
COMS 4771
Clustering

Nakul Verma

Supervised Learning

Data:

Assumption: there is a (relatively simple) function

such that for most i

Learning task: given n examples from the data, find an approximation

Goal: gives mostly correct prediction

on unseen examples

Labeled training data

(n examples from data)

Learning

Algorithm

‘classifier’

Unlabeled test data

(unseen / future data)

prediction

Supervised learning

Training Phase

Testing Phase

Unsupervised Learning

Data:

Assumption: there is an underlying structure in

Learning task: discover the structure given n examples from the data

Goal: come up with the summary of the data using the discovered structure

Unsupervised learning

Let’s take a closer look using an example…

Partition the data into meaningful structures

Find a low-dimensional representation that
retains important information, and suppresses

irrelevant/noise information

clustering

Dimensionality
reduction

Example: Handwritten digits revisited

Handwritten digit data, but with no labels

What can we do?

• Suppose know that there are 10 groupings,
can we find the groups?

• What if we don’t know there are 10 groups?

• How can we discover/explore other
structure in such data?

A 2D visualization of digits dataset

Handwritten digits visualization

Grouping The Data, aka Clustering

Data:

Given: known target number of groups k

Output: Partition into k groups.

This is called the clustering problem,

also known as unsupervised classification, or quantization

k-means

Given: data , and intended number of groupings k

Idea:

find a set of representatives such that data is close to some
representative

Optimization:

How do we optimize this?

Unfortunately this is NP-hard
Even for d=2 and k=2

How do we solve for
d=1 or k=1 case?

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

Algorithm to approximate k-means

Given: data , and intended number of groupings k

Alternating optimization algorithm:

• Initialize cluster centers (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers (assuming the data partition is fixed)

Demo:

k-means

Some properties of this alternating updates algorithm:

• The approximation can be arbitrarily bad, compared to the best cluster
assignment!

• Performance quality heavily dependent on the initialization!

k-means:

• How to select k?

is the right k=2 or k=3?

Solution: encode clustering
for all values of k!

(hierarchical clustering)

Example: Clustering Without Committing to k

K=3
(coarser resolution)

k=6
(finer resolution)

Hierarchical Clustering

Two approaches:

Top Down (divisive):

• Partition data into two groups (say, by k-means, with k=2)

• Recurse on each part

• Stop when cannot partition data anymore (ie single points left)

Bottom Up (agglomerative):

• Start by each data sample as its own cluster (so initial number of clusters is n)

• Repeatedly merge “closest” pair of clusters

• Stop when only one cluster is left

Clustering via Probabilistic Mixture Modeling

Alternative way to cluster data:

Given: and number of intended number of clusters k.

Assume a joint probability distribution over the joint space

Parameters:

Modeling assumption data (x1,c1),…, (xn,cn) i.i.d. from

BUT only get to see partial information: x1, x2, …, xn (c1, …, cn hidden!)

1

k

Discrete distribution over the clusters P[C=i] = i

Some multivariate distribution, e.g.

looks familiar?

Gaussian Mixture Modeling (GMM)

Given: and k.

Assume a joint probability distribution over the joint space
1

k

Gaussian Mixture Model

Mixing weight Mixture component
(this is called a
mixture model)

Example in R2 x [3]:

GMM: Parameter Learning

So… how to learn the parameters  ?

MLE approach:
Given data i.i.d.

ummm…. now what? Cannot really simplify further!

GMM: Maximum Likelihood

MLE for Mixture modeling (like GMMs) is NOT a convex optimization problem

In fact Maximum Likelihood Estimate for GMMs is degenerate!

X X

X = R, k = 2 (fit two Gaussian in 1d):

Which pair of Gaussians
gives higher likelihood?

as → 0, MLE →!

Aside: why doesn’t this occur when fitting one Gaussian?

GMM: (local) Maximum Likelihood

So, can we make any progress?

Observation: even though a global MLE maximizer is not appropriate, several
local maximizers are desirable!

X

An example
non-maximized

likelihood

X

Reaches a desirable
local maximum!

(do a few steps of gradient ascent)

A better algorithm for finding good parameters: Expectation Maximization (EM)

Expectation Maximization (EM) Algorithm

Similar in spirit to the alternating update for k-means algorithm

Idea:

• Initialize the parameters arbitrarily

• Given the current setting of parameters find the best (soft) assignment of
data samples to the clusters (Expectation-step)

• Update all the parameters with respect to the current (soft) assignment
that maximizes the likelihood (Maximization-step)

• Repeat until no more progress is made.

EM for GMM

Initialize arbitrarily

Expectation-step: For each and compute the
assignment of data xi to cluster j

Maximization-step: Maximize the log-likelihood of the parameters

Why?

Effective number of points
assigned to cluster j

EM for GMM

Calculation for updating j

Recall, log likelihood:

To maximize w.r.t. j

Therefore at stationarity

since

EM for GMM in Action

Arbitrary 
assignment

EM for GMM in Action

E step: soft
assignment of data

EM for GMM in Action

M step: Maximize
parameter estimate

EM for GMM in Action

After two rounds

EM for GMM in Action

After five rounds

EM for GMM in Action

After twenty rounds

What We Learned…

• Unsupervised Learning problems:

Clustering and Dimensionality Reduction

• K-means

• Hierarchical Clustering

• Gaussian Mixture Models

• EM algorithm

Questions?

Next time…

Dimension reduction!

