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Supervised Learning

Data: (Z1,y1), (Z2,92),... EX XY Supervised learning

Assumption: there is a (relatively simple) function f* : X — Y
such that f*(Zi) = yi for most i

Learning task: given n examples from the data, find an approximation f=~f

Goal: f gives mostly correct prediction - === Testing Eh-aie\
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Unsupervised Learning

Data: Z1,%2,...€ X Unsupervised learning

Assumption: there is an underlying structure in X
Learning task: discover the structure given n examples from the data

Goal: come up with the summary of the data using the discovered structure

Partition the data into meaningful structures
Dimensionality
reduction

Let’s take a closer look using an example...

Find a low-dimensional representation that
retains important information, and suppresses
irrelevant/noise information




Example: Handwritten digits revisited

Handwritten digit data, but with no labels .7 v
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 What if we don’t know there are 10 groups?

* How can we discover/explore other

structure in such data? - o
A 2D visualization of digits dataset



Handwritten digits visualization
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Grouping The Data, aka Clustering

Data: fl:£2a---£n€)(
Given: known target number of groups k

Output: Partition %1, Z2,... %, into k groups.

This is called the clustering problem,
also known as unsupervised classification, or quantization




k-means

Given: data 7y, 7s,...Z, € R%, and intended number of groupings k

ldea:
find a set of representatives Ci1,¢2,...Ck such that data is close to some
representative _ PN
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Optimization:
L. - , . o192 Unfortunately this is NP-hard
minimize, .., |, min |7 -] Even for d=2 and k=2
i j=1,....

How do we solve for
. o
How do we optimize this? d=1 or k=1 case?




Algorithm to approximate k-means

Given: data &1, s, ... %, € R?, and intended number of groupings k

Alternating optimization algorithm:
* |nitialize cluster centers ¢1,¢2,...Ck (say randomly)
* Repeat till no more changes occur
* Assign data to its closest center (this creates a partition) (assume centers are fixed)

* Find the optimal centers ¢i, o, ... Cr (assuming the data partition is fixed)

Demo:
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k-means

Some properties of this alternating updates algorithm:

* The approximation can be arbitrarily bad, compared to the best cluster
assignment!

* Performance quality heavily dependent on the initialization!

k-means:
e How to select k? e
- -~ n, F 4 g : H‘:‘ bt
RO PRI I s the right k=2 or k=3?
° \ / Vs e, \ Is the right k=2 or k=3
: * . ! ! pENES tl
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et ) R I i Solution: encode clustering
" r

. ’ for all values of k!
-~ - (hierarchical clustering)



Example: Clustering Without Committing to k
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Duck-billed platypus

B American opossum

Marsupial mole

T Wombat kangaroo possum kaola
BT Elephant shrew

e

Nl

o Elephant
50 Manatee and dugong
95 Armadillo
Gy Shrew and mole
B0 Bat

78 Camel pig deer sheep hippo whale

7 Horss tapir rhino

77 Cat dog bear weasel seal

70 Rabbit
5 Rat and mouse
o Beaver
55 Squirrel
_B_l =% Guinea pig
70 Tree shrew and colugos

—5 53 Lemurs and kin
7 5% Tarsiers
-7 70 New World monkeys
Te 75 Old World monkeys
TS o Gibbons
T L Crangutan

i

e

7 —Gorilla

K=3 k=6 7 Human
. . [ . Bonobo
(coarser resolution) (finer resolution) Common chimpanzee




Hierarchical Clustering

Two approaches:

Top Down (divisive):

e Partition data into two groups (say, by k-means, with k=2)

* Recurse on each part

e Stop when cannot partition data anymore (ie single points left)

Bottom Up (agglomerative):

* Start by each data sample as its own cluster (so initial number of clusters is n)
* Repeatedly merge “closest” pair of clusters

e Stop when only one cluster is left



Clustering via Probabilistic Mixture Modeling

Alternative way to cluster data:

Given: 7y, %, ... %, € R% and number of intended number of clusters k.
Assume a joint probability distribution (X, C) over the joint space R? x [k]

4 N
Ty

C ~ Discrete distribution over the clusters P[C=i] = 7

L T0
X|C =i~  Some multivariate distribution, e.g. N (ji;, >;)

Parameters: 6 = (7T1, L1y 200w e oy Tk [, Ek) looks familiar?

