COMS 4771
Perceptron and Kernelization

Nakul Verma
Last time...

- Generative vs. Discriminative Classifiers
- Nearest Neighbor (NN) classification
- Optimality of k-NN
- Coping with drawbacks of k-NN
- Decision Trees
- The notion of overfitting in machine learning
Knowing the boundary is enough for classification
Linear Decision Boundary

$\mathcal{X} = \mathbb{R}^2 = \text{Weight} \times \text{Height}$

- male data
- female data

Assume binary classification $y = \{-1, +1\}$

(What happens in multi-class case?)
Learning Linear Decision Boundaries

\(g = \text{decision boundary} \)

\[\begin{align*}
\text{d=1 case:} & \quad g(x) = w_1 x + w_0 = 0 \\
\text{general:} & \quad g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0 = 0
\end{align*} \]

\(f = \text{linear classifier} \)

\[f(\vec{x}) := \begin{cases}
+1 & \text{if } g(\vec{x}) \geq 0 \\
-1 & \text{if } g(\vec{x}) < 0
\end{cases} \]

\[= \text{sign}(\vec{w} \cdot \vec{x} + w_0) \]

\# of parameters to learn in \(R^d \)?
Dealing with w_0

$$g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0$$

$$= \begin{pmatrix} \vec{w} \\ w_0 \end{pmatrix} \cdot \begin{pmatrix} \vec{x} \\ 1 \end{pmatrix} \text{ bias}$$

$$g(\vec{x}') = \vec{w}' \cdot \vec{x}' \text{ homogeneous}$$

“lifting”
The Linear Classifier

A basic computational unit in a neuron
Can Be Combined to Make a Network

Amazing fact:
Can approximate any smooth function!

An artificial neural network
How to Learn the Weights?

Given labeled training data (bias included): \((\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots (\vec{x}_n, y_n)\)

Want: \(\vec{w}\), which **minimizes** the training error, i.e.

\[
\arg \min_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} 1[\text{sign}(\vec{w} \cdot \vec{x}_i) \neq y_i]
\]

\[
= \arg \min_{\vec{w}} \sum_{x_i \text{ s.t. } y_i = +1} 1[\vec{x}_i \cdot \vec{w} < 0] + \sum_{x_i \text{ s.t. } y_i = -1} 1[\vec{x}_i \cdot \vec{w} \geq 0]
\]

How do we minimize?

- Cannot use the standard technique (take derivate and examine the stationary points). Why?

 Unfortunately: **NP-hard to solve or even approximate!**
Finding Weights (Relaxed Assumptions)

Can we approximate the weights if we make reasonable assumptions?

What if the training data is linearly separable?
Linear Separability

Say there is a **linear** decision boundary which can **perfectly separate** the training data.
Given: labeled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots (\vec{x}_n, y_n)$

Want to determine: is there a \vec{w} which satisfies $y_i (\vec{w} \cdot \vec{x}_i) \geq 0$ (for all i)

i.e., is the training data linearly separable?

Since there are $d+1$ variables and $|S|$ constraints, it is possible to solve efficiently it via a (constraint) optimization program. (How?)

Can find it in a much simpler way!
The Perceptron Algorithm

Given: labelled training data \(S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots, (\vec{x}_n, y_n) \)

Initialize \(\vec{w}^{(0)} = 0 \)

For \(t = 1, 2, 3, \ldots \)

If exists \((\vec{x}, y) \in S \) s.t. \(\text{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq y \)

\[
\vec{w}^{(t)} \leftarrow \begin{cases}
\vec{w}^{(t-1)} + \vec{x} & \text{if } y = +1 \\
\vec{w}^{(t-1)} - \vec{x} & \text{if } y = -1
\end{cases}
= \vec{w}^{(t-1)} + y\vec{x}
\]

(terminate when no such training sample exists)
Perceptron Algorithm: Geometry

\((\vec{x}, +1)\)

\[\vec{w}^{(t)} \quad \vec{w}^{(t-1)} \]

\[
\text{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq +1
\]

\[
\vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} + \vec{x}
\]

\[
\text{sign}(\vec{w}^t \cdot \vec{x}) = +1
\]
Perceptron Algorithm: Geometry

\[(\vec{x}, -1)\]

\[\vec{w}^{(t-1)}\]

\[\vec{w}^{(t)}\]

\[\text{sign}(\vec{w}^{(t-1)} \cdot \vec{x}) \neq -1\]

\[\vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} - \vec{x}\]

\[\text{sign}(\vec{w}^t \cdot \vec{x}) = -1\]
The Perceptron Algorithm

Input: labelled training data \(S = (x_1, y_1), (x_2, y_2), \ldots (x_n, y_n) \)

Initialize \(\vec{w}^{(0)} = 0 \)

