
COMS E6998: Proof Complexity and Applications (Spring’25) February 27, 2025

Lecture 5: Logic, Peano Arithmetic, and Bounded Arithmetic

Instructor: Toniann Pitassi Scribes: Mark Chen, Saachi Mutreja

1 Review of Logic

1.1 Basics and Definitions

We begin with a formal introduction of first order logic. Our starting building block is the notion of a

language:

Definition 1. A language L is specified by:

1. A set of function symbols, each with specified arity.

2. A set of predicate symbols, each of specified arity.

3. A set of variable symbols.

4. A set of logical symbols.

Example 2. For instance, we can consider the language LA of arithmetic:

1. The function symbols are {0, S,+, ·}, where 0 has arity 0, S has arity 1, + has arity 2, and · has

arity 2.

2. The set of predicate symbols includes {<,≤,=}. Here, each predicate has arity 2.

3. The variable symbols are arbitrary, but can include x, y, z, . . . , a, b, c and so on.

4. The logical symbols include ∀,∃,∧,∨,¬.

Next, we introduce the notion of terms over L:

Definition 3. A term over a language L is defined by inductively composing function symbols.

Example 4. We can consider simple examples of terms over the language LA:

1. + S0 SSS0 corresponds with adding together the numbers 1 and 3, and thus evaluates to 4. Note

that we will sometimes write this as S0 + SSS0 for readability.

2. (x+ (SSy · SS0)) · Sx, corresponds to (x+ 2(y + 2)) · (x+ 1).

Now, having defined terms over a language L, we can introduce first order formulas:

Definition 5. Given a predicate P of arity k from L applied to terms t1, . . . tk, we say that the resulting

expression P (t1, . . . tk) is an atomic formula of L.

We can also define L-formulas: given A,B that are both L-formulas, any application of logical symbols to

this formulas is still an L-formula. For instance, ¬A,A∨B,A∧B, ∀xA and ∃xB are all still L-formulas.

Next, we introduce structures:

Definition 6. An L-structureM consists of:

1

1. A non-empty set M called the underlying universe.

2. For every k-ary function symbol f , an associated k-ary function fM : Mk →M .

3. For every k-ary relation symbol R, an associated k-ary relation RM : Mk → {0, 1}.

Definition 7. A variable x in a formula is called free if it is not quantified, and otherwise is called

bound. A formula A is a sentence if all variables in A are quantified.

Example 8. We can consider the formula ∀x, ∃yA(x, y, a). In this example, x, y are bound variables,

and a is a free variable.

In general, it is an accepted convention to let x, y, z denote bound variables, while a, b, c denote free

variables.

1.2 Evaluating Sentences

Now, given a model M, we can evaluate a given sentence A as being either true (1) or false (0).

Definition 9. We say M |= A, if A evaluates to true under M.

Example 10. We can derive the following facts about when a sentence evaluates to true under a given

model M:

1. M |= P (t1, . . . tk) if PM(t1, . . . tk) = 1.

2. M |= ¬A if M 6|= A.

3. M |= A ∨B if either M |= A or M |= B.

4. M |= A ∧B if both M |= A and M |= B.

5. We say that M |= ∀xA(x) if ∀m ∈M , M |= A(m/x).

6. We say that M |= ∃xA(x) if ∃m ∈M , M |= A(m/x).

Definition 11. We say that |= A (in words, A is valid), if and only if, for every model M, M |= A.

Example 12. For instance, let us consider the model M with underlying universe N and the usual

definitions of +, ·, s, 0. Then,

1. M |= S0 + SS0 ≤ SSS0, but S0 + SS0 ≤ SSS0 is not valid.

2. M |= ∀x∃y(x+ x = y), but again, ∀x∃y(x+ x = y) is not valid.

1.3 The LK System

Now, we are ready to introduce the LK system. A proof consists of lines:

Definition 13. Lines of the proof are sequents

A1, . . . Ak → B1, . . . B`,

where the intended meaning is that A1 ∧ · · · ∧Ak ⊃ B1 ∨ · · · ∨B`.

