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1 Introduction

Today we discuss semi-algebraic proof systems, including Sherali-Adams (SA) and Sum-of-squares (SOS).
For a first impression on the relative strength of these two proof systems, it is known that SA poly-
simulates Resolution, SOS poly-simulates SA, and Frege poly-simulates SOS. Besides, lower bounds are
known for SA and SOS.

2 Sherali-Adams

Sherali-Adams is a sound and complete proof system for refuting a family of polynomial inequalities over
the reals.

2.1 Definition

For an unsatisfiable CNF formula, we first transform it into a system of inequalities. For example, suppose
f = C1 ∧ C2 ∧ · · · ∧ Cm, and suppose Ci = (

∨
j∈Si xj) ∨ (

∨
j∈Ti ¬xj). Let

C̃i =
∑
j∈Si

xj +
∑
j∈Ti

(1− xj).

For example, if C1 = x1 ∨ ¬x2 ∨ x3, then C̃i = x1 + (1− x2) + x3.
The system of inequalities corresponding to f = C1 ∧ C2 ∧ · · · ∧ Cm is then:

C̃i − 1 ≥ 0, ∀i ∈ [m]

x2j − xj = 0, ∀j ∈ [n]

For a conjunction D = (
∧
j∈S xj) ∧ (

∧
j∈T ¬xj), we can write D equivalently as

D =
∏
j∈S

xj
∏
j∈T

(1− xj).

Definition 1 (Conical juntas). A conical junta is a non-negative linear combination of juntas J =∑
i λiDi, where λi ≥ 0 and Di are conjunctions.

Definition 2 (Sherali-Adams refutation for CNF). Let f = C1 ∧C2 ∧ · · · ∧Cm be an unsatisfiable CNF
over x1, . . . , xn. A Sherali-Adams refutation of f is given by conical juntas J0, J1, . . . , Jm and polynomials
q1, q2, . . . , qn such that

J0 +

m∑
i=1

Ji(C̃i − 1) +

n∑
j=1

qi(x
2
j − xj) = −1.
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Remark 3 (Multilinearization). Equivalently, we can drop the part
∑n

j=1 qi(x
2
j − xj), and a Sherali-

Adams refutation is simply

J0 +
m∑
i=1

Ji(C̃i − 1) = −1,

where arithmetic is done as multilinear polynomials, by replacing xdj , d ≥ 1 by xj .

2.2 Soundness and completeness

It is not hard to see that Sherali-Adams is sound.

Theorem 4 (Soundness of Sherali-Adams). If a CNF f has a Sherali-Adams refutation, then f is
unsatisfiable.

Proof. Assume the contrary that there is an assignment α ∈ {0, 1}n that satisfies f . Suppose

Π = J0 +
m∑
i=1

Ji(C̃i − 1) +
n∑
j=1

qj(x
2
j − xj) = −1

is a Sherali-Adams refutation for f . Then,

qj(α
2
j − αj) = 0, ∀j ∈ [n]

C̃i(α)− 1 ≥ 0

Ji(α) ≥ 0, ∀i ∈ [m].

These imply that Π(α) ≥ 0, a contradiction.

For completeness of Sherali-Adams, we give a constructive proof.

Theorem 5 (Completeness of Sherali-Adams). If a CNF f is unsatisfiable, then f has a Sherali-Adams
refutation.

Proof. We partition the set of all assignments α ∈ {0, 1}n into m groups G1, . . . ,Gm, such that α ∈ Gi if
and only if (1) Ci(α) = 0, and (2) for all i′ < i, Ci′(α) = 1. It is easy to see that this is indeed a partition,
and let iα denote the unique index such that α ∈ Giα .

Let Pi be the conical junta corresponding to Gi, that is, a conical junta such that

Pi(α) =

{
0 α /∈ Gi
1 α ∈ Gi

.

For example, if Gi = {(0, 0, 0), (0, 1, 1), (1, 0, 0)}, then Pi = (1−x1)(1−x2)(1−x3)+(1−x1)x2x3 +x1(1−
x2)(1− x3).

Then, for all α ∈ {0, 1}n,

m∑
i=1

Pi(α)(C̃i(α)− 1) = (C̃iα(α)− 1) +
∑
i 6=iα

0 = −1.

We can find polynomials q1, q2, . . . , qn such that

Π :−
m∑
i=1

Pi(C̃i − 1) +
∑
j=1

qj(x
2
j − xj)

is a multilinear polynomial. Since Π(α) = −1 for all α ∈ {0, 1}n, Π = −1.
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2.3 Lower bounds for Sherali-Adams via pseudodistirbutions

The complexity measure we use for a Sherali-Adams refutation is the largest degree among J0, J1, . . . , Jm
and q1, q2, . . . , qn in the refutation. We will show lower bounds for Sherali-Adams by a duality between
degree-d Sherali-Adams refutations and degree-d pseudoexpectations, which we will soon define.

