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Perceptron and Linear Separablity

Say there is a linear decision boundary which can perfectly separate the 
training data

Which linear separator will the Perceptron algorithm return?

The separator with a 
large margin  is better 
for generalization

How can we incorporate the margin in finding the linear boundary? 



Solution: Support Vector Machines (SVMs)

Motivation:

• It returns a linear classifier that is stable solution by giving a maximum 
margin solution

• Slight modification to the problem provides a way to deal with non-
separable cases

• It is kernelizable, so gives an implicit way of yielding non-linear 
classification.



SVM Formulation

Say the training data S is linearly 
separable by some margin (but the 
linear separator does not necessarily 
passes through the origin). 

Then:

decision boundary:

Linear classifier:

Idea: we can try finding two parallel hyperplanes that correctly 
classify all the points, and maximize the distance between them!



SVM Formulation (contd. 1)

Decision boundary for the two hyperpanes:

Distance between the two hyperplanes:

Training data is correctly classified if:

Together:                                         for all i

if yi = +1

if yi = -1

why?



SVM Formulation (contd. 2)

Distance between the hyperplanes:

Training data is correctly classified if:

Therefore, want:

Maximize the distance:

Such that:

(for all i)

(for all i)

Let’s put it in the standard form…



SVM Formulation (finally!)

Maximize:

Such that:
(for all i)

Minimize:

Such that:
(for all i)

SVM standard (primal) form:

What can we do if the problem is not-linearly separable?



SVM Formulation (non-separable case)

Idea: introduce a slack for the mis-
classified points, and minimize the 
slack!

Minimize:

Such that:
(for all i)

SVM standard (primal) form (with slack):



SVM: Question

SVM standard (primal) form (with slack):

Minimize:

Such that:
(for all i)

Questions:

1. How do we find the optimal w, b and ?

2. Why is it called “Support Vector Machine”?



How to Find the Solution?

Cannot simply take the derivative

(wrt w, b and ) and examine the 

stationary points…

Why?

Minimize:   x2

Such that:  x  5

x2

xx=5

Gradient not zero at 
the function minima 

(respecting the 
constraints)!(infeasible 

region)

Need a way to do optimization with constraints

Minimize:

Such that:
(for all i)

SVM standard (primal) form:



Detour: Constrained Optimization 

Constrained optimization (standard form):

minimize

subject to:                         for 1  i  n

What to do? 

• Projection methods
start with a feasible solution x0, 

find x1 that has slightly lower objective value, 

if x1 violates the constraints, project back to the constraints.

iterate.

• Penalty methods 
use a penalty function to incorporate the constraints into the objective

• …

(objective)

(constraints)

We’ll assume that the 
problem is feasible



The Lagrange (Penalty) Method

Consider the augmented function:

Observation:

For any feasible x and all i  0, we have 

• if x is infeasible,  then 

• if x is feasible,     then 

So, the optimal value/solution to the original constrained optimization:

(Lagrange function)
(Lagrange variables, 
or dual variables)

The problem becomes 
unconstrained in x!

Optimization problem:

Minimize:

Such that:
(for all i)

x feasible ➔ g(x)  0

  0 ➔ f(x)  f(x) +  g(x) = L(x, )

g(x) > 0, so max0 g(x) = 

g(x)  0, so max0 g(x) = 0
b/c either g(x) = 0, or by picking  = 0, g(x)=0



The Dual Problem

Optimal value:

Let x* be the minimum feasible (over f), 

For all i  0

Hence:

Optimization problem:

Minimize:

Such that:
(for all i)

Lagrange function: 

(also called the primal)

(also called the dual)



(Weak) Duality Theorem

Theorem (weak Lagrangian duality):
Optimization problem:

Minimize:

Such that:
(for all i)

Lagrange function: 

Primal: 

Dual: Under what conditions can we 
achieve equality?

(called the duality gap)

(also called the minimax inequality)



Convexity

A function f: Rd → R is called convex iff for any two points x, x’ and   [0,1]





Convexity

A set S  Rd is called convex iff for any two points x, x’  S and any   [0,1]

Examples:



Convex Optimization

A constrained optimization

minimize

subject to:                         for 1  i  n

is called convex a convex optimization problem

If:  

the objective function           is convex function, and

the feasible set induced by the constraints gi is a convex set

(objective)

(constraints)

Why do we care? 

We and find the optimal solution for convex problems efficiently!

(if all f and g are convex, then the constraint 
problem is a convex optimization)



Convex Optimization: Niceties 

• Every local optima is a global optima in a convex optimization 
problem. 

Example convex problems:

Linear programs, quadratic programs,

Conic programs, semi-definite program.

Several solvers exist to find the optima:

CVX, SeDuMi, C-SALSA, …

• We can use a simple ‘descend-type’ algorithm for finding the 
minima!



Gradient Descent (for finding local minima)

Theorem (Gradient Descent):

Given a smooth function 

Then, for any                  and 

For sufficiently small              , we have:

Can derive a simple algorithm (the projected Gradient Descent):

Initialize 

for t = 1,2,…do

terminate when no progress can be made, ie, 

(step in the gradient direction)

(project back onto the constraints)



Back to Constrained Opt.: Duality Theorems

Theorem (weak Lagrangian duality):

Theorem (strong Lagrangian duality):

For a convex optimization problem, if 

there exists a feasible point x, s.t.

(for all i), or

whenever gi is affine

Then 

Optimization problem:

Minimize:

Such that:
(for all i)

Lagrange function: 

Primal: 

Dual: 

(aka Slater’s condition; 
sufficient for strong duality)



Ok, Back to SVMs

Observations:

• object function is convex

• the constraints are affine, inducing a 
polytope constraint set.

So, SVM is a convex optimization problem

(in fact a quadratic program)

Moreover, strong duality holds.

Let’s examine the dual… the Lagrangian is:

Minimize:

Such that:
(for all i)

SVM standard (primal) form:

(w,b)



SVM Dual

Minimize:

Such that:
(for all i)

SVM standard (primal) form:

(w,b)

Lagrangian:

Primal:

Dual:

Unconstrained, let’s calculate

• when I > 0, the corresponding xi is the support vector

• w is only a function of the support vectors! 



SVM Dual (contd.)

Minimize:

Such that:
(for all i)

SVM standard (primal) form:

(w,b)

Lagrangian:

Primal:

Dual:

So:

Unconstrained, let’s calculate

subject to



SVM Optimization Interpretation

Minimize:

Such that:
(for all i)

SVM standard (primal) form:

(w,b)

Maximize:

Such that:
(for all i)

SVM standard (dual) form:

(i)

Maximize  = 2/w

Kernelized version

Only a function of  
“support vectors”



What We Learned…

• Support Vector Machines

• Maximum Margin formulation

• Constrained Optimization 

• Lagrange Duality Theory

• Convex Optimization 

• SVM dual and Interpretation

• How get the optimal solution



Questions?



Next time…

Parametric and non-parametric Regression
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