For \(t = 1, 2, 3, \ldots \)

If exists \((x, y) \in S \) s.t. \(\text{sign}(\vec{w}^{(t-1)} \cdot x) \neq y \)

\[
\vec{w}^{(t)} \leftarrow \begin{cases} \\
\vec{w}^{(t-1)} + x & \text{if } y = +1 \\
\vec{w}^{(t-1)} - x & \text{if } y = -1
\end{cases} = \vec{w}^{(t-1)} + yx
\]

(terminate when no such training sample exists)

Question: Does the perceptron algorithm terminates? If so, when?
Perceptron Algorithm: Guarantee

Theorem (Perceptron mistake bound):
Assume there is a (unit length) \(\mathbf{w}^* \) that can separate the training sample \(S \) with margin \(\gamma \)

Let \(R = \max_{\mathbf{x} \in S} \|\mathbf{x}\| \)

Then, the perceptron algorithm will make at most \(T := \left(\frac{R}{\gamma} \right)^2 \) mistakes.

Thus, the algorithm will terminate in \(T \) rounds!

umm... but what about the generalization or the test error?
Proof

Key quantity to analyze:

How far is $\vec{w}^{(t)}$ from \vec{w}^*?

Suppose the perceptron algorithm makes a mistake in iteration t, then

$$
\vec{w}^{(t)} \cdot \vec{w}^* = (\vec{w}^{(t-1)} + y\vec{x}) \cdot \vec{w}^* \\
\geq \vec{w}^{(t-1)} \cdot \vec{w}^* + \gamma
$$

$$
\|\vec{w}^{(t)}\|^2 = \|\vec{w}^{(t-1)} + y\vec{x}\|^2 \\
= \|\vec{w}^{(t-1)}\|^2 + 2y(\vec{w}^{(t-1)} \cdot \vec{x}) + \|y\vec{x}\|^2 \\
\leq \|\vec{w}^{(t-1)}\|^2 + R^2
$$
Proof (contd.)

for all iterations t

$$
\bar{w}^{(t)} \cdot \bar{w}^* \geq \bar{w}^{(t-1)} \cdot \bar{w}^* + \gamma
$$

$$
\|\bar{w}^{(t)}\|^2 \leq \|\bar{w}^{(t-1)}\|^2 + R^2
$$

So, after T rounds

$$
T \gamma \leq \bar{w}^{(T)} \cdot \bar{w}^* \leq \|\bar{w}^{(T)}\| \|\bar{w}^*\| \leq R \sqrt{T}
$$

Therefore:

$$
T \leq \left(\frac{R}{\gamma}\right)^2
$$
What Good is a Mistake Bound?

- It’s an upper bound on the number of mistakes made by an online algorithm on an arbitrary sequence of examples

 \[i.e.\ no\ i.i.d.\ assumption\ and\ not\ loading\ all\ the\ data\ at\ once!\]

- Online algorithms with small mistake bounds can be used to develop classifiers with good generalization error!
Other Simple Variants on the Perceptron

- Voted perceptron
- Average perceptron
- Winnow
Linear classification simple,
but... *when is real-data (even approximately) linearly separable?*
What about non-linear decision boundaries?

Non linear decision boundaries are common:
Generalizing Linear Classification

Suppose we have the following training data:

Separable via a circular decision boundary.

$d=2$ case:

\[g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_0 \]

say, the decision boundary is some sort of ellipse

e.g. circle of radius r:

\[
\begin{align*}
 w_1 &= 1 \\
 w_2 &= 1 \\
 w_0 &= -r^2
\end{align*}
\]

not linear in \vec{x}!
But g is Linear in some Space!

\[
g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_0 \quad \text{non linear in } x_1 \& x_2
\]

\[
= w_1 \phi_1 + w_2 \phi_2 + w_0 \quad \text{linear in } \phi_1 \& \phi_2
\]

So if we apply a feature transformation on our data:

\[
\phi(x_1, x_2) \mapsto (x_1^2, x_2^2)
\]

Then g becomes linear in ϕ - transformed feature space!
Feature Transformation Geometrically

\[\phi(x_1, x_2) \mapsto (x_1^2, x_2^2) \]
Feature Transform for Quadratic Boundaries

R^2 case: (generic quadratic boundary)

\[
g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1 x_2 + w_4 x_1 + w_5 x_2 + w_0
\]

\[
= \sum_{p+q \leq 2} w^{p,q} x_1^p x_2^q
\]

feature transformation:

\[
\phi(x_1, x_2) \mapsto (x_1^2, x_2^2, x_1 x_2, x_1, x_2, 1)
\]

R^d case: (generic quadratic boundary)

\[
g(\vec{x}) = \sum_{i,j=1}^{d} \sum_{p+q \leq 2} w_{i,j}^{p,q} x_i^p x_j^q
\]

This captures all pairwise interactions between variables

feature transformation:

\[
\phi(x_1, \ldots, x_d) \mapsto (x_1^2, x_2^2, \ldots, x_d^2, x_1 x_2, \ldots, x_{d-1} x_d, x_1, x_2, \ldots, x_d, 1)
\]
Theorem:
Given n distinct points $S = \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$
there exists a feature transform such that for any labelling of S is linearly separable in the transformed space!