Definition 6 (Pseudodistributions). A degree-d pseudodistribution on {0, 1}n is a family of probability
distributions D = {DS | S ⊂ [n], |s| ≤ d} satisfying:

1. For all S ⊂ [n], DS is supported on {0, 1}S . DS is understood as a probability distribution of all
variables xj where j ∈ S.

2. Marginals property: For all S, T ∈ [n] such that |S|, |T | ≤ d, DS |S∩T = DT |S∩T = DS∩T . Here |S∩T
means taking the marginal distribution of variables xj where j ∈ S ∩ T .

We sometimes abuse the notation and use D for D[n].

Example 7. The following is a part of a degree-3 pseudodistribution on {0, 1}3. S = {1, 2} and T =
{2, 3}.

DS :

x1 x2
0 0 0.2
0 1 0.1
1 0 0.1
1 1 0.6

DT :

x2 x3
0 0 0.3
0 1 0
1 0 0.5
1 1 0.2

DS∩T :

x2
0 0.3
1 0.7

DS |S∩T :

x2
0 0.3
1 0.7

DT |S∩T :

x2
0 0.3
1 0.7

Definition 8 (Pseudoexpectation operators). A degree-d pseudoexpectation operator Ẽ is a functional
that maps all multilinear polynomials over x1, . . . , xn of degree at most d to R and satisfies:

1. Ẽ[1] = 1.

2. Ẽ is linear. That is, if p, q are polynomials of degree at most d and α, β ∈ R, then

Ẽ[αp+ βq] = αẼ[p] + βẼ[q].

We have the following two lemmata, which roughly state that degree-d pseudoexpectations take
expectations over degree-d pseudodistributions. They follow directly from the definitions.

Lemma 9. Let D be a degree-d pseudodistribution. Then, the functional Ẽ defined by

Ẽ

∑
S

αS
∏
j∈S

xj

 :−
∑
S

αSEx∼D

∏
j∈S

xj


is a degree-d pseudoexpectation.

Lemma 10. Let Ẽ be a degree-d pseudoexpectation. Then, the distribution {DS} defined by

DS(y) = Pr
x∼DS

[x = y] :− Ẽ

 ∏
j s.t. yj=1

xj
∏

j s.t. yj=0

(1− xj)

 for y ∈ {0, 1}S

is a degree-d pseudodistribution.
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We define pseudoexpectation for a CNF.

Definition 11 (Pseudoexpectations for CNF). Let f = C1 ∧ C2 ∧ · · · ∧ Cm be an unsatisfiable CNF. A
degree-d pseudoexpectation is a pseudoexpectation for f if for every conjunction D of degree at most
d− 1, and for every i ∈ [m], Ẽ[D(C̃i − 1)] ≥ 0.

Now we state the duality between degree-d Sherali-Adams refutation and degree-d pseudoexpectations.

Theorem 12 (Sherali-Adams duality). Let f = C1 ∧ · · · ∧Cm be an unsatisfiable CNF. Then, f has no
degree-d Sherali-Adams refutation if and only if there exists a degree-d pseudoexpectation for f .

Proof for sufficiency. Assume f has a degree-d Sherali-Adams refutation

J0 +

m∑
i=1

Ji(C̃i − 1) = −1

and assume Ẽ is a degree-d pseudoexpectation for f . Applying Ẽ to both sides of the above equation, we
get

Ẽ[J0] +

m∑
i=1

Ẽ[Ji(C̃i − 1)] = Ẽ[−1].

The left side is at least 0 since J0 is a conical junta and Ẽ[Ji(C̃i − 1)] ≥ 0 for every i ∈ [m] by definition
of pseudoexpectations for f . However, the right side equals −1, a contradiction.

For the proof of necessity, please refer to [FKP19].

2.4 Linear programming tightening

We have seen that Sherali-Adams can be viewed as a proof system and as pseudodistributions. It can
also be viewed as linear programming tightening.

Linear programming as a proof system. We first demonstrate that linear programming can be
viewed as a proof system for linear inequalities. Consider a linear programming:

maximize cTx

s.t. Ax ≤ b
and x ≥ 0

The decision version of the linear programming is, whether there is a value of x satisfying Ax ≤ b.
We have the following lemma, which essentially states that linear programming is a sound and com-

plete proof system for satisfiability of linear inequalities over R.

Lemma 13 (Farka’s lemma). A set {Ax− b ≥ 0} of linear inequalities is unsatisfiable over R if and only
if there exists a vector y whose entries are all non-negative such that yTA = 0 and yT b = −1.