Definition 14. LK has the following set of rules:

1. Weakening:
Γ→ ∆

Γ, A→ ∆

Γ→ ∆

Γ→ ∆, B

2

2. Exchange:
Γ, A,B,Γ′ → ∆

Γ, B,A,Γ′ → ∆

Γ→ ∆, A,B,∆′

Γ→ ∆, B,A,∆′

3. Contraction:
Γ, A,A→ ∆

Γ, A→ ∆

Γ→ ∆, A,A

Γ→ ∆, A

4. Negation:
Γ→ ∆, A

Γ,¬A→ ∆

Γ, A→ ∆

Γ→ ∆,¬A
5. AND:

A,B,Γ→ ∆

A ∧B,Γ→ ∆

Γ→ ∆, A Γ→ ∆, B

Γ→ ∆, A ∧B
6. OR:

A,Γ→ ∆ B,Γ→ ∆

A ∨B,Γ→ ∆

Γ→ ∆, A,B

Γ→ ∆, A ∨B
7. ∀:

A(t),Γ→ ∆

∀xA(x),Γ→ ∆

Γ→ ∆, A(b)

Γ→ ∆, ∀xA(x)

Here, we have used the notion that b is a free variable that only appears in A.

8. ∃:
A(b),Γ→ ∆

∃xA(x),Γ→ ∆

Γ→ ∆, A(t)

Γ→ ∆, ∃xA(x)

9. Axiom:

A→ A

10. Cut rule:
Γ, A→ ∆ Γ→ ∆, A

Γ→ ∆

1.4 Soundness and Completeness of the System

Finally, we can introduce the notions of soundness and completeness. To start, we need the definition of

when a sequent is valid:

Definition 15. We say that a first-order sequent A1, . . . Ak → B1, . . . B` is valid if and only if

|= ¬(A1 ∧ · · · ∧Ak) ∨ (B1 ∨ · · · ∨B`).

With this, we can state the following theorem which establishes our ability to use LK to prove true

statements:

Theorem 16. 1. Soundness: If a sequent has an LK proof, then it is valid.

2. Completeness: Every valid sequent has an LK proof.

3

2 Peano Arithmetic

Definition 17 (LPA). In the language of arithmetic LPA = {0, 1,+, ·, <,=}, the Peano arithmetic, is

axiomatized by Robinson’s arithmetic Q:

1. a+ 1 6= 0.

2. a+ 1 = b+ 1→ a = b.

3. a+ 0 = a.

4. a+ (b+ 1) = (a+ b) + 1.

5. a · 0 = 0.

6. a · (b+ 1) = (a · b) + a.

7. a 6= 0→ ∃x, x+ 1 = a.

Importantly, LPA has all of the rules / axioms of LK, in addition to the induction rule:

Definition 18 (Induction Rule). The induction rule states that

A(b),Γ→ ∆, A(b+ 1)

A(0),Γ→ ∆, ∀xA(x)
.

Here, we use “1” as an abbreviation for S0.

3 Bounded Arithmetic

Bounded arithmetic is a collection of weaker sub-theories of Peano arithmetic, in that quantifiers are

bounded in the induction axiom or equivalence postulates (as we’ll soon seen, such bounds arise as

part of the quantifiers, e.g. ∀x ≤ t, etc). Bounded arithmetic is restricted enough that it is related to

constructive proof systems:

Constructive Proof System. A proof system is called constructive if every proof of an existential

statement implicitly (or explicitly) contains an algorithm for finding a witness. In other words, whenever

the system proves a formula of the form

∀x ∃y ϕ(x, y),

the proof must encode a method (or procedure) by which one can compute, for every input x, an ap-

propriate y such that ϕ(x, y) holds. This means that the proof itself is not merely nonconstructive or

existential; it gives rise to a way of “witnessing” the existential quantifier.

Feasibly Constructive Proof System A feasibly constructive proof system is a constructive proof

system with the additional requirement that the witness extraction is efficient. That is, not only does

every proof of an existential statement yield an algorithm for finding a witness, but this algorithm is

computationally feasible (typically, it runs in polynomial time).

