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Supervised Learning

Data:   

Assumption:  there is a (relatively simple) function

such that                        for most i

Learning task:  given n examples from the data, find an approximation

Goal:      gives mostly correct prediction

on unseen examples      

Labeled training data

(n examples from data) 

Learning

Algorithm

‘classifier’

Unlabeled test data

(unseen / future data) 

prediction

Supervised learning

Training Phase

Testing Phase



Unsupervised Learning

Data:   

Assumption:  there is an underlying structure in 

Learning task:  discover the structure given n examples from the data

Goal:  come up with the summary of the data using the discovered structure

Unsupervised learning

Let’s take a closer look using an example…

Partition the data into meaningful structures

Find a low-dimensional representation that 
retains important information, and suppresses 

irrelevant/noise information

clustering

Dimensionality 
reduction



Example: Handwritten digits revisited

Handwritten digit data, but with no labels

What can we do?

• Suppose know that there are 10 groupings, 
can we find the groups?

• What if we don’t know there are 10 groups?

• How can we discover/explore other 
structure in such data?

A 2D visualization of digits dataset 



Handwritten digits visualization



Grouping The Data, aka Clustering

Data:   

Given: known target number of groups k 

Output: Partition                        into k groups. 

This is called the clustering problem, 

also known as unsupervised classification, or quantization



k-means

Given:  data                                 , and intended number of groupings k

Idea: 

find a set of representatives                        such that data is close to some 
representative 

Optimization: 

How do we optimize this?

Unfortunately this is NP-hard
Even for d=2 and k=2

How do we solve for 
d=1 or k=1 case?



Algorithm to approximate k-means

Given:  data                                 , and intended number of groupings k

Alternating optimization algorithm: 

• Initialize cluster centers                        (say randomly)

• Repeat till no more changes occur

• Assign data to its closest center (this creates a partition) (assume centers are fixed)

• Find the optimal centers                       (assuming the data partition is fixed)

Demo:
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k-means

Some properties of this alternating updates algorithm:

• The approximation can be arbitrarily bad, compared to the best cluster 
assignment!

• Performance quality heavily dependent on the initialization!

k-means:

• How to select k?

is the right k=2 or k=3?

Solution: encode clustering
for all values of k!

(hierarchical clustering)



Example: Clustering Without Committing to k

K=3 
(coarser resolution)

k=6 
(finer resolution)



Hierarchical Clustering

Two approaches:

Top Down (divisive): 

• Partition data into two groups (say, by k-means, with k=2)

• Recurse on each part

• Stop when cannot partition data anymore (ie single points left)

Bottom Up (agglomerative):

• Start by each data sample as its own cluster (so initial number of clusters is n)

• Repeatedly merge “closest” pair of clusters 

• Stop when only one cluster is left



Clustering via Probabilistic Mixture Modeling

Alternative way to cluster data:

Given:                                   and number of intended number of clusters k.

Assume a joint probability distribution               over the joint space

Parameters: 

Modeling assumption data (x1,c1),…, (xn,cn) i.i.d. from                   

BUT only get to see partial information: x1, x2, …, xn (c1, …, cn hidden!)  

1

k

Discrete distribution over the clusters  P[C=i] = i

Some multivariate distribution, e.g. 

looks familiar?



Gaussian Mixture Modeling (GMM)

Given:                                    and k.

Assume a joint probability distribution               over the joint space
1

k

Gaussian Mixture Model

Mixing weight Mixture component
(this is called a 
mixture model)

Example in R2 x [3]:



GMM: Parameter Learning

So… how to learn the parameters  ?

MLE approach: 
Given data                                       i.i.d.

ummm…. now what? Cannot really simplify further!



GMM: Maximum Likelihood

MLE for Mixture modeling (like GMMs) is NOT a convex optimization problem

In fact Maximum Likelihood Estimate for GMMs is degenerate!

X X

X = R,  k = 2  (fit two Gaussian in 1d):

Which pair of Gaussians 
gives higher likelihood?

as → 0, MLE →!

Aside: why doesn’t this occur when fitting one Gaussian?



GMM: (local) Maximum Likelihood

So, can we make any progress?

Observation: even though a global MLE maximizer is not appropriate, several 
local maximizers are desirable!

X

An example 
non-maximized 

likelihood

X

Reaches a desirable 
local maximum!

(do a few steps of gradient ascent)

A better algorithm for finding good parameters: Expectation Maximization (EM)



Expectation Maximization (EM) Algorithm

Similar in spirit to the alternating update for k-means algorithm

Idea:

• Initialize the parameters arbitrarily 

• Given the current setting of parameters find the best (soft) assignment of 
data samples to the clusters (Expectation-step)

• Update all the parameters with respect to the current (soft) assignment 
that maximizes the likelihood (Maximization-step)

• Repeat until no more progress is made.



EM for GMM

Initialize                                                          arbitrarily 

Expectation-step: For each                           and                            compute the 
assignment         of data xi to cluster j

Maximization-step: Maximize the log-likelihood of the parameters

Why?

Effective number of points 
assigned to cluster j



EM for GMM

Calculation for updating j

Recall, log likelihood:

To maximize w.r.t. j

Therefore at stationarity

since



EM for GMM in Action

Arbitrary 
assignment



EM for GMM in Action

E step: soft 
assignment of data



EM for GMM in Action

M step: Maximize 
parameter estimate



EM for GMM in Action

After two rounds



EM for GMM in Action

After five rounds



EM for GMM in Action

After twenty rounds



What We Learned…

• Unsupervised Learning problems: 

Clustering and Dimensionality Reduction

• K-means

• Hierarchical Clustering

• Gaussian Mixture Models

• EM algorithm



Questions?



Next time…

Dimension reduction!


