COMS E6998: Proof Complexity and Applications (Spring '25) March 6, 2025 Lecture 6: Bounded-depth Frege Instructor: *Toniann Pitassi* Scribes: *Chih Huang, Liana Goldstein*

1 Overview

Today's focus is on proving bounded-depth Frege size lower bounds for the *Pigeon Hole Principle*. First, we prove the size lower bounds for computing the *Parity* function. Building on this, we then prove the size lower bounds for *PHP*. Formally speaking, our goal is to show the following:

Theorem 1. Any depth-d Frege proof of PHP_n^{n+1} requires size $2^{n^{\epsilon_d}}$ with $\epsilon_d = \frac{1}{6^d}$.

The result we show today is originally due to [Ajt94] which showed a superpolynomial bound, and it was then improved by [PBI93, KPW95] to an exponential lower bound. The bound was then further strengthened by [Hås23].

2 Decision Trees and Restrictions

Before diving into the main theorem, we first introduce some essential definitions.

Definition 2. Let decision tree T over $x_1...x_n$ to be a binary tree where each internal node is labeled with a variable x_i ; the two out edges of an internal vertex are labeled with 0, 1 respectively, and each leaf is labeled by either 0 or 1. An out edge labeled 0 means that this edge corresponds to setting $x_i = 0$ and the other edge labeled 1 corresponds to setting $x_i = 1$. Thus, each path in T corresponds to a partial assignment σ , which assigns binary values to all variables queried on the path from the root of T to a leaf.

A decision tree T over $x_1...x_n$ represents a DNF f if all paths in T with associated partial matching restriction σ , $f|_{\sigma} = leaf$ value of path σ .

The following in Fig. 1 is an example decision tree over $x_1...x_4$:

Definition 3. *t-DNF is a disjunction of terms, where each term has a maximum size of t.*

Definition 4. Let f be a t-DNF, then a restriction $\rho : \{x_1...x_n\} \to \{0, 1, *\}$ is a partial assignment that sets the underlying variables to 0, 1, or *. We apply the restriction ρ term by term, if any term evaluates to 1 then $f_{\rho} = 1$, otherwise f_{ρ} can be viewed as a DNF consists of the original terms of f but each term only has the unassigned literals while the assigned literals are removed.

Definition 5. Let f be a t-DNF and ρ a partial restriction. The canonical decision tree for f restricted by ρ is defined as follows:

- If $f|_{\rho} = 0$, $T(f|_{\rho})$ consists of a single node labeled 0.
- If $f|_{\rho}=1$, $T(f|_{\rho})$ consists of a single node labeled 1.

Figure 1: An example decision tree with variables x_1, x_2, x_3, x_4

- Suppose $f|_{\rho} = C_i \vee C_{i+1} \vee ... C_k$. Then, $T(f|_{\rho})$ first query all free literals of C_i . Each path from the root to a leaf represents a partial assignment σ_i .
 - If $C_i|_{\rho\cup\sigma_i}=1$, then the corresponding leaf is labeled 1.
 - If $C_i|_{\rho\cup\sigma_i}=0$, then we recursively construct its subtree $T'|_{\rho\cup\sigma_i}$ with $f'|_{\rho\cup\sigma_i}=C_{i+1}\vee...C_k$.

The following in Fig. 2 is an example canonical decision tree T with $f=x_1\bar{x}_2 \bigvee x_4$.

Figure 2: An example canonical decision tree for $f=x_1\bar{x_2} \bigvee x_4$

Definition 6. Random Restrictions \mathbb{P}_n^p : set of restrictions ρ on domain $x_1...x_n$ such that for each x_i we set x_i to 0 w.p. $\frac{(1-p)}{2}$, 1 w.p. $\frac{(1-p)}{2}$, and leave it unset (set to *) w.p. p.

3 Lower Bounds for Parity

In order to prove the lower bounds for bounded-depth Frege on PHP, we first find the lower bounds for *Parity*. Here, we show the following result due to [Has86]:

Theorem 7. Parity requires $2^{n^{\epsilon_d}}$ size AC_d^0 -circuit, $\epsilon_d \approx \frac{1}{2d}$

On a high level, our proof proceeds as follows:

- Assume for contradiction C is an AC_d^0 -circuit of polynomial size computing Parity over $x_1...x_n$.
- Repeatedly apply restrictions $\rho_1 \dots \rho_d$ to shrink C into circuits $C_1 = C|_{\rho_1}$ (depth = d-1), $C_2 = C|_{\rho_1\rho_2}$ (depth = d-2) $\dots C_d = C|_{\rho_1\rho_2 \dots \rho_{d-1}}$. In the end, C_d is a trivial circuit that cannot compute *Parity* on the remaining unset variables, hence forming a contradiction.