Remark 19. These proof systems capture the idea that, if “∀x∃y A(x, y)” is provable then there should

be a feasible algorithm to find as a function of x. As will be introduced next, S1
2 will be a feasible proof

4

system, and Si
2 and T i

2 are proof systems that have proof theoretic strength that corresponds to higher

levels of the polynomial time hierarchy (connection discussed in section 3.4).

3.1 Motivation

With the discussion about constructive proof systems in mind, bounded arithmetic had the motivation

to reflect feasible (i.e., efficiently verifiable) reasoning by limiting the induction and quantification to

bounded formulas. Although these restrictions make the induction principle and quantifiers weaker, the

definition needs to be designed so that certain operations also make it stronger to express all polynomial-

time computable functions. The “smash” operation (denoted by #) in particular is used to obtain a

polynomial growth rate in the following sense: suppose you have a = a1, . . . , ak as the k free variables

to your formula, and so t(a) is a number whose length in binary is polynomial in the sum of lengths of

the input numbers for any term t(x1, . . . , xk) built up using the “smash” operation with other built-in

functions (S,+, ·, etc.).

In summary, the design of bounded arithmetic reflects the intuition that a “good” proof of an existence

statement should contain a feasible method for finding the object whose existence is claimed.

3.2 Language of bounded arithmetic

We first define the language of bounded arithmetic (denoted LBA) by extending LPA in definition 17 by

the following new samples:

1. Additional function symbols:

• |x|, which is the length of x ∈ N when written in binary representation.

• bx/2c, which has the standard meaning.

• x#y, which has arity of 2 and has the following meaning:

x#y = 2|x|·|y|.

Remark 20. Not only is the # helpful to get the right growth rate for polynomial time com-

putation, it also ensures that the Quantifier Exchange Principle holds:

(∀x ≤ |a|)(∃y ≤ b) A(x, y)↔ (∃y ≤ (2a+1)#(4(2b+1)2))(∀x ≤ |a|) [A(x, β(x+1, y))∧β(x+1, y) ≤ b]

2. Relation symbols remain the same as LPA.

3. Additional logical symbols:

• Bounded quantifiers: quantifiers like ∀x ≤ t A(x, a), and ∃x ≤ t A(x, a), where x runs over all

natural numbers up to poly(|a|).
• Sharply bounded quantifiers: quantifiers like ∀x ≤ |t| A(x, a), and ∃x ≤ |t| A(x, a), where x

runs over all natural numbers of lengths up to poly(|a|).

3.3 Bounded arithmetic proofs

Then, lines of proofs are sequents over LBA as defined in the previous section.

5

Remark 21. Since the quantifiers and the # operation enable proofs that may not be efficiently computed,

the induction rules are also designed to restrict the quantifiers so that the proof can still be efficiently

checked.

As such, we add to all the rules and axioms of LK sequent calculus (see definition 14) the following:

1. It consists of the following axioms over all the operations (there are several such sets of axioms that

are equivalent to each other, but we include the one from [?]’s thesis, where it is called the BASIC

axioms):

(1) y ≤ x→ y ≤ Sx
(2) x 6= Sx

(3) 0 ≤ x
(4) x ≤ y ∧ x 6= y ↔ Sx ≤ y
(5) x 6= 0→ 2 · x 6= 0.

(6) y ≤ x ∨ x ≤ y
(7) x ≤ y ∧ y ≤ x→ x = y

(8) x ≤ y ∧ y ≤ z → x ≤ z
(9) |0| = 0

(10) x 6= 0→ |2 · x| = S(|x|) ∧ |S(2 · x)| = S(|x|)
(11) |S0| = S0.

