
COMS E6998: Proof Complexity and Applications (Spring ’25) March 6, 2025

Lecture 6: Bounded-depth Frege

Instructor: Toniann Pitassi Scribes: Chih Huang, Liana Goldstein

1 Overview

Today’s focus is on proving bounded-depth Frege size lower bounds for the Pigeon Hole Principle. First,

we prove the size lower bounds for computing the Parity function. Building on this, we then prove the

size lower bounds for PHP . Formally speaking, our goal is to show the following:

Theorem 1. Any depth-d Frege proof of PHPn+1
n requires size 2n

εd with εd = 1
6d

.

The result we show today is originally due to [Ajt94] which showed a superpolynomial bound, and

it was then improved by [PBI93, KPW95] to an exponential lower bound. The bound was then further

strengthened by [H̊as23].

2 Decision Trees and Restrictions

Before diving into the main theorem, we first introduce some essential definitions.

Definition 2. Let decision tree T over x1. . . xn to be a binary tree where each internal node is labeled

with a variable xi; the two out edges of an internal vertex are labeled with 0, 1 respectively, and each

leaf is labeled by either 0 or 1. An out edge labeled 0 means that this edge corresponds to setting xi = 0

and the other edge labeled 1 corresponds to setting xi = 1. Thus, each path in T corresponds to a partial

assignment σ, which assigns binary values to all variables queried on the path from the root of T to a leaf.

A decision tree T over x1...xn represents a DNF f if all paths in T with associated partial matching

restriction σ, f |σ = leaf value of path σ.

The following in Fig. 1 is an example decision tree over x1...x4:

Definition 3. t-DNF is a disjunction of terms, where each term has a maximum size of t.

Definition 4. Let f be a t-DNF, then a restriction ρ : {x1...xn} → {0, 1, ∗} is a partial assignment that

sets the underlying variables to 0, 1, or ∗. We apply the restriction ρ term by term, if any term evaluates

to 1 then fρ = 1, otherwise fρ can be viewed as a DNF consists of the original terms of f but each term

only has the unassigned literals while the assigned literals are removed.

Definition 5. Let f be a t-DNF and ρ a partial restriction. The canonical decision tree for f restricted

by ρ is defined as follows:

• If f |ρ=0, T (f |ρ) consists of a single node labeled 0.

• If f |ρ=1, T (f |ρ) consists of a single node labeled 1.

1

Figure 1: An example decision tree with variables x1, x2, x3, x4

• Suppose f |ρ = Ci ∨Ci+1 ∨ ...Ck. Then, T (f |ρ) first query all free literals of Ci. Each path from the

root to a leaf represents a partial assignment σi.

– If Ci|ρ∪σi = 1, then the corresponding leaf is labeled 1.

– If Ci|ρ∪σi = 0, then we recursively construct its subtree T ′|ρ∪σi with f ′|ρ∪σi = Ci+1 ∨ ...Ck.

The following in Fig. 2 is an example canonical decision tree T with f=x1x̄2
∨
x4.

Figure 2: An example canonical decision tree for f=x1x̄2
∨
x4

Definition 6. Random Restrictions Ppn: set of restrictions ρ on domain x1...xn such that for each xi we

set xi to 0 w.p. (1−p)
2 , 1 w.p. (1−p)

2 , and leave it unset (set to *) w.p. p.

2

3 Lower Bounds for Parity

In order to prove the lower bounds for bounded-depth Frege on PHP , we first find the lower bounds for

Parity. Here, we show the following result due to [Has86]:

Theorem 7. Parity requires 2n
εd size AC0

d-circuit, εd ≈ 1
2d

On a high level, our proof proceeds as follows:

• Assume for contradiction C is an AC0
d -circuit of polynomial size computing Parity over x1...xn.

• Repeatedly apply restrictions ρ1...ρd to shrink C into circuits C1 = C|ρ1 (depth = d-1), C2 = C|ρ1ρ2
(depth = d-2) ... Cd = C|ρ1ρ2...ρd−1

. In the end, Cd is a trivial circuit that cannot compute Parity

on the remaining unset variables, hence forming a contradiction.

Above shows that our proof relies on finding restrictions that successfully shrink circuit C, and the

switching lemma guarantees the existence of such restrictions.

Lemma 8. Switching Lemma [Has86]: Let f be a r-DNF over x1...xn and p ≤ 1
4 , then Prρ∈Ppn [T (f |ρ)

has depth ≥ s] ≤ (4pr)s .

