
COMS 4771
Probabilistic Reasoning via

Graphical Models

Nakul Verma



Last time…

• Dimensionality Reduction
Linear vs non-linear Dimensionality Reduction

• Principal Component Analysis (PCA)

• Non-linear methods for doing dimensionality reduction



Graphical Models

A probabilistic model where a graph represents the conditional dependence 
structure among the variables.

Example:
Four variables of interest – cloudiness, raining, sprinkler, grass_wet

Provides a compact representation 
of the joint distribution!

Cloudy 
(C)

Rainy
(R)

Sprinkler
(S)

GrassWet
(G)

Possible 
Causality 
Structure: • What is the probability it rained given the 

grass is wet?

• What is the chance that the sprinkler was 
off given grass is wet and it is not cloudy?

Inference questions:

Learning questions:

• What is the most likely GM structure and 
connection weights that models the data?



Graphical Models: Representation 

There are two kinds of Graphical Models

Directed models – Bayesian Networks

Undirected models – Markov Random Fields (MRFs)

Edge direction typically 
denotes potential causality

Edge connection typically 
denotes potential co-occurrence
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RS

G



Bayesian Networks

What is the joint probability for these variables? C

RS

GChain rule

due to the (in)dependencies asserted 
by the parent-child relationships

In general:

That is: a variable is independent of its ancestors given the parents. 



Bayesian Networks: Inference

C

RS

G

C P(S=1|C)

0
1

0.5
0.1

C P(R=1|C)

0
1

0.2
0.8

S R P(G=1|S,R)

0
0
1
1

0
1
0
1

0.0
0.9
0.9

0.99

P(C=1)

0.5

These conditional probability tables 
(CPT) are enough to completely

specify the joint distribution!



Bayesian Networks: Inference

Q: What is the probability of sprinkler being on given the
grass is wet?
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Bayesian Networks: Learning Parameters

Learning the parameters knowing the structure

Simply do the likelihood estimates (ie, counts)

etc …  
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G
ie, estimate the CPTs from observations

Issue: assigns zero prob. for 
unseen combinations in data. 

How to fix that?



Bayesian Networks: Learning Structure

Learning the unknown structure between the variables

General
• Test of conditional independencies in data
• Grow-Shrink Markov Blanket algorithm 

Assumed structure:
• Tree structure: Chow-Liu algorithm
• Small cliques: variations on Chow-Liu
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?
??

NP-hard to find the 
optimal structure



Markov Random Fields (MRFs)

Graphical models with undirected connections

Clique potentials, typically the 
relative frequency of variable 

co-occurrence in a clique

normalizer (so things 
integrate to 1), aka 

the partition function

Example:  five variable graph
X1

X3X2

X4

X5
What are the 
max-cliques?



A Closer Look at (In)dependencies in GMs

X1 X2 X3 X1 X2 X3

X1 X2 X3 X1 X2 X3

X1 X2 X3 X1 X2 X3

What are the (conditional) independencies asserted by the following 
graphical models?

X1 X2 X3X1 X2 X3

(directed)

(undirected)



Relation Between Directed & Undirected GM 

What are the (conditional) independencies asserted by the following 
directed model?

What is the equivalent undirected model?

X1

X3

X2

X4 X5

X1

X3

X2

X4 X5



GM Special Case: Time Series Model

A time series model:
A family of distributions over a sequence of random variables X1, X2,… that is 
indexed by a totally ordered indexing set (often referred to as time)

Many applications:
• Financial/Economic data over time
• Climate data
• Speech and natural language
• …

Xt – 1  XtXt – 2  Xt + 1  Xt + 2  ……

current
state

past states future states



Markov Models

Markov Model: 
A time series model with the property: 
The conditional distribution of the next state Xt+1 given all the previous 

states Xi (i ≤ t) only depends on the current state Xt

Xt – 1  XtXt – 2  Xt + 1  Xt + 2  
……

The corresponding graphical model:

also known as 
a Markov chain



Markov Chains: Distributions

To specify a Markov Chain: 
Need to specify the distribution of the initial state: X1

Need to specify the conditional distribution: Xt+1 given Xt

Initial state distribution:

Conditional distribution:
can be summarized in

a d x d matrix A

This is often called 
the transition matrix

(We will focus on finite size state space, say, d different states)

A is row stochastic



Markov Chain: Example

State space: {1,2}
Parameters:

What is the probability of seeing the random sequence:  2,2,2,1,1,2,2,1  ?