(12) x ≤ y → |x| ≤ |y|
(13) |x#y| = S(|x| · |y|)
(14) 0#y = S0

(15) x 6= 0→ 1#(2 · x) = 2(1#x) ∧ 1#(S(2 · x)) = 2(1#x)

(16) x#y = y#x

(17) |x| = |y| → x#z = y#z

(18) |x| = |u|+ |v| → x#y = (u#y) · (v#y)

(19) x ≤ x+ y

(20) x ≤ y ∧ x 6= y → S(2 · x) ≤ 2 · y ∧ S(2 · x) 6= 2 · y
(21) x+ y = y + x

(22) x+ 0 = x

(23) x+ Sy = S(x+ y)

(24) (x+ y) + z = x+ (y + z)

(25) x+ y ≤ x+ z ↔ y ≤ z
(26) x · 0 = 0

(27) x · (Sy) = (x · y) + z

(28) x · y = y · x
(29) x · (y + z) = (x · y) + (x · z)
(30) x ≥ S0→ (x · y ≤ x · z ↔ y ≤ z)
(31) x 6= 0→ |x| = S(|bx/2c|)
(32) x = by/2c ↔ (2 · x = y ∨ S(2 · x) = y)

2. Additional rules:

• Rules for bounded quantifiers: Recall that a sequent is usually written as Γ ` ∆, where left

side (the side of Γ) and right side (the side of ∆) are treated differently. So, for the two

6

bounded quantifiers operations that were introduced, ∀· ≤ · and ∃· ≤ ·, we specify left side

and right side rules for them respective (in propositional logic, we make s the concrete bound,

and b and t the candidates for the quantified variables):

– (∃ ≤-left rule): If you can show for a concrete candidate b where the condition b ≤ s

holds such that A(b) is true, together with the rest of the assumptions, then it implies the

corresponding bounded quantifier version:

b ≤ s,A(b),Γ→ ∆

∃x ≤ s,A(x),Γ→ ∆
.

– (∃ ≤-right rule): If you can prove A(t) for some value t under the context Γ leading to

∆, then, with t ≤ s established, we can conclude the corresponding bounded arithmetic

proof sequent:
Γ→ ∆, A(t)

t ≤ s,Γ→ ∆,∃x ≤ s A(x)
.

The ways that the following two bounded quantifiers rules are defined are analogous to the

previous two, so we just write the rules down without paraphrasing them:

– (∀ ≤-left rule):
A(t),Γ→ ∆

t ≤ s, ∀x ≤ s A(x),Γ→ ∆
.

– (∀ ≤-right rule):
b ≤ s,Γ→ ∆, A(b)

Γ→ ∆, ∀x ≤ s A(x)
.

3. Restricted induction rule: Only formulas in which all quantifiers are bounded are allowed in the

induction scheme.

• T i
2 are defined as the ones to have Σb

i -IND:

A(b),Γ→ ∆, A(b+ 1)

A(0),Γ→ ∆, A(t)
,

where “Σb
i” is because A ∈ Σb

i .

• Si
2 are defined as the ones to have Σb

i -PIND (P for polynomial):

A(bb/2c),Γ→ ∆, A(b)

A(0),Γ→ ∆, A(t)

where “Σb
i” is because A ∈ Σb

i .

Note that, as it jumps from A(bb/2c) to A(b), it is effectively doubling the size of the number

in each induction step. Thus, to reach a number t from 0, it only takes log(t) induction steps,

which is poly(|t|). Using the same reasoning, one would be able to give a directly easily

verifiable proof in “|t|” following the IND-rules.

Remark 22. Proof systems that use the PIND-rule is weaker than proof systems that use the

IND-rule simply because the former assume a strictly stronger induction rule.

7

Definition 23 (Σb
i and Πb

i). For those who are familiar with the polynomial hierarchy, ΣP
i denotes i

alternating quantifiers starting with “∃” where P defines a class of predicates. This is similar to Σb
i ,

where b stands for bounded and defines a restricted class of S1
2 formulas. In particular, when it says

“bounded quantifiers”, it means

Σb
i : ∃x1 ≤ t1(a),∀x2 ≤ t2(a), . . .︸ ︷︷ ︸

i alternations

A(a, x1, . . . , xk),

and

Πb
i : ∀x1 ≤ t1(a), ∃x2 ≤ t2(a), . . .︸ ︷︷ ︸

i alternations

A(a, x1, . . . , xk),

where A(·) is a sharply bounded formula (sharply bounded formulas are well-defined syntactic objects that

are poly-time computable, but there are poly-time computable formulas that cannot be written as a sharply

bounded S1
2 formula), and ti(·) are built up from the built-in function symbols and the free variables in

the formula, i.e. “a” in this particular case, though it can be any number of free variables in the formula.