Modeling assumption data (x,,c,),..., (x,,c,) i.i.d. from R% x [k]
BUT only get to see partial information: x,, x,, ..., X, (c;, ..., ¢, hiddent!)



Gaussian Mixture Modeling (GMM)

Given: Z1,79,...%, € R%and k.

Assume a joint probability distribution (X, C) over the joint space R? x [k]

Uy
Cn~ | X|C =i~ N(ji;, %) Gaussian Mixture Model
70 9:(71-17,’_[:17217"‘771-]67’]”672]6)
i 1
P76 = exp{——f—*.
Z 1] Z 27)4 det(X%,) 2( i
71=1 J
’ (this is called a
Mixing weight Mixture component B mixture model)

2 4 ’
A

Example in R? x [3]: ' tﬁ*"




GMM: Parameter Learning

~ 1 L, ., o \Te_1/-
Pz | 0] :; R oY eXP{—§(fL‘—uj) % (ﬂﬁ—uj)}

0= (ﬂ-laﬁl) sy ﬂ-kaﬁka Zk)
So... how to learn the parameters 0?

MLE approach:
Given data 71, %5, ... %, € R? i.i.d.

9 = r
MLE = arg mBaX;lnP[x | 6]

1 . T 1 /5 B
N R SN

ummm.... now what? Cannot really simplify further!



GMM: Maximum Likelihood

MLE for Mixture modeling (like GMMs) is NOT a convex optimization problem
In fact Maximum Likelihood Estimate for GMMs is degenerate!

X =R, k=2 (fit two Gaussian in 1d):

Which pair of Gaussians
gives higher likelihood?

X

as o— 0, MLE — !

Aside: why doesn’t this occur when fitting one Gaussian?




GMM: (local) Maximum Likelihood

So, can we make any progress?

Observation: even though a global MLE maximizer is not appropriate, several
local maximizers are desirable!

— - An example

non-maximized
likelihood

(do a few steps of gradient ascent)

Reaches a desirable
local maximum!

X

A better algorithm for finding good parameters: Expectation Maximization (EM)




Expectation Maximization (EM) Algorithm

Similar in spirit to the alternating update for k-means algorithm

ldea:
* |nitialize the parameters arbitrarily

e Given the current setting of parameters find the best (soft) assignment of
data samples to the clusters (Expectation-step)

e Update all the parameters with respect to the current (soft) assignment
that maximizes the likelihood (Maximization-step)

* Repeat until no more progress is made.



EM for GMM

Initialize 0 = (w1, 1,21, . .., T, ik, Sk) arbitrarily

Expectation-step: For each 7 € {1,...,n} and Jj € {1,...,k} compute the
assignment w( ") of data X; to cluster j

o wj\/det exp( @ - ) 5 (@ - )

]
J jr=1Tj" \/det exp( %(f% - _*j’)TZj_l(fi - /Ij’))

Maximization-step: Maximize the log-likelihood of the parameters

n
— Z wj(-i) Effective number of points o= nj
, assigned to cluster j n
1 o, 0 RN
1) — e ) — — — = \T
= ;ng‘ T 2j = ;Zwﬁ”(wi—w)m—uj)
J i=1 J

=1 Why?



EM for GMM

Calculation for updating

1 1
Recall, log likelihood: Zln [Z e rrr )eXp{ - i(fi_ﬁj)-rz};l(fi_ﬁj)}]

=1

To maximize w.r.t. p,

L. 1=
( )(Zlﬂ[Z% 27T)ddet( )eXp{_5(332'_#’3')1-23'1(37'&—#}')}])
()—1, = . since
— w2 (T — g
; J J ( 'u’j) [ %(X—S)TW(X—S) = 2W(xs)}

1
Therefore at stationarity fij = o Z 'w('z)fz'



EM for GMM in Action

Arbitrary 0
E O assignment




EM for GMM in Action

15
O %
'Egs
E step: soft
g O assignment of data
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EM for GMM in Action

M step: Maximize
parameter estimate



EM for GMM in Action

.
: After two rounds
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EM for GMM in Action

o S’ - After five rounds
.3'.. * e
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EM for GMM in Action

L=2 3 (-;;
o).
O J‘“‘ : After twenty rounds
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What We Learned...

 Unsupervised Learning problems:

Clustering and Dimensionality Reduction
* K-means
* Hierarchical Clustering
* Gaussian Mixture Models

e EM algorithm



Questions?




Dimension reduction!