Markov Chain: Example - PageRank

Web graph:  vertices – webpages, edges – links between webpages

Question: how popular is a given webpage i ?
Possible answer: 

proportional to the probability that a random walk ends on page i.

link structure for 
500 webpages

(for some large t)



Markov Chain: Marginals

Let’s calculate the following probabilities:

for the PageRank example, does this 
converge to a stable value for large t?



Markov Chain: Limiting Behavior

Question does/can P(Xt) have a limiting behavior?
Equivalent to asking: 

does                approach a limiting matrix                              (with identical rows) ? 

For such an A, it must satisfy:

Equivalently: 

--- q ---

--- q ---

--- q ---

--- q ---

--- q ---

--- q ---

ie, q is the left eigenvector of A with eigenvalue 1! 

q unique whenever 
there is no multiplicity 

of eigenvalue 1 

such a q is called the stationary distribution of A

--- q ---

--- q ---

--- q --- (a sufficient condition)



PageRank Example

Web graph doesn’t have a unique stationary distribution, but can add some 
regularity to the link matrix A. That is Ã = A + ε1

Popularity of a given webpage i is proportional to
the ith component of the (regularized) stationary distribution

link structure for 
500 webpages

(regularized stationary 
distribution)



Markov Models with Unobserved Variable

Hidden Markov Model (HMM):   A Markov chain on  {(Xt,Yt)}t

Some properties:
• Yt is unobserved / hidden variable; only Xt is observed.
• Conditioned on Yt, Xt is independent of all other variables!

The corresponding graphical model:

Yt – 1  YtYt – 2  Yt + 1  Yt + 2  
……

Xt – 1  XtXt – 2  Xt + 1  Xt + 2  



Hidden Markov Models (HMMs) Applications

Natural Language Processing
Observed: words in a sentence
Unobserved: words’ part-of-speech or other word semantics

Bioinformatics
Observed: Amino acids in a protein 
Unobserved: indicators of evolutionary conservation

Speech Recognition 
Observed: Recorded speech
Unobserved: The phonemes the speaker intended to vocalize



HHMs Parameters

We will focus on discrete state space:
Xt takes values { 1, …, D }  (observed)
Yt takes values { 1, …, K }  (hidden)

We need the initial state distribution on Y1

Need to specify a K x K transition matrix A from Yt to Yt+1

Need to specify a K x D emission matrix B from Yt to Xt

Both A and B are 
row stochastic



HHM: Example – Dishonest Casino

HMM Parameters

π = (1,0)  [the casino starts off with the fair die]

Casino die-rolling game:

Randomly switch between two possible 
dice: one is fair and one is loaded.

Problem: based on the sequence of rolls, guess which die was used at each time  



HHM Learning and Inference Problems

Conditional Probabilities (filtering/smoothing)
• Given: parameters θ = (π, A, B), and the observation X1:T

• Goal: What is the conditional probability of Y1:T ?

Most probable sequence (decoding)

Parameter Estimation 
• Given: The observations X1:T

• Goal: Find the best parameter estimate of θ



HHM: Example – Dishonest Casino



HHM: Computing the Posterior Probabilities

Can directly compute                                   using the standard way, but that is 
slow and doesn’t exploit the conditional independency structure of HMMs

A popular fast algorithm: 
Forward-Backward algorithm, can be done in two passes (one forward pass, 
one backward pass) over the states.

Most likely posterior setting of the hidden states can be computed 
efficiently using a dynamic programming algorithm, called Viterbi decoding 
algorithm

Filtering Problem

Decoding Problem

See supplementary material for detail on these algorithms



HHM: Learning the Parameters
We can use the Expectation Maximization (EM) Algorithm!

Input: n observations sequences 

Initialize:  
Start with an initial setting / guess of parameters

E-step:  
Compute conditional expectation Y given X and current parameter guess

(this can be done using the Forward-Backward algorithm)

M-step: 
Given the estimate of Y and the observations X, we have the complete 
likelihood, so simply maximize the likelihood by taking the derivative and 
examine the stationary points.

See supplementary material for details



What We Learned…

• Graphical Models
Bayesian Networks and Markov Random Fields

• Doing inference and learning on graphical models

• Markov Models

• Hidden Markov Models

• Bayesian Networks



Questions?
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