Proof of Theorem 7. Lets proceed with proof by contradiction. Assume C is a size ς AC0[d] circuit for

Parityn, ς < 1
2d(4pr)s , p = 1/8r, and r = s = n1/2d. Without loss of generality, suppose bottom level of

C consists of m rDNFs. Since C has size at most ς, then C has at most ς rDNFs at the bottom. When

converting a r-DNF into a decision tree, the switching lemma says that for a random restriction ρi ∼ Ppn:

Prρi [T (f |ρ1) has depth > s] < (4pr)s

Through union bound we see that for any random restriction ρi ∼ Ppn:

Prρi [∃j ∈ [m], T (fj |ρ1) has depth > s] < m(4pr)s < ς(4pr)s < 1/2d

Above shows there exists a random restriction ρ1 such that it converts all bottom level rDNFs fi|ρ1
to decision trees Ti(f |ρ1) with depth at most s. For each Ti(f |ρ1), if we look at its 1-leaves and the

path πt from root to the leaf, we see that fi|ρ1(x) =
∨
t labeled 1

∧
xj queried in πt

xbii , with xbii = xi or ¬xi.
This shows fi can be expressed as a sDNF, since there are at most s variables queried for each path πt.

Similarly, looking at the 0-leaves of Ti(f |ρ1) we see that ¬fi|ρ1 can be expressed as a sDNF. Applying

DeMorgan to ¬fi|ρ1 and its associated sDNF formula, we get that fi|ρ1 can be expressed as a sCNF. This

shows each fi|ρ1 can be expressed as both sDNF and sCNF.

Take a bottom level fi, if the parent gate is AND, then under restriction ρ1 we convert fi|ρi to a

sCNF. Then, we can merge a layer of this sCNF with the parent AND gate. Similarly, if the parent

gate is OR, then we convert fi|ρi to a sDNF and merge with the parent OR gate. This process reduces

the depth of C by 1. Repeating the above procedure d times, we get ρ1...ρd and C|ρ1...ρd is a depth ≤ r

decision tree for Parityn′ , where n′ is the number of unset variables after ρ1...ρd. As long as n′ > r, the

above shows that Parityn′ can be decided by a decision tree with depth < n′, which forms a contradiction.

Above, we see for a random restriction in any round ρi it fails with probability < 1/2d to reduce the

depth of C by 1. Using union bound, we see that the probability for any random restriction to fail in

3

some round < (d − 1)/2d < 1. Hence, there exists a sequence of restrictions ρ1...ρd−1 that successfully

reduces C to a trivial circuit.

Concluding the above, we see that ς ≥ 1
2d(4pr)s , which after some calculation gives ς ≥ 2n

εd .

4 Lower Bounds for PHP

Recall an AC0
d Frege proof of PHPn+1

n is a sequence of AC0
d formulas F1, F2, ...Fm such that each Fi

is either an axiom, or follows from one or two previous lines through a valid Frege rule. In the end,

Fm = PHPn+1
n .

Here is an naive attempt at finding lower bounds to PHP based on our proof for Theorem 7. Assume

for contradiction that we have a size ς AC0
d Frege proof Π for PHPn+1

n , and we try applying a sequence of

restrictions to reduce the depth of Π. Eventually, the depth of Π becomes 1, and this gives a contradiction

as there exists no AC0
d Frege proof for PHPn+1

n with depth=1.

However, a problem with our attempt is that every line in Π is a tautology, and hence each line is

already equivalent to a depth=1 trivial formula. Therefore, we must find a way to differentiate between a

complicated depth d formula that evaluates to true, and other trivial formulas that also evaluate to true.

Note that if we think of n as infinite, then there exists a bijection between {1, 2, ...n+ 1} and {1, 2, ...n}.
Building on this idea, we define a family of partial restrictions that not only satisfies the restrictions of

PHPn+1
n but also enables depth reduction.

Here, we formally introduce the size lower bounds for PHP .

Theorem 9. PHP requires 2n
εd size AC0

d-circuit lower bounds, εd ≈ 1
6d

Before presenting the full proof of Theorem 9, we first introduce some necessary elements.