Above shows that our proof relies on finding restrictions that successfully shrink circuit C, and the switching lemma guarantees the existence of such restrictions.

Lemma 8. Switching Lemma [Has86]: Let f be a r-DNF over $x_1...x_n$ and $p \leq \frac{1}{4}$, then $\Pr_{\rho \in \mathbb{P}_n^p}[T(f|_{\rho}) has \ depth \geq s] \leq (4pr)^s$.

Proof of Theorem 7. Lets proceed with proof by contradiction. Assume C is a size $\varsigma AC^0[d]$ circuit for $Parity_n, \varsigma < \frac{1}{2d(4pr)^s}, p = 1/8r$, and $r = s = n^{1/2d}$. Without loss of generality, suppose bottom level of C consists of m rDNFs. Since C has size at most ς , then C has at most ς rDNFs at the bottom. When converting a r-DNF into a decision tree, the switching lemma says that for a random restriction $\rho_i \sim \mathbb{P}_n^p$:

$$Pr_{\rho_i}[T(f|\rho_1) \text{ has depth} > s] < (4pr)^s$$

Through union bound we see that for any random restriction $\rho_i \sim \mathbb{P}_n^p$:

$$Pr_{\rho_i}[\exists j \in [m], T(f_j|\rho_1) \text{ has depth} > s] < m(4pr)^s < \varsigma(4pr)^s < 1/2d$$

Above shows there exists a random restriction ρ_1 such that it converts all bottom level rDNFs $f_i|\rho_1$ to decision trees $T_i(f|\rho_1)$ with depth at most s. For each $T_i(f|\rho_1)$, if we look at its 1-leaves and the path π_t from root to the leaf, we see that $f_i|_{\rho_1}(x) = \bigvee_{t \text{ labeled } 1} \bigwedge_{x_j \text{ queried in } \pi_t} x_i^{b_i}$, with $x_i^{b_i} = x_i$ or $\neg x_i$. This shows f_i can be expressed as a sDNF, since there are at most s variables queried for each path π_t . Similarly, looking at the 0-leaves of $T_i(f|_{\rho_1})$ we see that $\neg f_i|_{\rho_1}$ can be expressed as a sDNF. Applying DeMorgan to $\neg f_i|_{\rho_1}$ and its associated sDNF formula, we get that $f_i|_{\rho_1}$ can be expressed as a sCNF. This shows each $f_i|_{\rho_1}$ can be expressed as both sDNF and sCNF.

Take a bottom level f_i , if the parent gate is AND, then under restriction ρ_1 we convert $f_i|_{\rho_i}$ to a sCNF. Then, we can merge a layer of this sCNF with the parent AND gate. Similarly, if the parent gate is OR, then we convert $f_i|_{\rho_i}$ to a sDNF and merge with the parent OR gate. This process reduces the depth of C by 1. Repeating the above procedure d times, we get $\rho_1...\rho_d$ and $C|_{\rho_1...\rho_d}$ is a depth $\leq r$ decision tree for $Parity_{n'}$, where n' is the number of unset variables after $\rho_1...\rho_d$. As long as n' > r, the above shows that $Parity_{n'}$ can be decided by a decision tree with depth < n', which forms a contradiction.

Above, we see for a random restriction in any round ρ_i it fails with probability < 1/2d to reduce the depth of C by 1. Using union bound, we see that the probability for any random restriction to fail in

some round $\langle (d-1)/2d \rangle < 1$. Hence, there exists a sequence of restrictions $\rho_1 \dots \rho_{d-1}$ that successfully reduces C to a trivial circuit.

Concluding the above, we see that $\varsigma \geq \frac{1}{2d(4pr)^s}$, which after some calculation gives $\varsigma \geq 2^{n^{\epsilon_d}}$.

4 Lower Bounds for PHP

Recall an AC_d^0 Frege proof of PHP_n^{n+1} is a sequence of AC_d^0 formulas $F_1, F_2, ..., F_m$ such that each F_i is either an axiom, or follows from one or two previous lines through a valid Frege rule. In the end, $F_m = PHP_n^{n+1}$.