Similarly, when it says, “sharply bounded quantifiers”, it means it means

Σb
i : ∃x1 ≤ |t1(a)|,∀x2 ≤ |t2(a)|, . . .︸ ︷︷ ︸

i alternations

A(a, x1, . . . , xk),

and

Πb
i : ∀x1 ≤ |t1(a)|, ∃x2 ≤ |t2(a)|, . . .︸ ︷︷ ︸

i alternations

A(a, x1, . . . , xk).

Remark 24. We can think of Σb
k and Πb

k for different levels of k to be related in the following way:

1. (Base). Σb
0 = Πb

0 is the set of formulas with only sharply bounded quantifiers.

2. If A ∈ Σb
k, then (∀x ≤ |t|)A and (∃x ≤ t)A are in Σb

k and (∀x ≤ t)A is in Πb
k+1. Conversely, if

A ∈ Πb
k, then (∃x ≤ |t|)A and (∀x ≤ t)A are in Πb

k and (∃x ≤ t)A is in Σb
k+1.

3.3.1 Σp
k vs Σb

k

A quick note on the difference between Σp
k and Σb

k. The former defines a class of predicates and the latter

defines a class of formulas. The strength of the two are related in the following way:

Theorem 25 ([?]). Fix k ≥ 1. A predicate Q is in Σp
k ⇐⇒ there is a Σb

k formula which defines it.

Remark 26. This theorem defines Σ,Π classes of the polynomial hierarchy syntactically without compu-

tation.

3.4 Polynomial time “hierarchy” in proof complexity

In definition 23, we have mentioned Σb
i (resp. Πb

i) is defined over semantically well-defined formulas.

When it comes to Σp
1, where the p stands for a class of predicates, we can define the following symbols

for the poly-time hierarchy:

2
p
1 = FP,∆p

1 = P,

where FP means the poly-time computable functions, and P means the classic decision problems decidable

by poly-time algorithms.

8

Definition 27 (PB∃(Ψ)). Let Ψ be a set of predicates, p be a polynomial, and B ∈ Ψ. Then, PB∃(Ψ)

means

~x ∈ A ⇐⇒ (∃y ≤ 2p(|~x|))B(~x, y).

PB∀(Ψ) is analogously defined by replacing “∃” with “∀”.

Thus, we can define the hierarchy as follows:

Σp
k = PB∃(∆p

k), Πp
k = PB∀(∆p

k).

As such, we have

2
p
k+1 = FPΣp

k = FPΠp
k , ∆p

k+1 = PΣp
k = PΠp

k

Example 28. Πp
1 = coNP and Σp

1 = NP.

This typical formulation of polynomial hierarchy is said to be purely logical characterizations of the

classes in the poly-time hierarchy in terms of expressibility in a formal language. The goal of bounded

arithmetic, in part, is to give purely logical characterizations of these same classes in terms of derivability

in a formal theory.

To make it concrete what “derivability” and “formal theory” mean, we first define feasibility (as compared

to the typical “efficiency”) by formulas that are definable in different levels of Σb
i .

Definition 29 (Σb
i -definable). Let f : Nk → N. The function f is called Σb

i -definable by a theory R ⇐⇒
there is a formula A(~x, y) ∈ Σb

i such that

1. An acceptable witness y can be computed from input ~x by f : ∀~n ∈ Nk, A(~n, f(~n)) = 1.

2. Existence: R ` (∀~x)(∃y)A(~x, y)

3. Uniqueness: R ` (∀~x, y, z)(A(~x, y) ∧A(~x, z)→ y = z)

Example 30. If a function is Σb
1-definable by a theory R, then there should be a Turing machine M

which computes the function so that R can prove the Turing machine always halts within polynomial

time. We call this function provably recursive in R. Concretely, S1
2 , which was defined to be the bounded

arithmetic proofs that allow Σb
1-PIND rules, is a theory by which every poly-time function is Σb

1-definable.

Furthermore, every poly-time predicate is ∆b
1-definable by S1

2 .

4 Witnessing theorems

*For a more detailed survey on these results, see sections 2 - 4 of [?]. We will also point out specific subsections

for specific results below.

