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Research Statement
Utkarsh Mall

I build computer vision tools to enable automatic scientific discovery from large-scale data. My

research builds foundation vision models for expert domains. My research also improves these

foundation models to make them more suitable for scientific applications enabling discovery. In

close interdisciplinary collaboration with domain experts, I also apply these methods to a diverse

set of real-world scientific problems.

Advances in computer vision (CV) have led to the development of several automation tools.

At the same time, several scientific domains aim to automate their experiments. CV and

machine learning (ML) tools can and are transforming scientific domains. As these experiments

get more complex and the experimentation datasets become larger, the need for CV and ML

tools that can automatically gain scientific insight from the data becomes essential.

Contemporary CV and ML models cannot be used for automation and insight discovery due

to several challenges. First, several of the foundation CV models are trained on images (data)

on the internet. Such vision models fail in scientific domains as there is a considerable domain

shift. The current workaround for this problem is to obtain labeled training data in a specific

scientific domain. However, manual annotations are too expensive and sometimes impractical

to obtain at scale in each domain. Second, even if we have perfectly working computer vision

tools for specific domains, discovering scientific insights is still challenging for several reasons.

Discovering useful insights from a large amount of data is like finding a needle in a haystack.

Trying to make sense of such large-scale data manually is infeasible. Typically scientists work

in tandem with machines to gain new insights from such data. The scientific process could be

sped up and in some cases made feasible with models that can also automate such discovery.

My research aims to solve both these challenges to build an automated framework for scien-

tific discovery allowing experiment automation and discovery of novel insights. I aim to build

domain-specific foundation models in a label-efficient manner, allowing for improved automation

of data processing in such domains. To address the second challenge, my goal is to develop tools

that adapt foundation models to possess key qualities essential for scientific discovery, including

better interpretability, correctness, uncertainty estimation, expert editability, and more.

My framework building such discovery tools and domain-specific foundation models has

led to several key insights in different areas. For example, my methods automatically uncover

interesting connections between occasion and clothing styles in fashion anthropology [17]. My

research also enables the discovery of powerful hypotheses for indicators such as population

density and biomass estimation in the areas of demography and climate science, respectively [18].

With close interdisciplinary collaborations, my research also aims to find universal challenges

across these domains, intending to develop new tools that can be applied broadly across many

disciplines. For example, label-efficient visual foundation models for remote sensing [16, 19] can

be used to automate several fields like agriculture science, urban planning, disaster management,

etc. Similarly, building neurosymbolic methods to build interpretable-by-design models for

scientific discovery can be applied to numerous fields like demography and climate science [18].

Past work

Label-efficient visual foundation models for science: Building large-scale visual foun-

dation models requires billions of images. While images from cameras and phones are easily

available online, collecting similar data for scientific domains is more difficult. In remote sensing,

while the images are easily accessible, labeling or even obtaining weak supervision like captions

is challenging. Medical diagnostic images are even more challenging due to privacy reasons.
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This poses several problems: First, the methods for training foundation models for internet

images are sub-optimal for data in specific domains as they cannot leverage the unique properties

of that domain. Second, collecting large amounts of data is infeasible in several domains, making

the typical way of training foundation models unusable.

My work leverages properties unique to a domain to learn label-efficient representations for

that domain. For example, for remote sensing data, I proposed a self-supervised representation

learning method that leverages the spatio-temporal nature of satellite images [16]. The key idea

is to learn a representation that can differentiate between long-term permanent changes and be

invariant to short-term seasonal changes. The learned representation is applicable to numerous

tasks like landcover classification [8], segmentation [26], and change detection [3] supporting

societal applications like monitoring and tracking changes to our planet for sustainable devel-

opment [2]. The method performs significantly better than self-supervised methods developed

for internet images, by leveraging the spatio-temporal properties of the domain.