Definition 10. Matching restrictions ρ over {Pi,j , i ∈ D, j ∈ R} is a partial 1-1 mapping of size n − g
corresponding restriction. Here, n = min(|D|, |R|) and g is the number of variables left unset. Suppose

ρ maps i to j, then

• Pi,j = 1

• Pi,j′ = 0, ∀j′ 6= j

• Pi′,j = 0, ∀i′ 6= i

Definition 11. A matching disjunction is an OR of matching terms, where a matching term corresponds

to a partial one-to-one mapping. A r-disjunction is an OR of matching terms with size at most r. Below

is an example of a 2-disjunction:

P1,2P3,4

∨
P3,2P4,1

∨
P2,3

Definition 12. Let f be a r-disjunction, ρ be a matching restriction, then the restriction of a r-disjunction

f |ρ is defined as setting certain variables as matching with one another. For instance,

P1,2P3,4

∨
P3,2P4,1

∨
P2,3|1→3,4→1 = P3,2

Definition 13. A matching decision tree over set D ∪R is a rooted directed tree T such that

4

• Internal nodes are labeled by elements of D ∪R.

• Leaves are labeled by 0 or 1.

• Suppose the root is labeled by i ∈ D, then for each j ∈ R there is one edge from root labeled i→ j.

• Suppose the root is labeled by j ∈ R, then for each i ∈ D there is one edge from root labeled i→ j.

• Take T (i→j) to be the subtree such that its root is connected to the root of T through an edge labeled

i→ j. Then, T (i→j) is a matching decision tree over D′∪V ′, with D′ = D−{i} and V ′ = V −{j}.

Suppose D = {1, 2, 3, 4} and R={1′, 2′, 3′}. Then, the matching decision tree T in Fig. 3 corresponds

to the matching disjunction P2,1′P3,2′
∨
P2,3′P4,1′ .

Figure 3: A matching decision tree for P2,1′P3,2′
∨
P2,3′P4,1′

Definition 14. Let ρ be a matching restriction and T a matching decision tree. We define T |ρ inductively:

1. If T consists of a single node T |ρ = T .

2. If T consists of at least 2 nodes and suppose the root of T is labeled with vertex i, then

• If ρ maps i→ j for some j, then T |ρ = T ′ρ with T ′ being the subtree of root labeled with i→ j.

• If ρ does not map any element to or from i, then T |ρ has root labelled by i with subtrees T ′|ρ
where T ′ is connected to the root by an edge i→ k where ρ does not fix k.

Suppose D = {1, 2, 3, 4} and R={1′, 2′, 3′}. Then, the matching decision tree T in Fig. 4 corresponds

to the matching disjunction P2,1′P3,2′
∨
P2,3′P4,1′ after applying restriction 2→ 1′.

Definition 15. Let T be a matching decision tree over variables of PHPn+1
n with depth < n, and let f be

a matching disjunction. T represents f if for all paths in T with associated partial matching restriction

σ, f |σ = leaf value of path σ.

Lemma 16. Let T be a matching decision tree and ρ a matching restriction. Then we have the following:

1. Disj(T) ≡ Disj(T |ρ)

5

Figure 4: The matching decision tree of P2,1′P3,2′
∨
P2,3′P4,1′ with the restriction 2→ 1′

2. If T is complete over Dn+1 ∪ Rn, then T |ρ is complete over Dn+1|ρ and Rn|ρ. Here, complete

means that every assignment where all holes are assigned pigeons is associated with an unique leaf.

3. (T |ρ)c = T c|ρ, with the complement being the toggling of all values of leaves.

4. If l is a leaf in T |ρ, then there exists a leaf l′ in T with same label as l so that Π(l′) ⊆ Π(l) ∪ ρ
(where Π(l′) is the partial matching associated with path in T from root to l′).

5. If T represents the matching disjunction f , then T |ρ represents the matching disjunction f |ρ.

Definition 17. Let f be an r-disjunction and ρ ∈ Qpn a matching restriction. The canonical matching

decision tree for f , T (f), is defined as follows:

• If f = 0: T (f |ρ) consists of a single node labeled 0.

• If f = 1: T (f |ρ) consists of a single node labeled 1.

• Else: Let t1 be the first matching term of f . Create the complete matching decision tree over the

set s′ ⊆ D ∪ R of pigeons and holes mentioned in the first clause C1. If t1 is forced into a value

of 0 or 1, then the process can be terminated early. First, each leaf i is associated with a matching

restriction σi. Then, we inductively replace each leaf i with the canonical matching decision tree

T (f |σi).