We have described, roughly, how formal theories provide different characterizations of the polynomial

hierarchy and what roles Si
2’s of different i’s play in these alternative characterizations. Witnessing

theorems are meant to give an exact characterization of the Σb
i -definable functions of Si

2 in terms of

computational complexity.

9

Theorem 31 (For S1
2). Let A := ∀a ∃x ≤ t(a) B(a, x) be a Σb

1-definable formula in S1
2 . Then there is a

function f ∈ 2
p
1 = FP, such that

N � ∀a B(a, f(a)).

We can generalize the above theorem to Si
2 and T i

2:

Theorem 32 (For Si
2). Let i ≥ 1. Let A := ∀a ∃x ≤ t(a) B(a, x) be a Σb

i -definable formula in Si
2. Then

there is a function f ∈ 2
p
i and a bound t, such that

• Si
2 ` (∀a, b)(B(a, b)→ A(a, b))

• Si
2 ` (∀a)(∃!b)(B(a, b))

• Si
2 ` (∀a)(∃b ≤ t(a))(B(a, b))

• N � B(n, f(n)), for all n.

Proof. We show an outline of this theorem, and theorem 31 follows as a corollary by setting i = 1.

We first introduce the idea of free-cut elimination.

Definition 33 (Free cut inference). A cut inference

Γ→ ∆, A A,Π→ Λ

Γ,Π→ ∆,Λ

is free unless A is the direct descendant of either of a formula in an initial sequent or of a principal

formula of an induction inference (for what these mean, review sequent calculus).

Theorem 34 (Free-cut elimination). For Si
2-proof (resp. T i

2-proof) P , there exists proof P ∗ in the same

theory with the same endsequent which contains no free cut.

Here are the steps to prove the witnessing theorem for Si
2:

1. Given Si
2-proof P such that, fixing any ~x, P → (∃y)A(~x, y) is true. Then, by theorem 34, there is

a proof P ∗ in Si
2 such that

P ∗ → (∃y ≤ t(~x)) A(~x, y)

where every formula in P ∗ is a Σb
i -formula.

2. Based on P ∗, extract an algorithm to compute f(~x) such that A(~n, f(~n)) evaluates to true for all

~n. It needs to be shown that

• f ∈ 2
p
i ,

• f is Σb
i -definable by Si

2, and

• Si
2 � (∀~x) A(~x, f(~x)).

In other words, P ∗ serves as a program (as well as a proof) that satisfies the conditions in the

theorem.

See sections 3.5 - 3.7 of [?] for a full proof of the second step (first step follows directly from theorem

34).

10

The witnessing theorem for T i
2 is related to PLS defined in [?]. It will be a digression of this lecture’s

presentation, so let’s refer to section 4.2 of [?] for a more detailed discussion (it suffices to know that PLS

is a class of functions conjectured to be strictly between 2
p
1 and 2

p
2). Here we only state the witnessing

theorem concerning T 1
2 .

Theorem 35 (For T 1
2 [?]). Let A be a Σb

1-definable predicate, then there is a f ∈ PLS, where f(x) = y,

and a poly-time computable function π such that

T 1
2 ` (∀x)A(x, π ◦ f(x)).

Furthermore, every PLS function and π composing that function is Σb
1-definable by T 1

2 .

5 Propositional translations

*For a more detailed survey on these results, see section 6 of [?]. We will also point out specific subsections for

specific results below.

Finally, we see two important translations of proofs in bounded arithmetic into proofs in propositional

logic, one from S1
2 proofs to EF, and another from relativized Si

2(R) proofs to AC0
i -Frege proofs.

5.1 From S1
2 proofs to EF

One can think of S1
2 as a uniform proof system, whereas EF is the corresponding non-uniform proof

system. The translation goes roughly as follows:

For any Σb
1-definable formula A := ∀a∃x ≤ t(a) B(a, x) in S1

2 , there is a sequence of propositional

statements [[A]]n (expressing A for m ∈ N, |m| = n) such that [[A]]n has a poly-size EF proofs. This

conversion is done by free cut elimination and prof. Sam Buss described in a lot more details in section

6.1 of [?] with implications of this translation in section 6.2.