Here is an naive attempt at finding lower bounds to PHP based on our proof for Theorem 7. Assume for contradiction that we have a size ςAC_d^0 Frege proof Π for PHP_n^{n+1} , and we try applying a sequence of restrictions to reduce the depth of Π . Eventually, the depth of Π becomes 1, and this gives a contradiction as there exists no AC_d^0 Frege proof for PHP_n^{n+1} with depth=1.

However, a problem with our attempt is that every line in Π is a tautology, and hence each line is already equivalent to a depth=1 trivial formula. Therefore, we must find a way to differentiate between a complicated depth d formula that evaluates to true, and other trivial formulas that also evaluate to true. Note that if we think of n as infinite, then there exists a bijection between $\{1, 2, ..., n+1\}$ and $\{1, 2, ..., n\}$. Building on this idea, we define a family of partial restrictions that not only satisfies the restrictions of PHP_n^{n+1} but also enables depth reduction.

Here, we formally introduce the size lower bounds for *PHP*.

Theorem 9. PHP requires $2^{n^{\epsilon_d}}$ size AC_d^0 -circuit lower bounds, $\epsilon_d \approx \frac{1}{6^d}$

Before presenting the full proof of Theorem 9, we first introduce some necessary elements.

Definition 10. Matching restrictions ρ over $\{P_{i,j}, i \in D, j \in R\}$ is a partial 1-1 mapping of size n - g corresponding restriction. Here, n = min(|D|, |R|) and g is the number of variables left unset. Suppose ρ maps i to j, then

- $P_{i,j} = 1$
- $P_{i,j'} = 0, \ \forall j' \neq j$
- $P_{i',j} = 0, \ \forall i' \neq i$

Definition 11. A matching disjunction is an OR of matching terms, where a matching term corresponds to a partial one-to-one mapping. A r-disjunction is an OR of matching terms with size at most r. Below is an example of a 2-disjunction:

$$P_{1,2}P_{3,4} \bigvee P_{3,2}P_{4,1} \bigvee P_{2,3}$$

Definition 12. Let f be a r-disjunction, ρ be a matching restriction, then the restriction of a r-disjunction $f|_{\rho}$ is defined as setting certain variables as matching with one another. For instance,

$$P_{1,2}P_{3,4} \bigvee P_{3,2}P_{4,1} \bigvee P_{2,3}|_{1 \to 3, 4 \to 1} = P_{3,2}$$

Definition 13. A matching decision tree over set $D \cup R$ is a rooted directed tree T such that

- Internal nodes are labeled by elements of $D \cup R$.
- Leaves are labeled by 0 or 1.
- Suppose the root is labeled by $i \in D$, then for each $j \in R$ there is one edge from root labeled $i \to j$.
- Suppose the root is labeled by $j \in R$, then for each $i \in D$ there is one edge from root labeled $i \to j$.
- Take $T^{(i \to j)}$ to be the subtree such that its root is connected to the root of T through an edge labeled $i \to j$. Then, $T^{(i \to j)}$ is a matching decision tree over $D' \cup V'$, with $D' = D \{i\}$ and $V' = V \{j\}$.

Suppose $D = \{1, 2, 3, 4\}$ and $R = \{1', 2', 3'\}$. Then, the matching decision tree T in Fig. 3 corresponds to the matching disjunction $P_{2,1'}P_{3,2'} \vee P_{2,3'}P_{4,1'}$.

Figure 3: A matching decision tree for $P_{2,1'}P_{3,2'} \bigvee P_{2,3'}P_{4,1'}$

Definition 14. Let ρ be a matching restriction and T a matching decision tree. We define $T|_{\rho}$ inductively:

- 1. If T consists of a single node $T|_{\rho} = T$.
- 2. If T consists of at least 2 nodes and suppose the root of T is labeled with vertex i, then
 - If ρ maps $i \to j$ for some j, then $T|_{\rho} = T'_{\rho}$ with T' being the subtree of root labeled with $i \to j$.
 - If ρ does not map any element to or from *i*, then $T|_{\rho}$ has root labelled by *i* with subtrees $T'|_{\rho}$ where T' is connected to the root by an edge $i \to k$ where ρ does not fix *k*.

Suppose $D = \{1, 2, 3, 4\}$ and $R = \{1', 2', 3'\}$. Then, the matching decision tree T in Fig. 4 corresponds to the matching disjunction $P_{2,1'}P_{3,2'} \vee P_{2,3'}P_{4,1'}$ after applying restriction $2 \to 1'$.