Scientists often train different models to solve distinct problems in their domain. While

image-only self-supervised representations are useful, mapping semantic concepts that an expert

wants to recognize in satellite images still requires labeled examples. In my research, I created a

vision-language model (VLM) [23] for satellite imagery, enabling zero-shot recognition of open-

world concepts. The key challenge was that, unlike internet data, collecting image-text pairs

for satellite images is challenging. Therefore I leveraged internet images with geotags as an

intermediary between textual concepts and satellite images [19]. This results in a VLM called

GRAFT, which can be used for numerous tasks such as classification, retrieval, segmentation,

and visual question answering, without additional task-specific training (zero-shot).

Figure 1: Applications enabled by GRAFT

In other applications like ornithology,

zero-shot recognition might not be entirely

possible without attribute labels. For exam-

ple, an attribute-based zero-shot model [27]

requires an expert to describe all relevant at-

tributes for a new bird category [15]. My re-

search proposes a solution where the model

actively queries for a specific subset of at-

tributes, making the process more annotation-

efficient [13]. This approach is inspired by

field guides, which describe new species by highlighting key differences with familiar ones.

Building such label-efficient domain-specific foundation models presents a novel challenge

in AI research. At the same time, these foundation models have the potential to solve a wide

range of problems in scientific domains.

Scientific program learning: A key step in science is building hypotheses based on collected

observations. In fact, after collecting observations, scientists iterate over the hypotheses to

build a theory. A good hypothesis that is 1) reliable: generalizable to unseen observation, 2)

interpretable: provides insight into the problem while being accurate, and 3) sample-efficient:

learnable with few good observations, forms the basis of the theory for a problem.

To learn such reliable, interpretable, and sample-efficient hypotheses, I built a framework for

neuro-symbolic program learning called DiSciPLE [18]. The key insight was to learn hypotheses

as Python programs built on powerful visual foundation models as primitives, resulting in

reliability with interpretability. More specifically, DiSciPLE hypotheses are produced using

LLMs and then tested on real-world data. Using an evolutionary search strategy, DiSciPLE

builds new hypotheses by learning from the failures and successes of past hypotheses. On some

of the real-world scientific problems, programs from DiSciPLE performed significantly better
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than deep-learning models that tended to overfit while being uninterpretable [4]. The generated

programs are interpretable by design and as a result, also provide scope for expert-in-the-loop

interactions to impart domain-specific knowledge.

This work also highlights the interdisciplinary nature of my research. DiSciPLE can discover

such interpretable and reliable hypothesis programs across a wide range of scientific domains

ranging from demography [21] to climate science [22].

Virtuous cycle between Vision/AI and interdisciplinary fields: Close collaborations

with domain experts allow bidirectional benefits. My research is guided by their needs, leading

to novel problem exploration and the creation of tools that advance AI and CV. Conversely,

my research has an impact on scientific domains. Advances in AI and CV tools in turn lead to

better problem-solving in scientific domains.

For example, in remote sensing, clouds obstruct accurate observation, limiting insights into

missing regions. My research introduced a large-scale benchmark and method for cloud re-

moval, that fills spatio-temporal gaps in satellite images, enabling continuous signals for down-

stream applications [29]. Another problem when searching for concepts in a large region is the

time-consuming process of iteratively searching over all high-resolution images. I developed a

framework that first performs faster searches on low-resolution images, then selectively refines

the search in high-resolution areas, significantly speeding up the search [24].

Conversely, my work has also led to interdisciplinary research, where domain experts apply

the tools I developed to real-world problems in fashion anthropology [7] and public health [20].

Figure 2: Automatic spatio-temporal

event discovery from fashion (top) and

satellite images (bottom).

Discovery from data: Domain-specific vision mod-

els can automate many steps of the scientific process but

discovering insights requires tools beyond object recog-

nition. Therefore, my research built spatio-temporal

event discovery frameworks on top of these tools.

My research created a benchmark for the task of

discovering “interesting” events [14] in remote sensing.