Recall the duality of linear programming:

(P) Primal: (D) Dual:

maximize cTx minimize bT y

s.t. Ax ≤ b s.t. AT y ≤ c
and x ≥ 0 and y ≥ 0

The following duality theorem is a consequence of Farka’s lemma.
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Theorem 14. Exactly one of the following holds:

1. Neither primal nor dual has a feasible solution.

2. Primal has solutions with arbitrarily large values while dual is unsatisfiable.

3. Primal is unsatisfiable while dual has solutions with arbitrarily large values.

4. Both primal and dual have optimal solutions, respectively x∗ and y∗. Then, cTx∗ = bT y∗.

A linear programming refutation of {Ax ≤ b, x ≥ 0} is a nonnegative linear combination of these
inequalities that equals −1. It is complete and sound by Farka’s lemma.

A linear programming derivation of cTx ≤ c0 from {Ax ≤ b, x ≥ 0} is a nonnegative y∗ such that
(y∗)T b = c0. The soundness is because cTx ≤ (y∗)TAx ≤ (y∗)T b = c0 and the completeness follows from
Theorem 14.

Sherali-Adams as linear programming tightening. For an unsatisfiable f = C1 ∧ C2 ∧ · · · ∧
Cm, there is a corresponding linear programming (or more precisely, linear inequalities, as there’s no

optimization objective) {C̃i − 1 ≥ 0, 0 ≤ xj ≤ 1}. The property that is not preserved in the linear
programming is that xj is an integer.

We call a tightening of the linear programming in the following way Sherali-Adams degree-d tightening :

• Suppose the original linear programming is

(ignore maximize cTx)

Ax ≤ b
0 ≤ x ≤ 1

• We add new variables yS for all S ⊂ [n], |S| ≤ d. The meaning of yS is
∏
j∈S xj .

• We impose new constraints ∏
j∈S

xj
∏
j∈T

(1− xj) · (aTx− b) ≥ 0

for all rows a in A and all S, T ⊂ [n] such that S∩T = ∅ and |S∪T | ≤ d. The part
∏
j∈S xj

∏
j∈T (1−

xj) corresponds to a conical junta in Sherali-Adams.

• We rewrite and add new constraints with the new variables yS with multilinearization (x2j−xj = 0):

y∅ = 1

y{j} = xj

0 ≤ yS ≤ 1∑
T ′⊂T

(−1)|T
′|

 n∑
j=1

ajyS∪T ′∪{j} − byS∪T ′

 ≥ 0

where a is any row of A and aj is the j-th entry of a.
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The last constraint is because ∏
j∈T

(1− xj) =
∑
T ′⊂T

(−1)|T
′|
∏
j∈T ′

xj

and multilinearization. Because of multilinearization, the new constrains are a tightening of the original
linear programming, while preserving all Boolean solutions. The following is an example.

Example 15. Consider the clause x1∨x2∨¬x3. The corresponding linear inequality is x1+x2+1−x3−1 ≥
0, i.e.

x1 + x2 − x3 ≥ 0.

Note that (x1, x2, x3) = (1/2, 1/2, 1/2) is a feasible solution (but not a Boolean solution). However, in
degree-2 Sherali-Adams (viewed as linear programming tightening), we have the following constraint:

(1− x1)x3(x1 + x2 − x3) ≥ 0.

After multilinearization, we get
x1x3 + x2x3 − x3 − x1x2x3 ≥ 0,

or with yS ,
y{1,3} + y{2,3} − y{3} − y{1,2,3} ≥ 0.

We can see that (x1, x2, x3) = (1/2, 1/2, 1/2) is no longer a feasible solution after tightening.

In the way described above, Sherali-Adams can be viewed as a successive tightening of linear pro-
gramming. Sherali-Adams degree-0 tightening just corresponds to the original linear programming. A
degree-(d + 1) tightening tightens a degree-d tightening, and a degree-n tightening is a “programming”
where all feasible solutions are Boolean. Moreover, all Boolean solutions for the original linear program-
ming is still a solution in the degree-n tightening. This intuition is formalized by the following lemma:

Lemma 16. Let H :− {Ax − b ≥ 0, 0 ≤ x ≤ 1} be a linear programming. Then, the Sherali-Adams
degree-d tightening of H has no feasible solution if and only if there is a degree-d Sherali-Adams refutation
of H.

Proof sketch. For sufficiency, assume the contrary, suppose there is a feasible solution. We plug in the
feasible solution into the degree-d Sherali-Adams refutation. Since the solution is feasible, each part in
the refutation in the form of a conical junta multiplying the left-hand-side of a linear inequality, plus
necessary multilinearization, should be nonnegative when plugging in the solution. Thus, the left-hand-
side is nonnegative when plugging in the solution, a contradiction.

For necessity, since there is no feasible solution for the degree-d tightening, by Farka’s lemma, there is
a nonnegative linear combination of the linear inequalities in the degree-d tightening that equals −1. This
linear combination is itself a degree-d Sherali-Adams refutation after necessary multilinearization.