Definition 15. Let T be a matching decision tree over variables of PHP_n^{n+1} with depth < n, and let f be a matching disjunction. T **represents** f if for all paths in T with associated partial matching restriction σ , $f|_{\sigma} = leaf$ value of path σ .

Lemma 16. Let T be a matching decision tree and ρ a matching restriction. Then we have the following:

1.
$$Disj(T) \equiv Disj(T|_{\rho})$$

Figure 4: The matching decision tree of $P_{2,1'}P_{3,2'} \bigvee P_{2,3'}P_{4,1'}$ with the restriction $2 \to 1'$

- 2. If T is complete over $D^{n+1} \cup R^n$, then $T|_{\rho}$ is complete over $D^{n+1}|_{\rho}$ and $R^n|_{\rho}$. Here, **complete** means that every assignment where all holes are assigned pigeons is associated with an unique leaf.
- 3. $(T|_{\rho})^{c} = T^{c}|_{\rho}$, with the complement being the toggling of all values of leaves.
- 4. If l is a leaf in $T|_{\rho}$, then there exists a leaf l' in T with same label as l so that $\Pi(l') \subseteq \Pi(l) \cup \rho$ (where $\Pi(l')$ is the partial matching associated with path in T from root to l').
- 5. If T represents the matching disjunction f, then $T|_{\rho}$ represents the matching disjunction $f|_{\rho}$.

Definition 17. Let f be an r-disjunction and $\rho \in Q_n^p$ a matching restriction. The canonical matching decision tree for f, T(f), is defined as follows:

- If f = 0: $T(f|_{\rho})$ consists of a single node labeled 0.
- If f = 1: $T(f|_{o})$ consists of a single node labeled 1.
- Else: Let t_1 be the first matching term of f. Create the complete matching decision tree over the set $s' \subseteq D \cup R$ of pigeons and holes mentioned in the first clause C_1 . If t_1 is forced into a value of 0 or 1, then the process can be terminated early. First, each leaf i is associated with a matching restriction σ_i . Then, we inductively replace each leaf i with the canonical matching decision tree $T(f|_{\sigma_i})$.

Fig. 5 is an example of the canonical matching decision tree T for: $D = \{1, 2, 3, 4\}, R = \{1', 2', 3'\}, f = P_{21'} \cup P_{23'}P_{42'}$. Let $t_1 = P_{21'}$ and $t_2 = P_{23'}P_{42'}$. In T, the protocol first queries the pigeons/holes mentioned in t_1 , then the pigeons/holes mentioned in t_2 .

Definition 18. Random Restrictions Q_n^p : set of all matching restrictions ρ over D = [n+1] and R = [n] such that after applying ρ , there are still pn + 1 pigeons and pn holes unset.

Lemma 19. PHP Switching Lemma: Let f be a r-disjunction, then $Pr_{\rho \in Q_n^p}[T(f|_{\rho}) \text{ has depth } \geq s] \leq (11p^4n^3r)^s.$

Here, we note that though the PHP switching lemma provides a larger upper bound than the *Parity* switching lemma, we will see shortly that this is still sufficient to prove our intended size lower bound for PHP. Our proof of Theorem 8 will utilize the follow Switching Lemma procedure that reduces the depth of a formula L:

Figure 5: The canonical matching decision tree for $f = P_{21'} \cup P_{23'}P_{42'}$, with the protocol first querying the pigeons/holes mentioned in the first clause, and then the pigeons/holes mentioned in the second clause

- 1. Without loss of generality: L is a depth d formula over basis \bigvee and \neg , and the bottom two layers are r-disjunctions f_i .
- 2. Let $\rho_1 \in Q_n^p$ be matching restriction such that $\forall i \ T(f_i|_{\rho_1})$ has depth $\leq r \ (\rho_1 \text{ guaranteed to exist by the } PHP$ Switching Lemma).
- 3. Define $L|_{\rho_1}$ such that for all bottom-level depth-3 subformulas h_j :
 - Convert $\neg f_i|_{\rho_1} \rightarrow \neg T(f_i|_{\rho_1}) \rightarrow T^c(f_i|_{\rho_1})$
 - Convert $\bigvee_{i=1}^{q}(\neg f_i|_{\rho_1}) \rightarrow \bigvee_{i=1}^{q} \bigvee_{t \text{ a 1-path in } T(f_i|_{\rho_1})} t$.

