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Towards formalizing ‘learning’

What does it mean to learn a concept?

• Gain knowledge or experience of the concept.

The basic process of learning

• Observe a phenomenon

• Construct a model from observations

• Use that model to make decisions / predictions

How can we make this more precise?



A statistical machinery for learning 

Phenomenon of interest:

Input space: Output space:

There is an unknown distribution       over 

The learner observes examples                                       drawn from  

Construct a model:

Let      be a collection of models, where each                     predicts given  

From      observations, select a model                  which predicts well.

We can say that we have learned the phenomenon if

for any tolerance level             of our choice.

(generalization error of f )

Machine learning



PAC Learning

For all tolerance levels           , and all confidence levels          , if there exists 

some model selection algorithm      that selects                 from m observations

ie,                                     , and has the property:

with probability at least            over the draw of the sample,

We call   

• The model class      is PAC-learnable.

• If the      is polynomial in     and    , then       is efficiently PAC-learnable 

A popular algorithm:

Empirical risk minimizer (ERM) algorithm



PAC learning finite model classes

Theorem (finite size     ): 

Pick any tolerance level           , and any confidence level          

let                                       be       examples drawn from an unknown   

if                                    , then with probability at least 

is efficiently PAC learnable



Proof sketch

Define: 

We need to analyze:

(generalization error of f ) (sample error of f )

Uniform deviations of 

expectation of a random 

variable to the sample 

 0

Want this to be < , for 
sufficiently high m



Proof sketch

Fix any                and a sample              ,  define random variable   

Lemma (Chernoff-Hoeffding bound ‘63):

Let                        be m Bernoulli r.v. drawn independently from B(p). 

for any tolerance level

(generalization error of f ) (sample error of f )

A classic result in concentration 
of measure, proof later



Proof sketch

Need to analyze

Equivalently, by choosing                                  with probability at least            , 

for all



Proof sketch

Therefore, when                                , with probability at least 



PAC learning finite model classes

Theorem: 

Pick any tolerance level           , and any confidence level          

let                                       be       examples drawn from an unknown   

if                                    , then with probability at least 

is efficiently PAC learnable



One thing left…

Still need to prove:

Lemma (Chernoff-Hoeffding bound ‘63):

Let                        be m Bernoulli r.v. drawn independently from B(p). 

for any tolerance level

sample average true averageHow deviates from as a function of 
number of samples (m)

Need to analyze: How does the probability measure 
concentrates towards a central value (like mean)  



Detour: Concentration of Measure

Let’s start with something simple:

Let X be a non-negative random variable. 

For a given constant c > 0, what is:                    ?

Observation

Take expectation on both sides.

Why?

Markov’s Inequality

X

1/c

1E[X] 2E[X] 3E[X]



Concentration of Measure

Using Markov to bound deviation from mean…

Let X be a random variable (not necessarily non-negative).

Want to examine: for some given constant c > 0 

Observation:

by Markov’s Inequality

Chebyshev’s Inequality

True for all distributions! X
EX

1/c2

1Var[X] 2Var[X]1Var[X]2Var[X]



Concentration of Measure

Sharper estimates using an exponential!

Let X be a random variable (not necessarily non-negative).

For some given constant c > 0 

Observation:

by Markov’s Inequality

This is called Chernoff’s
bounding method

for any t > 0



Concentration of Measure

Now, Given X1, …, Xm i.i.d. random variables (assume 0  Xi  1)

This implies the 
Chernoff-Hoeffding

bound!

Define Yi := Xi – EXi

By Cherneoff’s bounding 
technique

Yi i.i.d.



Back to Learning Theory!

Theorem (finite F): 

Pick any tolerance level           , and any confidence level          

let                                       be       examples drawn from an unknown   

if                                    , then with probability at least 

is efficiently PAC learnable



Learning general concepts

Consider linear classification

Occam’s Razor bound is ineffective 

i.e. the set of all linear classifiers



Need to capture the true richness of

Definition (Shattering):

We say that a model class        shatters a set of points

if for all possible labellings of the points are realized by      .

That is, for every possible labelling of                      there exists some           
that achieves that labelling.

Definition (Vapnik-Chervonenkis or VC dimension):

We say that a model class       as VC dimension d, if d is the largest set of 

points that can be shattered by        .

VC Theory



Need to capture the true richness of

VC dimension: The size of the largest set of points shattered by  

Example: = linear classifiers in R2

VC Dimension



Another example:  

= axis parallel rectangles in R2, interior lablelled as positive

VC dimension:

• A combinatorial concept to capture the true richness of

• Often (but not always!) proportional to the degrees-of-freedom or 
the number of independent parameters in  

VC Dimension

The class of rectangles 
cannot realize this labelling



VC Theorem

Theorem (Vapnik-Chervonenkis ’71): 

Pick any tolerance level           , and any confidence level          

let                                       be       examples drawn from an unknown   

if                                              , then with probability at least 

is efficiently PAC learnable

VC Theorem ➔ Finite F PAC Theorem



Tightness of VC bound

Theorem (VC lower bound): 

Let       be any model selection algorithm that given m samples, returns a 
model from     , that is, 

For all tolerance levels                    , and all confidence levels                       ,

there exists a distribution      such that if   



Some implications

• VC dimension of a model class fully characterizes its learning ability!

• Results are agnostic to the underlying distribution.



One algorithm to rule them all?

From our discussion it may seem that ERM algorithm is universally consistent. 

Theorem (no free lunch, Devroye ‘82):

Pick any sample size m, any algorithm      and any 

There exists a distribution       such that 

while the Bayes optimal error, 

This is not the case!



Further refinements and extensions

• How to do model class selection?  Structural risk results.

• Dealing with kernels – Fat margin theory

• Incorporating priors over the models – PAC-Bayes theory

• Is it possible to get distribution dependent bound?  Rademacher complexity

• How about regression? Can derive similar results for nonparametric 
regression.



What We Learned…

• Formalizing learning

• PAC learnability

• Occam’s razor Theorem

• VC dimension and VC theorem

• VC theorem

• No Free-lunch theorem



Questions?



Next time…

Unsupervised learning.
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