Automatizability of linear programming and Sherali-Adams. It is easy to see that satisfiability
of linear inequalities over R is in NP. By Farka’s Lemma, it is also in coNP. Thus, it is in NP ∩ coNP.
However, actually it is known that linear programming is in P (e.g. using ellipsoid algorithm [Kha79]).
We can also find a linear programming refutation in P.

By Lemma 16, deciding whether there is a degree-d Sherali-Adams refutation is equivalent to deciding
whether the corresponding Sherali-Adams degree-d tightening has a feasible solution. Since the degree-d
tightening has nO(d) linear constraints, deciding whether there is a degree-d Sherali-Adams refutation
takes nO(d) time.
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Theorem 17 (Degree-automatizability of Sherali-Adams). A degree-d Sherali-Adams refutation can be
found in time nO(d) when there is one.

Remark 18. For size-automatizability, for Sherali-Adams refutation of size s, the best-known upper
bound for the time to find one is 2

√
n log s. For s that is polynomial in n, this is exponential time.

3 Sum-of-Squares (SOS)

Sum-of-Squares is a refutation system (like Sherali-Adams) for certifying that a system of polynomial
inequalities is unsolvable.

Definition 19. A polynomial q over x1, . . . , xn is a sum-of-squares polynomial if q =
∑

i p
2
i for some

polynomials pi

Definition 20. Let φ = C1 ∧ · · · ∧ Cn be some unsatisfiable CNF formula. A sum-of-squares (SOS)
refutation of φ is a set of sum-of-squares polynomials {q0, q1, . . . , qm} such that

∑m
i=1 qi∗(C̃i−1)+qo = −1

**where we assume multi linear arithmetic

3.1 Soundness and Completeness

Soundness: See proof of soundness for Sherali Adams
Completeness: Follows from completeness of SA as any non-negative junta can be written as a sum-of-
squares:

Let D = Πi∈Sxi Πj∈T (1− xj)

Then D2 = (Πi∈Sxi Πj∈T (1− xj))2 = Πi∈Sx
2
i Πj∈T (1− xj)2

3.2 SOS Equivalent Views

Similar to SA, we have the following properties of SOS refutations. See [FKP19] for details.

• Like SA, we can define a suitable notion of pseudo-distribution and pseudo-expectation so that
6 ∃ degree-d SOS refutation of φ iff ∃ a degree-d SOS pseudo-expectation for φ. This gives us a
complete method for proving SOS degree lower bounds.

• SOS can be viewed as tightening of SDP (semi-definite program)

• Efficient algorithms for SDP imply degree-d SOS refutations are automatizable (ignoring coefficient
size) in time nO(d)

The following theorem shows that SOS proofs can have significantly smaller degree than SA proofs.

Definition 21. Let n = 2d, with variables xij such that i ∈ [0, . . . , n − 1] and j ∈ [0, . . . , d − 1]. xij is
the jth bit of the binary representation showing where pigeon i is mapped. We write 〈xi〉 = j to denote
the width-d conjunction, which is true if and only if pigeon i maps to hole j. A BPHPn (binary pigeon
hole principle) instance, therefore, is a set of clauses such that

1. No pigeon maps to hole 0:
∨d
j=1 xij

2. No two pigeons map to the same hole: ¬(〈xi〉 = j) ∨ ¬(〈xi1〉 = j) ∀i 6= i1 ∈ [0, . . . , n− 1]
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Theorem 22. There are polysize, degree-3 SOS refutations of BPHPn, but SA refutations require Ω(n)
degree

Upper bounds can automatically generate efficient algorithms! Since SOS is automatizable
with respect to degree, constant-degree SOS proofs can be found in polynomial time. This has been used
in order to obtain some state-of-the-art algorithms for solving some learning and distributional tasks.
Some examples are:

1. Dictionary Learning [BKS’ 15]

2. Tensor Completion [BM16, PS17]

3. Tensor Decomposition [MSS16]

4. Robust moment estimation [KS17]

5. Clustering [HL18][KS17]

6. Robust linear regression [KKM18]

Lower bounds imply lower bounds for a broad class of algorithms. On the other hand,
SOS lower bounds have also had a variety of applications. Using the lifting machinery, SOS lower
bounds have been used to prove obtain superpolynomial lower bounds on the size of SDP Extended
Formulations required in order to solve (exactly and even approximately) some NP-hard optimization
problems [LRS15,CLRS16].

Most of these lower bounds (for SDP Extended Formulation size) reduce to the following SOS degree
lower bound. (See [FKP19] for a proof.)

Theorem 23. There exist UNSAT kCNFs (Tseitin over constant-degree expander graphs) that require
Ω(n) degree refutations in SOS.
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