After the application of Step 3, $L|_{\rho_1}$ is converted into a new formula of OR with depth d-2, while the leaves continue to be r-disjunctions. After repeating Step 3 for d-1 times, we have $L|_{\rho_1...\rho_{d-1}}$ which converts to a single matching decision tree of height $\leq r$. From here, we then obtain a contradiction by transforming the initial formula into a 1-tree and the final formula after restrictions into a 0-tree.

[To obtain the bounds as shown in Thm. 9, we set the parameters as follows: Let $n_0 = n$ and $n_i = n$ number of unset holes after round *i* of applying restrictions. As such, $n_{i+1} = p_{i+1}n_i$. Set $p_{i+1} = n_i^{\frac{-5}{6}}$ and $r_i = s_i = n_i^{\frac{1}{6}}$. Then, the *PHP* switching lemma fails to find a satisfying restriction ρ with probability $\leq 11(n_i^{\frac{-20}{6}}n_i^3n_i^{\frac{1}{6}})^{r_i} = 11(n_i^{\frac{-20}{6}+\frac{18}{6}+\frac{1}{6}})^{r_i} = 11(n_i^{\frac{-1}{6}})^{r_i}$. For n_i large enough, we have $11n_i^{\frac{-1}{6}} < 1/2$, and therefore $11(n_i^{\frac{-1}{6}})^{r_i} < 1/2^{r_i}$. For base case, we achieve $n_{d-1} = n^{\frac{1}{6d-1}}$ with $r_{d-1} = 1/6^d$. With this setting, we then obtain lower bound on size $\vartheta > 2^{n^{r_d-1}} \sim 2^{n^{1/6^d}}$.]

Proof Sketch of Theorem 8:

- Let Π be an alleged size $\langle \varsigma AC^0[d]$ Frege proof of PHP_n^{n+1} . $\Pi = \{L_1, ..., L_m\}$.
- Following the PHP switching lemma procedure sketched above (using parameters described) which can be applied iteratively d-1 times to obtain a good sequence of restrictions $\rho_1, ..., \rho_{d-1}$ such that under $\rho = \rho_1 ... \rho_{d-1}$, we can convert $\Pi = \{L_1, ..., L_m\}$ into another sequence of formulas $\Pi^* = \{L_1^*, ..., L_m^*\}$ where L_i^* are depth $\leq r$ matching decision trees, obtained by successively applying $\rho_1, ..., \rho_{d-1}$ to yield $L_i^1, ..., L_i^d - 1 = L_i^*$.

• To finish the lower bound, we need to reach a contradiction by showing that if the proof Π is sound, then Π^* is also a "locally" sound proof of PHP_n^{n+1} on the remaining n' + 1 unset pigeons, and n' unset holes.

Definition 20. k-evaluation: Let Γ be a set of formulas closed under subformulas, over $D^{n'+1} \cup R^{n'}$. A k-evaluation for Γ is an assignment of complete matching decision trees $\mathcal{T}(A)$ to all subformulas A that occur in Γ such that:

- 1. $\mathcal{T}(A)$ has depth $\leq k$ for all A
- 2. $\mathcal{T}(1)$ is the tree with a single node labeled 1
 - $\mathcal{T}(0)$ is the tree with a single node labeled 0
- 3. $\mathcal{T}(P_{ij})$ is the full matching tree over $D^{n'+1} \cup R^{n'}$ with leaf l labeled 1 if $\Pi(l)$ contains $\{i, j\}$, and 0 o.w.
- 4. If A is a matching disjunction then $\mathcal{T}(A)$ represents $\bigvee_i Disj(\mathcal{T}(A_i))$

Lemma 21. Obtaining a k-evaluation: Let Π be a size ς , depth d Frege proof of PHP_n^{n+1} . Let $\rho_1, ..., \rho_{d-1}$ be the good restrictions guaranteed to exist by the PHP switching Lemma. Then:

There exists a k-evaluation for $\Gamma = \{ all subformulas occurring in \Pi|_{\rho_1 \dots \rho_{d-1}} \}$ over $D^{n'+1} \cup R^{n'}$.

[Proof of lemma omitted, proof idea: Prove inductively on depth d. Let F_i = all subformulas occurring in Π that have depth $\leq i$. Then after stage *i*, we have a *k*- evaluation for the formulas $F_{i-\rho_1}, ..., \rho_{d-1}$.