5.2 From relativized Si
2(R) proofs to AC0

i -Frege proofs [?]

It is helpful to think of Σb
i formula of Si

2(R) as corresponding to a predicate in i-th level of relativized

polynomial hierarchy (i.e. analogous to the translation from a relativized polynomial hierarchy

to bounded depth circuits). The translation goes as follows: for any Σb
i -definable formula AR provable

in Si
2(R), there is a sequence of propositional statements [[AR]]n (expressing AR for all m ∈ N, |m| = n)

such that [[AR]]n has quasi-poly size AC0
i -Frege proofs.

Example 36. PHP(R) = pigeonhole principle for relation R, which can be thought of as a binary relation

that is like what we have seen in a previous lecture (R(i, j) indicates if pigeon i is in hole j). Then, this

R asserts that

∀a
[(
∃x ≤ a+ 1 ∀y ≤ a ¬R(x, y)

)
∨
(
∃x1, x2 ≤ a+ 1 ∃y ≤ a (x1 6= x2 ∧R(x, y) ∧R(x2, y))

)]
.

Then, the propositional transition is [[PHPR]]n, where we set a := n, n ∈ N, and the propositional variables

11

are Ri,j for i = n+ 1, j ≤ n such that∨
i∈[n+1]

∧
j∈[n]

¬Ri,j ∨
∨

i1 6=i2
i1,i2∈[n+1]

∨
j∈[n]

Ri1,j ∧Ri2,j .

With this new three-relationship with R to express the PHP, we could quantify to prove this in Sd
2 , as

all the other terms are bounded, and this is a Σd
2 formula with just two levels of alternation. To build a

circuit, the rough idea is that for every fixed a, we have a propositional formula (relation R where you

have a holes for b+ 1 pigeons).

There are three main steps to translate Si
2(R) to AC0-Frege:

1. (Free cut-free elimination). Use cut elimination to show that if “→ ∀a∃x ≤ t(a) B(a, x)” has a

Si
2(R) proof, then there is another Si

2(R) proof Π of “→ A” where all formulas in the proof are in

Σb
i(R).

Let Si
2(R) ` AR(a) A ∈ Σb

i(R). Then, there is an Si
2(R) proof Π of AR(a) with no “free cuts”

(recall theorem 34 and the definition before it). Also, we can assume that the only free variables in

the proof are those occurring in an induction inference, plus a, the free variable in A.

2. Fix n ∈ N, i.e. consider the restricted statement “→ ∃x ≤ t(n) B(a, x)”. Then, translate each line

in Π to an AC0-formula.

Suppose R is a binary relation, so k = 2 (WLOG, as the idea is analogous for all values of k).

Let A(a) ∈ Σb
i(R). The corresponding propositional variables are ri,j for i, j ∈ N. Then, we define

inductively [[A(n)]]:

(a) If A(a) is quantifier-free, and does not contain R, then [[A(n)]] = 1 if AR(n) is valid, 0

otherwise.

(b) If A(a) is quantifier-free, but does contain R, then, for example, A(a) = R(a, a+1)∨R(2a, 4a),

we have [[A(n)]] = rn,n+1 ∨ r2n,4n.

(c) If A(a) := ∃x ≤ t(a) B(a, x), then [[A(n)]] =
∨

m≤t(n)[[B(m)]].

(d) If A(a) := ∀x ≤ t(a) B(a, x), then [[A(n)]] =
∧

m≤t(n)[[B(m)]].

3. Patch together an AC0-Frege proof from the translated lines (main step: unwind induction via

repeated cut rules).

12

	Review of Logic
	Basics and Definitions
	Evaluating Sentences
	The LK System
	Soundness and Completeness of the System

	Peano Arithmetic
	Bounded Arithmetic
	Motivation
	Language of bounded arithmetic
	Bounded arithmetic proofs
	pk vs bk

	Polynomial time ``hierarchy" in proof complexity

	Witnessing theorems
	Propositional translations
	From S12 proofs to EF
	From relativized Si2(R) proofs to AC0i-Frege proofs paris19810

