Figure 6.7

Number of inspections re-

quired during a nearest

neighbour search against

the size of the kd-tree. In

this experiment the tree

was four-dimensional and

the underlying distribution

of the points was three-

dimensional.

In the following sections I investigate how performance depends on each of these properties.

6.6.1 Performance against Tree Size

Figures 6.7 and 6.8 graph the number of nodes inspected against the number of nodes in the entire

kd-tree. Each value was derived by generating a random kd-tree, and then requesting 500 random

nearest neighbour searches on the kd-tree. The average number of inspected nodes was recorded.

A node was counted as being inspected if the distance between it and the target was computed.

Figure 6.7 was obtained from a 4d-tree with an distribution distribution ddistrib = 3. Figure 6.8

used an 8d-tree with an underlying distribution ddistrib = 8.

It is immediately clear that after a certain point, the expense of a nearest neighbour search has

no detectable increase with the size of the tree. This agrees with the proposed model of search

cost|logarithmic with a large additive constant term.

6.6.2 Performance against the \k" in kd-tree

Figure 6.9 graphs the number of nodes inspected against kdom, the number of components in the

kd-tree's domain vectors for a 10,000 node tree. The underlying dimensionality was also kdom.

The number of inspections per search rises very quickly, possibly exponentially, with kdom. This

behaviour, the massive increase in cost with dimension, is familiar in computational geometry.

6-12

0 2000 4000 6000 8000 1000
0

10

20

30

40

50

60

70

80

Figure 6.8

Number of inspections

against kd-tree size for an

eight-dimensional tree with

an eight-dimensional un-

derlying distribution.

1 3 5 7 9 11 13 15
0

100

200

300

400

500

600

Figure 6.9

Number of inspec-

tions graphed against tree

dimension. In these experi-

ments the points had an un-

derlying distribution with

the same dimensionality as

the tree.

6-13

1 3 5 7 9 11 13
0

100

200

300

400

500

Figure 6.10

Number of inspections

graphed against underly-

ing dimensionality for a

fourteen-dimensional tree.

6.6.3 Performance against the Distribution Dimensionality

This experiment con�rms that it is ddistrib, the distribution dimension from which the points were

selected, rather than kdom which critically a�ects the search performance. The trials for Figure 6.10

used a 10,000 node kd-tree with domain dimension of 14, for various values of ddistrib. The im-

portant observation is that for 14d-trees, the performance does improve greatly if the underlying

distribution-dimension is relatively low. Conversely, Figure 6.11 shows that for a �xed (4-d) un-

derlying dimensionality, the search expense does not seem to increase any worse than linearly with

kdom.

6.6.4 When the Target is not Chosen from the kd-tree's Distribution

In this experiment the points were distributed on a three dimensional elliptical surface in ten-

dimensional space. The target vector was, however, chosen at random from a ten-dimensional

distribution. The kd-tree contained 10,000 points. The average number of inspections over 50

searches was found to be 8,396. This compares with another experiment in which both points and

target were distributed in ten dimensions and the average number of inspections was only 248. The

reason for the appalling performance was exempli�ed in Figure 6.6: if the target is very far from

its nearest neighbour then very many leaf nodes must be checked.

6.6.5 Conclusion

The speed of the search (measured as the number of distance computations required) seems to vary

: : :

6-14

4 6 8 10 12 14
0

20

40

60

80

100

Figure 6.11

Number of in-

spections graphed against

tree dimension, given a con-

stant four dimensional un-

derlying distribution.

� : : :only marginally with tree size. If the tree is su�ciently large with respect to the number

of dimensions, it is essentially constant.

� : : :very quickly with the dimensionality of the distribution of the datapoints, ddistrib.

� : : : linearly with the number of components in the kd-tree's domain (kdom), given a �xed

distribution dimension (ddistrib).

There is also evidence to suggest that unless the target vector is drawn from the same distri-

bution as the kd-tree points, performance can be greatly worsened.

These results support the belief that real time searching for nearest neighbours is practical in

a robotic system where we can expect the underlying dimensionality of the data points to be low,

roughly less than 10. This need not mean that the vectors in the input space should have less

than ten components. For data points obtained from robotic systems it will not be easy to decide

what the underlying dimensionality is. However Chapter 10 will show that the data does tend to

lie within a number of low dimensional subspaces.

6.7 Further kd-tree Operations

In this section I discuss some other operations on kd-trees which are required for use in the SAB

learning system. These include incrementally adding a point to a kd-tree, range searching, and

selecting a pivot point.

6-15

6.7.1 Range Searching a kd-tree

range-search : exemplar-set �Domain �< ! exemplar-set

The abstract range search operation on an exemplar-set �nds all exemplars whose domain

vectors are within a given distance of a target point:

range-search(E;d; r) = f(d0; r0) 2 E j (d� d0)2 < r2g

This is implemented by a modi�ed nearest neighbour search. The modi�cations are that (i) the

initial distance is not reduced as closer points are discovered and (ii) all discovered points within the

distance are returned, not just the nearest. The complexity of this operation is shown, in [Preparata

and Shamos, 1985], to still be logarithmic in N (the size of E) for a �xed range size.