Fig. 5 is an example of the canonical matching decision tree T for: D = {1, 2, 3, 4}, R = {1′, 2′, 3′},
f = P21′ ∪ P23′P42′ . Let t1 = P21′ and t2 = P23′P42′ . In T , the protocol first queries the pigeons/holes

mentioned in t1, then the pigeons/holes mentioned in t2.

Definition 18. Random Restrictions Qpn: set of all matching restrictions ρ over D = [n+1] and R = [n]

such that after applying ρ, there are still pn+ 1 pigeons and pn holes unset.

Lemma 19. PHP Switching Lemma: Let f be a r-disjunction, then Prρ∈Qpn[T (f |ρ) has depth ≥ s]

≤ (11p4n3r)s.

Here, we note that though the PHP switching lemma provides a larger upper bound than the Parity

switching lemma, we will see shortly that this is still sufficient to prove our intended size lower bound

for PHP . Our proof of Theorem 8 will utilize the follow Switching Lemma procedure that reduces the

depth of a formula L:

6

Figure 5: The canonical matching decision tree for f = P21′∪P23′P42′ , with the protocol first querying the
pigeons/holes mentioned in the first clause, and then the pigeons/holes mentioned in the second clause

1. Without loss of generality: L is a depth d formula over basis
∨

and ¬, and the bottom two layers

are r-disjunctions fi.

2. Let ρ1 ∈ Qpn be matching restriction such that ∀i T (fi|ρ1) has depth ≤ r (ρ1 guaranteed to exist by

the PHP Switching Lemma).

3. Define L|ρ1 such that for all bottom-level depth-3 subformulas hj :

• Convert ¬fi|ρ1 → ¬T (fi|ρ1)→ T c(fi|ρ1)

• Convert
∨q
i=1(¬fi|ρ1)→

∨q
i=1

∨
t a 1-path in T (fi|ρ1)

t .

After the application of Step 3, L|ρ1 is converted into a new formula of OR with depth d− 2, while the

leaves continue to be r-disjunctions. After repeating Step 3 for d − 1 times, we have L|ρ1...ρd−1
which

converts to a single matching decision tree of height ≤ r. From here, we then obtain a contradiction by

transforming the initial formula into a 1-tree and the final formula after restrictions into a 0-tree.

[To obtain the bounds as shown in Thm. 9, we set the parameters as follows: Let n0 = n and ni =

number of unset holes after round i of applying restrictions. As such, ni+1 = pi+1ni. Set pi+1 = n
−5
6
i and

ri = si = n
1
6
i . Then, the PHP switching lemma fails to find a satisfying restriction ρ with probability

≤ 11(n
−20
6

i n3in
1
6
i)ri = 11(n

−20
6

+ 18
6
+ 1

6
i)ri = 11(n

−1
6
i)ri . For ni large enough, we have 11n

−1
6
i < 1/2, and

therefore 11(n
−1
6
i)ri < 1/2ri . For base case, we achieve nd−1 = n

1

6d−1 with rd−1 = 1/6d. With this setting,

we then obtain lower bound on size ϑ > 2n
rd−1 ∼ 2n

1/6d

.]

Proof Sketch of Theorem 8:

• Let Π be an alleged size < ς AC0[d]- Frege proof of PHPn+1
n . Π = {L1, ..., Lm}.

• Following the PHP switching lemma procedure sketched above (using parameters described) which

can be applied iteratively d − 1 times to obtain a good sequence of restrictions ρ1, ..., ρd−1 such

that under ρ = ρ1...ρd−1, we can convert Π = {L1, ..., Lm} into another sequence of formulas

Π∗ = {L∗1, ..., L∗m} where L∗i are depth≤ r matching decision trees, obtained by successively applying

ρ1, ..., ρd−1 to yield L1
i , ..., L

d
i − 1 = L∗i .

7

• To finish the lower bound, we need to reach a contradiction by showing that if the proof Π is sound,

then Π∗ is also a ”locally” sound proof of PHPn+1
n on the remaining n′ + 1 unset pigeons, and n’

unset holes.

Definition 20. k-evaluation: Let Γ be a set of formulas closed under subformulas, over Dn′+1 ∪ Rn
′
. A

k-evaluation for Γ is an assignment of complete matching decision trees T (A) to all subformulas A that

occur in Γ such that:

1. T (A) has depth ≤ k for all A

2. • T (1) is the tree with a single node labeled 1

• T (0) is the tree with a single node labeled 0

3. T (Pij) is the full matching tree over Dn′+1 ∪ Rn
′

with leaf l labeled 1 if Π(l) contains {i, j}, and

0 o.w.