(feature transforms are sometimes called the Kernel transforms)

the proof is almost trivial!
Proof

Given \(n \) points, consider the mapping into \(\mathbb{R}^n \):

\[
\phi(\vec{x}_i) \rightarrow \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{(zero in all coordinates except in coordinate } i \text{)}
\]

Then, the decision boundary induced by linear weighting \(\vec{w}^* \) perfectly separates the input data!
Transforming the Data into Kernel Space

Pros:

Any problem becomes **linearly separable**!

Cons:

What about **computation**? Generic kernel transform is typically $\Omega(n)$

*Some useful kernel transforms map the input space into *infinite dimensional space*!*

What about **model complexity**?

Generalization performance typically degrades with model complexity
Explicitly working in generic Kernel space \(\phi(\vec{x}_i) \) takes time \(\Omega(n) \)

But the dot product between two data points in kernel space can be computed relatively quickly

\[
\phi(\vec{x}_i) \cdot \phi(\vec{x}_j) \quad \text{can compute fast}
\]

Examples:

- **quadratic kernel transform** for data in \(\mathbb{R}^d \)

 explicit transform \(O(d^2) \)

 \[
 \vec{x} \mapsto (x_1^2, \ldots, x_d^2, \sqrt{2}x_1x_2, \ldots, \sqrt{2}x_{d-1}x_d, \sqrt{2}x_1, \ldots, \sqrt{2}x_d, 1)
 \]

 dot products \(O(d) \)

 \[
 (1 + \vec{x}_i \cdot \vec{x}_j)^2
 \]

- **RBF (radial basis function) kernel transform** for data in \(\mathbb{R}^d \)

 explicit transform infinite dimension!

 \[
 \vec{x} \mapsto \left((2/\pi)^{d/4} \cdot \exp(-\|\vec{x} - \alpha\|^2)\right)_{\alpha \in \mathbb{R}^d}
 \]

 dot products \(O(d) \)

 \[
 \exp(-\|\vec{x}_i - \vec{x}_j\|^2)
 \]
The Kernel Trick

The trick is to perform classification in such a way that it only accesses the data in terms of dot products (so it can be done quicker)

Example: the `kernel Perceptron`

Recall: \[\vec{w}^{(t)} \leftarrow \vec{w}^{(t-1)} + y\vec{x} \]

Equivalently \[\vec{w} = \sum_{k=1}^{n} \alpha_k y_k \vec{x}_k \quad \alpha_k = \text{# of times mistake was made on } x_k \]

Thus, classification becomes

\[f(\vec{x}) := \text{sign}(\vec{w} \cdot \vec{x}) = \text{sign}\left(\vec{x} \cdot \sum_{k=1}^{n} \alpha_k y_k \vec{x}_k \right) = \text{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x}) \right) \]

Only accessing data in terms of dot products!
The Kernel Trick: for Perceptron

classification in original space:
\[f(\vec{x}) = \text{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x}) \right) \]

If we were working in the transformed Kernel space, it would have been
\[f(\phi(\vec{x})) = \text{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\phi(\vec{x}_k) \cdot \phi(\vec{x})) \right) \]

Algorithm:
Initialize \(\vec{\alpha} = 0 \)

For \(t = 1,2,3,..., T \)

If exists \((\vec{x}_i, y_i) \in S \) s.t. \(\text{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\phi(\vec{x}_k) \cdot \phi(\vec{x}_i)) \right) \neq y_i \)

\[\alpha_i \leftarrow \alpha_i + 1 \]

implicitly working in non-linear kernel space!
The Kernel Trick: Significance

\[\sum_{k=1}^{n} \alpha_k y_k \left(\phi(x_k) \cdot \phi(x) \right) \]

dot products are a measure of similarity

Can be replaced by any user-defined measure of similarity!

So, we can work in any user-defined non-linear space implicitly without the potentially heavy computational cost
What We Learned...

- Decision boundaries for classification
- Linear decision boundary (linear classification)
- The Perceptron algorithm
- Mistake bound for the perceptron
- Generalizing to non-linear boundaries (via Kernel space)
- Problems become linear in Kernel space
- The Kernel trick to speed up computation
Questions?
Next time...

Support Vector Machines (SVMs)!