Now we will now finish our proof of Theorem 8. Base case: Let $\Pi = \{L_1, ..., L_m\}$ be the alleged proof of PHP_n^{n+1} . It is left to argue that if we have a k-evaluation \mathcal{T} for all subformulas of $\Pi | \rho$ over $D^{n'+1} \cup R^{n'}$ where $k \ll n'$ then we reach a contradiction as follows:

- (A) on the one hand we can show that all axioms of $\Pi|_{\rho}$ convert to all-1 trees and the Frege rules preserve 1-trees, so every formula in Π_{ρ} converts to a 1-tree.
- (B) On the other hand, the last line $L_m|_{\rho}$ converts to an all 0-tree.

We will now show why (B) holds. (B) states that for all n > 1, PHP_n^{n+1} converts to a 0-tree under \mathcal{T} . PHP_n^{n+1} consists of the disjunction of the following formulas

- 1. $\neg(\neg P_{i,k} \lor \neg P_{j,k}) \quad \forall i \neq j \leq n+1, k \leq n$
- 2. $\neg (P_{i,1} \lor P_{i,2} \lor ... \lor P_{i,n}) \quad \forall i \le n+1.$

 $\mathcal{T}(\text{Type (1) clauses}) \text{ are all 0-trees: Since } \mathcal{T}(\neg(\neg P_{i,k} \lor \neg P_{j,k})) = \mathcal{T}^c(\neg P_{i,k} \lor \neg P_{j,k}) \text{ (tree for } \neg P_{i,k} \lor \neg P_{j,k}) \text{ with all leaf values toggled}), \text{ to show } \mathcal{T}(\neg(\neg P_{i,k} \lor \neg P_{j,k})) \text{ is a 0-tree it suffices to show that } \mathcal{T}(\neg P_{i,k} \lor \neg P_{j,k}) \text{ is a 1-tree. To accomplish this, note that } \mathcal{T}(\neg P_{i,k} \lor \neg P_{j,k}) = \mathcal{T}(Disj(\mathcal{T}^c(P_{i,k})) \lor \mathcal{T}(Disj(\mathcal{T}^c(P_{i,k})))). \text{ For concreteness, consider } \mathcal{T}(\neg P_{1,3'} \lor \neg P_{2,3'}).$

Figure 6: The matching decision tree $\mathcal{T}(P_{1,3'})$. Note that there is exactly one 1-leaf corresponding to the path $1 \to 3'$.

Figure 7: The matching decision tree $\mathcal{T}(\neg P_{1,3'})$. Note that there is exactly one 0-leaf corresponding to the path $1 \rightarrow 3'$.

Figure 8: The matching decision tree $\mathcal{T}(\neg P_{2,3'})$. Note that there is exactly one 0-leaf corresponding to the path $2 \rightarrow 3'$.

Then $\mathcal{T}(\neg P_{1,3'} \lor \neg P_{2,3'}) = \mathcal{T}((\bigvee_{\text{all 1-paths } \sigma \text{ in } \mathcal{T}(\neg P_{1,3'})} m_{\sigma}) \lor (\bigvee_{\text{all 1-paths } \sigma' \text{ in } \mathcal{T}(\neg P_{2,3'}} m_{\sigma'})).$ This tree

queries pigeons 1,2 and hole 3'. All the leaves of this tree are labeled with 1 since no partial matching over $\{2, 1, 3'\}$ maps $2 \rightarrow 3'$ and $1 \rightarrow 3'$. Can similarly argue for all type (1) clauses.

Finally, to argue that tall type (2) clauses of the form $\mathcal{T}(\neg(P_{i,1} \lor P_{i,2} \lor \ldots \lor P_{i,n}))$ yield a 0-tree, it suffices to show that $\mathcal{T}((P_{i,1} \lor P_{i,2} \lor \ldots \lor P_{i,n}))$ is a 1-tree. Consider figure 9 below.

References

- [Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14:417–433, 1994.
- [Has86] John Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 6–20, 1986.
- [Hås23] Johan Håstad. On small-depth frege proofs for php. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 37–49. IEEE, 2023.
- [KPW95] Jan Krajíček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of bounded depth frege proofs of the pigeonhole principle. Random structures & algorithms, 7(1):15–39, 1995.
- [PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the pigeonhole principle. *Computational complexity*, 3:97–140, 1993.