4. If A is a matching disjunction then T (A) represents
∨
iDisj(T (Ai))

Lemma 21. Obtaining a k-evaluation: Let Π be a size ς, depth d Frege proof of PHPn+1
n . Let ρ1, ..., ρd−1

be the good restrictions guaranteed to exist by the PHP switching Lemma. Then:

There exists a k-evaluation for Γ = { all subformulas occurring in Π|ρ1...ρd−1
} over Dn′+1 ∪ Rn

′
.

[Proof of lemma omitted, proof idea: Prove inductively on depth d. Let Fi = all subformulas occurring

in Π that have depth ≤ i. Then after stage i, we have a k- evaluation for the formulas Fi ρ1, ..., ρd−1.

Now we will now finish our proof of Theorem 8. Base case: Let Π = {L1, .., Lm} be the alleged

proof of PHPn+1
n . It is left to argue that if we have a k-evaluation T for all subformulas of Π|ρ over

Dn′+1 ∪ Rn
′

where k << n′ then we reach a contradiction as follows:

• (A) on the one hand we can show that all axioms of Π|ρ convert to all-1 trees and the Frege rules

preserve 1-trees, so every formula in Πρ converts to a 1-tree.

• (B) On the other hand, the last line Lm|ρ converts to an all 0-tree.

We will now show why (B) holds. (B) states that for all n > 1, PHPn+1
n converts to a 0-tree under T .

PHPn+1
n consists of the disjunction of the following formulas

1. ¬(¬Pi,k ∨ ¬Pj,k) ∀i 6= j ≤ n+ 1, k ≤ n

2. ¬(Pi,1 ∨ Pi,2 ∨ ... ∨ Pi,n) ∀i ≤ n+ 1.

T (Type (1) clauses) are all 0-trees: Since T (¬(¬Pi,k ∨¬Pj,k)) = T c(¬Pi,k ∨¬Pj,k) (tree for ¬Pi,k ∨¬Pj,k
with all leaf values toggled), to show T (¬(¬Pi,k∨¬Pj,k)) is a 0-tree it suffices to show that T (¬Pi,k∨¬Pj,k)
is a 1-tree. To accomplish this, note that T (¬Pi,k ∨¬Pj,k) = T (Disj(T c(Pi,k))∨ T (Disj(T c(Pi,k))). For

concreteness, consider T (¬P1,3′ ∨ ¬P2,3′).

8

Figure 6: The matching decision tree T (P1,3′). Note
that there is exactly one 1-leaf corresponding to the
path 1→ 3′.

Figure 7: The matching decision tree T (¬P1,3′).
Note that there is exactly one 0-leaf corresponding
to the path 1→ 3′.

Figure 8: The matching decision tree T (¬P2,3′).
Note that there is exactly one 0-leaf corresponding
to the path 2→ 3′.

Then T (¬P1,3′ ∨ ¬P2,3′) = T ((
∨

all 1-paths σ in T (¬P1,3′))

mσ) ∨ (
∨

all 1-paths σ′ in T (¬P2,3′

mσ′)). This tree

queries pigeons 1,2 and hole 3’. All the leaves of this tree are labeled with 1 since no partial matching

over {2, 1, 3′} maps 2→ 3′ and 1→ 3′. Can similarly argue for all type (1) clauses.

9

Finally, to argue that tall type (2) clauses of the form T (¬(Pi,1 ∨ Pi,2 ∨ ... ∨ Pi,n)) yield a 0-tree, it

suffices to show that T ((Pi,1 ∨ Pi,2 ∨ ... ∨ Pi,n)) is a 1-tree. Consider figure 9 below.

Figure 9: T (Pi,1 ∨ Pi,2 ∨ ... ∨ Pi,n)

10

References

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433, 1994.

[Has86] John Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the

eighteenth annual ACM symposium on Theory of computing, pages 6–20, 1986.

[H̊as23] Johan H̊astad. On small-depth frege proofs for php. In 2023 IEEE 64th Annual Symposium

on Foundations of Computer Science (FOCS), pages 37–49. IEEE, 2023.

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of

bounded depth frege proofs of the pigeonhole principle. Random structures & algorithms,

7(1):15–39, 1995.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the

pigeonhole principle. Computational complexity, 3:97–140, 1993.

11