For example, the goal is to discover spatio-temporal

volumes corresponding to changes occurring due to par-

ticular real-world phenomena such as “forest fires” or

“road constructions”, useful for climate science, ur-

ban development, ecological impact studies, etc. Such

methods effectively filter terabytes of spatio-temporal

data into a manageable set of meaningful events.

My work also explored spatial and temporal dis-

covery in another domain of fashion (anthropology). I

proposed GeoStyle [17], a framework that models the

fashion trends in a city over time, and discovers fashion anomalies occurring due to some real-

world events when people wear different clothes. GeoStyle allows cultural anthropologists to

explore these events globally, without physical exploration or prior knowledge (i.e. making dis-

coveries). I also extended the discovery framework along the spatial dimension [12], resulting

in discovering city neighborhoods with interesting fashion choices.

Future work

The North Star for my research is to enable discovery from massive amounts of scientific data

being continuously captured around our planet, cities, and labs. To achieve such a goal, several
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intermediate challenges need solving.

Better neuro-symbolic learning framework: DiSciPLE [18] showed that the proposed

programs that are scientific hypotheses can be interpretable. However, DisciPLE is just the tip

of the iceberg; there is huge potential for scientific discovery in our formulation of using LLMs

for neuro-symbolic program learning. Domain experts also have other desiderata for these

hypotheses. For example, in climate science and related fields, hypothesis models that are safe

are preferred over extrapolative unsafe models [10, 28]. Similarly, most scientists prefer models

that can provide predictions along with reliable uncertainty estimates. Improving on the neuro-

symbolic framework proposed in DiSciPLE is the correct way to build models. For example,

using general-purpose probabilistic programming languages [1] can be a way to automatically

integrate the capability of sampling and consequently quantifying uncertainty. Programs also

allow integration of other concepts from programming languages such as unit testing, and

invariants [11] leading to a better understanding of the safety landscape.

Another direction I propose to explore is learning a library [5] of programs that can be

reused for a wide array of problems in a domain. DiSciPLE can learn programs for one problem

at a time. While this is useful, co-learning related programs for many problems can lead to

better decisions. For example, modular subprograms that are used repeatedly across different

problems can lead to finding unifying principles across problems. Such a framework can also

lead to an interpretable understanding of the area as a whole rather than individual problems.

Building label-efficient scientific foundation models: While labeled data is hard to

obtain for many scientific domains, unlabeled multimodal/multisensor data is becoming more

available. For example, in climate science geo-spatial time-series data is publicly available [9],

this can be combined with other sensors such as optical remote sensing, to obtain a multimodal

foundation model that could help in both domains. Similarly, in many scientific domains such

as social sciences [6], and public health, structured geospatial data can be found in the form

of text, tables, CSVs, etc. All such data can also be combined with visual information such as

street view images or images from the internet, to build foundation models in these areas. Like

GRAFT, I plan to learn from such weakly paired information from various sensors. The tech

industry is less incentivized to build such domain-specific foundation models, therefore I believe

academia would be the right place to do this research.

Learning with scientists-in-the-loop: Neuro-symbolic programs also provide an intuitive

interface for communication between machines and scientists. For instance, experts often strug-

gle to impart their knowledge to deep learning models, typically relying on supervised data

for multi-objective training [25]. However neuro-symbolic learning allows experts to provide

information to the machine through code edits. I plan to improve this framework to enable

scientists to easily incorporate their domain knowledge while the system learns.

Robust automated systems for scientific discovery: Besides collecting observations and

building hypotheses, an often overlooked step in the scientific process is the cleaning and pre-

processing of data. Scientists spend a lot of effort on this step and the conclusion of an ex-

periment can vary significantly if this step is not done with care [30]. While these steps are

important, different domains have their standards for them. For example, in remote sensing,

there are standards for normalizing data from different sensors. I plan to build agentic systems

that can obtain knowledge from prior works in related fields and use them for data cleaning. In

interdisciplinary collaboration with scientists across areas, I aim to build an evaluation testbed

for such systems, thereby establishing a virtuous cycle between AI and Scientists.
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