6.7.2 Choosing a Pivot from an Exemplar Set

The tree building algorithm of Section 6.3 requires that a pivot and a splitting plane be selected

from which to build the root of a kd-tree. It is desirable for the tree to be reasonably balanced,

and also for the shapes of the hyperregions corresponding to leaf nodes to be fairly equally pro-

portioned. The �rst criterion is important because a badly unbalanced tree would perhaps have

O(N) accessing behaviour instead of O(logN). The second criterion is in order to maximize cuto�

opportunities for the nearest neighbour search. This is di�cult to formalize, but can be motivated

by an illustration. In Figure 6.12 is a perfectly balanced kd-tree in which the leaf regions are

very non-square. Figure 6.13 illustrates a kd-tree representing the same set of points, but which

promotes squareness at the expense of some balance.

One pivoting strategy which would lead to a perfectly balanced tree, and which is suggested

in [Omohundro, 1987], is to pick the splitting dimension as that with maximum variance, and let

the pivot be the point with the median split component. This will, it is hoped, tend to promote

square regions because having split in one dimension, the next level in the tree is unlikely to �nd

that the same dimension has maximum spread, and so will choose a di�erent dimension. For

uniform distributions this tends to perform reasonably well, but for badly skewed distributions the

hyperregions tend to take long thin shapes. This is exempli�ed in Figure 6.12 which has been

balanced using this standard median pivot choice.

To avoid this bad case, I choose a pivot which splits the exemplar set in the middle of the range

of the most spread dimension. As can be seen in Figure 6.13, this tends to favour squarer regions

at the expense of a slight imbalance in the kd-tree. This means that large empty areas of space are

�lled with only a few hyperrectangles which are themselves large. Thus, the number of leaf nodes

which need to be inspected in case they contain a nearer neighbour is smaller than for the original

case, which had many small thin hyperrectangles.

6-16

Figure 6.12

A 2d tree balanced using

the `median of the most

spread dimension' pivoting

strategy.

Figure 6.13

A 2d tree balanced using

the `closest to the centre of

the widest dimension' piv-

oting strategy.

6-17

My pivot choice algorithm is to �rstly choose the splitting dimension as the longest dimension

of the current hyperrectangle, and then choose the pivot as the point closest to the middle of the

hyperrectangle along this dimension. Occasionally, this pivot may even be an extreme point along

its dimension, leading to an entirely unbalanced node. This is worth it, because it creates a large

empty leaf node. It is possible but extremely unlikely that the points could be distributed in such

a way as to cause the tree to have one empty child at every level. This would be unacceptable, and

so above a certain depth threshold, the pivots are chosen using the standard median technique.

Selecting the median as the split and selecting the closest to the centre of the range are both

O(N) operations, and so either way a tree rebalance is O(N logN).

6.7.3 Incrementally Adding a Point to a kd-tree

Firstly, the leaf node which contains the new point is computed. The hyperrectangle corresponding

to this leaf is also obtained. See Section 6.4 for hyperrectangle implementation. When the leaf

node is found it may either be (i) empty, in which case it is simply replaced by a new singleton

node, or (ii) it contains a singleton node. In case (ii) the singleton node must be given a child, and

so its previously irrelevant split �eld must be de�ned. The split �eld should be chosen to preserve

the squareness of the new subhyperrectangles. A simple heuristic is used. The split dimension is

chosen as the dimension in which the hyperrectangle is longest. This heuristic is motivated by the

same requirement as for tree balancing|that the regions should be as square as possible, even if

this means some loss of balance.

This splitting choice is just a heuristic, and there is no guarantee that a series of points added

in this way will preserve the balance of the kd-tree, nor that the hyperrectangles will be well shaped

for nearest neighbour search. Thus, on occasion (such as when the depth exceeds a small multiple

of the best possible depth) the tree is rebuilt. Incremental addition costs O(logN).

6.7.4 Q Nearest Neighbours

This uses a modi�ed version of the nearest neighbour search. Instead of only searching within a

sphere whose radius is the closest distance yet found, the search is within a sphere whose radius is

the Qth closest yet found. Until Q points have been found, this distance is in�nity.

6.7.5 Deleting a Point from a kd-tree

If the point is at a leaf, this is straightforward. Otherwise, it is di�cult, because the structure of

both trees below this node are pivoted around the point we wish to remove. One solution would

be to rebuild the tree below the deleted point, but on occasion this would be very expensive. My

solution is to mark the point as deleted with an extra �eld in the kd-tree node, and to ignore

deletion nodes in nearest neighbour and similar searches. When the tree is next rebuilt, all deletion

nodes are removed.

6-18

Bibliography

[Bentley, 1980] J. L. Bentley. Multidimensional Divide and Conquer. Communications of the ACM,

23(4):214|229, 1980.

[Friedman et al., 1977] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding

Best Matches in Logarithmic Expected Time. ACM Trans. on Mathematical Software, 3(3):209{

226, September 1977.

[Omohundro, 1987] S. M. Omohundro. E�cient Algorithms with Neural Network Behaviour. Jour-

nal of Complex Systems, 1(2):273{347, 1987.

[Preparata and Shamos, 1985] F. P. Preparata and M. Shamos. Computational Geometry.

Springer-Verlag, 1985.

Bib-1

